1
|
Suppression of Inflammatory and Fibrotic Signals by Cinnamon (Cinnamomum cassia) and Cinnamaldehyde in Cyclophosphamide-Induced Overactive Bladder in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5205759. [PMID: 34976095 PMCID: PMC8716214 DOI: 10.1155/2021/5205759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
Cinnamon (Cinnamomum cassia) is a well-known traditional Chinese medicine used to treat nocturia by tonifying and warming the kidney. Our recent clinical study found that overactive bladder (OAB) patients treated with cinnamon powder (CNP) patches exhibited significantly ameliorated OAB symptoms without significant side effects, but the mechanism of action is unclear. To explore the beneficial effects and action mechanisms of CNP and its major active component cinnamaldehyde (CNA) in an OAB-related murine model, cyclophosphamide- (CYP-) induced OAB injury was performed on male ICR mice in the presence or absence of CNP and CNA, as well as solifenacin, a clinical drug for OAB as a reference. Twenty-four-hour micturition patterns (frequency of urination and volume of urine per time), as well as histopathological examination, immunohistochemistry (IHC), and Western blotting of the bladder, were analyzed for mechanism elucidation. Administration of CYP (300 mg/kg, i.p.) induced typical OAB pathophysiological changes, including increased frequency of urination and reduced volume of urine. CYP-induced mice displayed strong edema of the bladder and hemorrhagic cystitis, accompanied by loss of normal corrugated folds and decreased muscarinic receptors (M2/M3) in the urothelium, and disordered/broken structures of the lamina propria and detrusor. These changes were correlated with increased leukocyte (CD11b) infiltration colocalized with inflammatory (pp65 NFκB, macrophage migration inhibitory factor (MIF)/Toll-like receptor 4 (TLR4)) and fibrotic (stem cell factor (SCF)/c-Kit, α-smooth muscle actin (α-SMA)/β-catenin) signals. Treatment with CNP (600 mg/kg, p.o.) and CNA (10–50 mg/kg, p.o.), but not solifenacin (50 mg/kg), 30 min after CYP induction significantly ameliorated CYP-induced dysfunction in micturition patterns and pathophysiological changes. CNP and CNA further suppressed MIF/TLR4-associated inflammatory and SCF/c-Kit-related fibrotic signaling pathways. Our findings indicate that suppression of inflammatory and fibrotic signals contributes to the crucial mechanism in the improvement of CYP-induced OAB by CNP and CNA.
Collapse
|
2
|
ÇETİK YILDIZ S, KESKİN C, ŞAHİNTÜRK V, AYHANCI A. Wistar albino sıçanlarında Hypericum triquetrifolium Turra. tohum metanol ekstraktlarının siklofosfamid-nedenli mesane hemorajik sistiti ve nefrotoksisitesi üzerine üroprotektif etkilerinin incelenmesi. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.730817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Hou R, Yu Y, Jiang J. PGE2 receptors in detrusor muscle: Drugging the undruggable for urgency. Biochem Pharmacol 2020; 184:114363. [PMID: 33309520 DOI: 10.1016/j.bcp.2020.114363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Overactive bladder (OAB) syndrome is a prevalent condition of the lower urinary tract that causes symptoms, such as urinary frequency, urinary urgency, urge incontinence, and nocturia, and disproportionately affects women and the elderly. Current medications for OAB merely provide symptomatic relief with considerable limitations, as they are no more than moderately effective, not to mention that they may cause substantial adverse effects. Identifying novel molecular targets to facilitate the development of new medical therapies with higher efficacy and safety for OAB is in an urgent unmet need. Although the molecular mechanisms underlying the pathophysiology of OAB largely remain elusive and are likely multifactorial, mounting evidence from preclinical studies over the past decade reveals that the pro-inflammatory pathways engaging cyclooxygenases and their prostanoid products, particularly the prostaglandin E2 (PGE2), may play essential roles in the progression of OAB. The goals of this review are to summarize recent progresses in our knowledge on the pathogenic roles of PGE2 in the OAB and to provide new mechanistic insights into the signaling pathways transduced by its four G-protein-coupled receptors (GPCRs), i.e., EP1-EP4, in the overactive detrusor smooth muscle. We also discuss the feasibility of targeting these GPCRs as an emerging strategy to treat OAB with better therapeutic specificity than the current medications.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Wu KC, Lin WY, Sung YT, Wu WY, Cheng YH, Chen TS, Chiang BJ, Chien CT. Glycine tomentella hayata extract and its ingredient daidzin ameliorate cyclophosphamide-induced hemorrhagic cystitis and oxidative stress through the action of antioxidation, anti-fibrosis, and anti-inflammation. CHINESE J PHYSIOL 2019; 62:188-195. [PMID: 31670282 DOI: 10.4103/cjp.cjp_60_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We explored the therapeutic potential of intragastric administration of traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung [ITG]) extract and its major component Daidzin on cyclophosphamide (CYP)-induced cystitis, oxidative stress, fibrosis, inflammation, and bladder hyperactivity in rats. Female Wistar rats were divided into control, CYP (200 mg/kg), CYP+ITG (1.17 g/kg/day), and CYP+Daidzin (12.5 mg/kg/day) groups. We measured the voiding function by the transcystometrogram and evaluated the pathology with the hematoxylin and eosin and Masson stain. We determined the bladder reactive oxygen species (ROS) amount by an ultrasensitive chemiluminescence analyzer, the expression of 3-nitrotyrosine (3-NT) and NADPH oxidase 4 (NOX4) by Western blot and the expression of multiple cytokine profiles, including matrix metalloproteinase (MMP)-8 and tissue inhibitor of metalloproteinase (TIMP)-1 through a cytokine array. ITG extract contains 1.07% of Daidzin through high-performance liquid chromatography. The effect of ITG extract and Daidzin in scavenging hydrogen peroxide activity was more efficient than distilled water. CYP-induced higher urination frequency, shorter intercontraction interval, and lower maximal voiding pressure in the bladders and these symptoms were significantly ameliorated in CYP+ITG and CYP+Daidzin groups. The amount of in vivo bladder ROS and the expression of 3-NT and NOX4 expressions were significantly increased in CYP group but were efficiently decreased in the CYP+ITG and CYP+Daidzin groups. CYP-induced fibrosis, hemorrhage, leukocyte infiltration, and edema in the bladders were significantly attenuated in the CYP+ITG and CYP+Daidzin groups. These results suggested that ITG extract and its active component Daidzin effectively improved CYP-induced oxidative stress, inflammation, and fibrosis through inhibiting the MMP-8, TIMP-1, and oxidative stress.
Collapse
Affiliation(s)
- Kung-Chieh Wu
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Yu Lin
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei; Department of Urology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Yi-Ting Sung
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Yi Wu
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Hsiuan Cheng
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tung-Sheng Chen
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Bing-Juin Chiang
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei; Department of Urology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
C-Phycocyanin Alleviates Bladder Inflammation and Dysfunction in Cyclophosphamide-Induced Cystitis in a Mouse Model by Inhibiting COX-2 and EP4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8424872. [PMID: 31467580 PMCID: PMC6699264 DOI: 10.1155/2019/8424872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/12/2019] [Indexed: 01/18/2023]
Abstract
Objective To explore the effect of C-phycocyanin (C-PC) on voiding behavior and histological changes in cyclophosphamide- (CYP-) induced cystitis in mice. Methods Sixty female mice were included. The mice in the C-PC group received C-PC (25 mg/kg, twice, i.p.) and then CYP (200 mg/kg, i.p.) two hours later, while the mice in the CYP group only received the equivalent CYP. Saline was injected in the mice in the control group. A voided stain on paper (VSOP) test was conducted to analyze the micturition. The bladders were harvested for histological evaluation and measurements of inflammatory factors. Results C-PC reduced the micturition frequency in the mice with CYP-induced cystitis. The bladder/body weight ratio and edema were remarkably higher in the CYP group compared to the C-PC group. C-PC suppressed the expressions of COX-2, PGE2, and EP4 (prostaglandin E receptor 4) according to the ELISA assay. Immunohistochemical staining also indicated that C-PC reduced the expressions of COX-2 in urothelium and EP4 in smooth muscles. Conclusions C-PC relieved symptoms associated with CYP-induced cystitis in mice by inhibiting bladder inflammation through COX-2 and EP4 expression.
Collapse
|
6
|
Sekido N, Kida J, Otsuki T, Mashimo H, Matsuya H, Okada H. Further characterization of a novel EP2 and EP3 receptor dual agonist, ONO-8055, on lower urinary tract function in normal and lumbar canal stenosis rats. Low Urin Tract Symptoms 2019; 12:99-106. [PMID: 31430051 DOI: 10.1111/luts.12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
Abstract
AIMS To further explore the effects of a novel EP2 and EP3 dual agonist, ONO-8055, on detrusor contractility, we investigated the responses of bladder strips from sham and lumbar canal stenosis (LCS) rats to this agonist, its effects on lower urinary tract function in normal rats, and mRNA expression of EP2 and EP3 receptors in the sham and LCS rats. METHODS The responses of bladder strips from sham and LCS rats to ONO-8055 were measured. The effects of ONO-8055 on LUT function of normal rats were investigated with awake cystometry and intraurethral perfusion pressure (Pura) measurements. The relative mRNA of bladder and urethral tissue of the sham and LCS rats was quantified using specific probes for EP1, EP2, EP3, and EP4 genes. RESULTS Compared with the vehicle, the muscle tensions of both the sham and LCS rats were significantly increased after adding this agonist. On awake cystometry of normal rats, bladder capacity and Pura were decreased in the ONO-8055 groups, but a statistically significant difference in mean changes was demonstrated only between the vehicle group and the group receiving the highest dose. Compared with the sham rats, mRNA expressions of the four EP receptors in the lower urinary tract of the LCS rats did not show a statistically significant difference. CONCLUSIONS This agonist did not augment bladder contractility or urethral relaxation in normal rats.
Collapse
Affiliation(s)
- Noritoshi Sekido
- Department of Urology, School of Medicine, Faculty of Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Jun Kida
- Discovery Research Laboratories II, Ono Pharmaceutical Co. Ltd., Osaka, Japan
| | - Takeya Otsuki
- Discovery Research Laboratories II, Ono Pharmaceutical Co. Ltd., Osaka, Japan
| | - Hiroko Mashimo
- Discovery Research Laboratories II, Ono Pharmaceutical Co. Ltd., Osaka, Japan
| | - Hidekazu Matsuya
- Discovery Research Laboratories II, Ono Pharmaceutical Co. Ltd., Osaka, Japan
| | - Hiroki Okada
- Discovery Research Laboratories II, Ono Pharmaceutical Co. Ltd., Osaka, Japan
| |
Collapse
|
7
|
Mizoguchi S, Wolf-Johnson AS, Ni J, Mori K, Suzuki T, Takaoka E, Mimata H, DeFranco DB, Wang Z, Birder LA, Yoshimura N. The role of prostaglandin and E series prostaglandin receptor type 4 receptors in the development of bladder overactivity in a rat model of chemically induced prostatic inflammation. BJU Int 2019; 124:883-891. [PMID: 31166645 DOI: 10.1111/bju.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate, using a rat model of non-bacterial prostatic inflammation, the prostaglandin production and expression profiles of E-series prostaglandin (EP) receptor subtypes, which are reportedly implicated in the development of overactive bladder, in the bladder mucosa, and to investigate the effect of EP receptor type 4 (EP4) blockade on bladder overactivity after prostatic inflammation. METHODS Male Sprague-Dawley rats were used. Prostatic inflammation was induced by formalin injection (5%; 50 μL per lobe) into the bilateral ventral lobes of the prostate. At 10 days after induction of prostatic inflammation or vehicle injection, bladder tissues from the deeply anaesthetized rats were harvested and separated into mucosal and detrusor layers. Then, prostaglandin E2 (PGE2) concentrations and protein levels of PGE2 receptors (EP1-4) in the bladder mucosa and detrusor were measured by ELISA and Western blotting, respectively. In separate groups of control and formalin-treated rats, awake cystometry was performed to evaluate the changes in bladder activity after prostatic inflammation. In addition, the effect of intravesical administration of a selective EP4 antagonist (ONO-AE3-208; 30 μm) on bladder activity was evaluated in control rats and rats with prostatic inflammation. RESULTS PGE2 concentration and protein levels of EP4, but not other EP receptor subtypes, in the bladder mucosa and detrusor layers were significantly increased in formalin-injected rats vs vehicle-injected control rats. In cystometry, rats with prostatic inflammation exhibited a significant decrease in intercontraction intervals (ICIs) compared with control rats. Intravesical application of ONO-AE3-208 (30 μm), but not vehicle application, significantly increased ICIs in rats with prostatic inflammation, whereas ONO-AE3-208 at this concentration did not significantly affect any cystometric values in control rats. CONCLUSIONS Because intravesical administration of an EP4 antagonist effectively improved bladder overactivity after prostatic inflammation, EP4 activation, along with increased PGE2 production in the bladder mucosa, seems to be an important contributing factor to bladder overactivity induced by prostatic inflammation. Thus, blockade of EP4 in the bladder could be a therapeutic approach to male lower urinary tract symptoms attributable to benign prostatic hyperplasia with prostatic inflammation.
Collapse
Affiliation(s)
- Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Amanda S Wolf-Johnson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianshu Ni
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenichi Mori
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hiromitsu Mimata
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Yeh JC, Do R, Choi H, Lin CT, Chen JJ, Zi X, Chang HH, Ghoniem G. Investigations of urethral sphincter activity in mice with bladder hyperalgesia before and after drug administration of gabapentin. Int Urol Nephrol 2018; 51:53-59. [PMID: 30387068 DOI: 10.1007/s11255-018-2021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE This study investigated the effect of gabapentin on lower urinary tract dysfunction focusing on urethral activities and cystitis-induced hyperalgesia in a mouse model of painful bladder syndrome/interstitial cystitis (PBS/IC). The electromyography (EMG) of external urethral sphincter (EUS) was difficult to obtain, but contained useful information to examine the drug effect in mice. METHODS Female C57BL/6J mice were intraperitoneally (ip) administration with either saline or 200 mg/kg of cyclophosphamide (CYP) 48 h before experimental evaluation. Cystitis mice were treated with administration of gabapentin (25 or 50 mg/kg, ip). Cystometry and EUS EMG were obtained and analyzed during continuous bladder infusion. The visceral pain-related visceromotor reflex (VMR) was recorded in response to isotonic bladder distension. RESULTS Cystitis mice showed shorter inter-contraction intervals and increased occurrence of non-voiding contractions during bladder infusion, with increased VMR during isotonic bladder distension, indicating cystitis-induced bladder hyperalgesia. Gabapentin (50 mg/kg) suppressed effects of CYP on cystometry, but not on EUS EMG activity, during bladder infusion. The effect on urodynamic recordings lasted 4 h. VMR was significantly reduced by gabapentin. CONCLUSIONS The present study showed that CYP-induced cystitis in mice is a model of visceral hyperalgesia affecting detrusor contractions, not urethral activations. The technique of using EUS EMG to evaluate the drug effects on urethral activities is novel and useful for future investigations. Gabapentin can be as a potential treatment for detrusor overactivity and PBS/IC.
Collapse
Affiliation(s)
- Jih-Chao Yeh
- Urology at University of Southern California, Los Angeles, CA, USA
| | - Rebecca Do
- Urology at University of California Irvine, Irvine, CA, USA
| | - Hanul Choi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Ching-Ting Lin
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Jia-Jin Chen
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Xiaolin Zi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Huiyi H Chang
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology and Reeve-Irvine Research Center, University of California at Irvine, 837 Health Science Rd, GNRF 2111, Zotcode 4265, Irvine, CA, USA.
| | - Gamal Ghoniem
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology, University of California, Irvine, 333 City Blvd. West, Ste 2100, Orange, CA, USA.
| |
Collapse
|
9
|
Wu KC, Chiang BJ, Tsai WH, Chung SD, Chien CT. I-Tiao-Gung extract through its active component daidzin improves cyclophosphamide-induced bladder dysfunction in rat model. Neurourol Urodyn 2018; 37:2560-2570. [PMID: 30252154 DOI: 10.1002/nau.23815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/20/2018] [Indexed: 11/06/2022]
Abstract
AIMS We explored the therapeutic potential of intragastric administration traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung, ITG) extract and its active component Daidzin on cyclophosphamide (CYP)-induced cystitis and bladder hyperactivity in rats. METHODS Female Wistar rats were divided into control, CYP (200 mg/kg), CYP + ITG (1.17 g/kg/day), CYP + Daidzin (12.5 mg/kg/day), and 1 week of ITG preconditioning with CYP (ITG + CYP) groups. We determined the trans cystometrogram associated with external urethral sphincter electromyogram, and the expression of M2 and M3 muscarinic and P2 × 2 and P2 × 3 purinergic receptors by Western blot in these animals. RESULTS ITG extract contains 1.07% of Daidzin and 0.77% of Daidzein by high-performance liquid chromatography. Daidzin was more efficient than Daidzein in scavenging H2 O2 activity by a chemiluminescence analyzer. CYP induced higher frequency, shorter intercontraction interval, lower maximal voiding pressure, lower threshold pressure, and Phase-2 emptying contraction with a depressed external urethral sphincter electromyogram activity, and hemorrhagic cystitis in the bladders. The altered parameters by CYP were significantly improved in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. The P2 × 2 and P2 × 3 expressions were significantly upregulated in CYP group, but were depressed in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. The M2 expression was not significantly different among these five groups. The M3 expression was significantly upregulated in CYP group, but was significantly depressed in CYP + ITG, CYP + Daidzin, and ITG + CYP groups. CONCLUSIONS These data suggest that ITG extract through its active component Daidzin effectively improved CYP-induced cystitis by the action of restoring Phase 2 activity and inhibiting the expressions of P2 × 2, P2 × 3, and M3 receptors.
Collapse
Affiliation(s)
- Kung-Chieh Wu
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Bing-Juin Chiang
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Urology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Wen-Hsin Tsai
- Department of Traditional Chinese Medicine, Taipei City Hospital Linsen (Chinese Medicine) Branch, Taipei, Taiwan
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Program in Biomedical Informatics, College of Informatics, Yuan-Ze University, Chung-Li, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
10
|
Kullmann FA, McDonnell BM, Wolf-Johnston AS, Lynn AM, Giglio D, Getchell SE, Ruiz WG, Zabbarova IV, Ikeda Y, Kanai AJ, Roppolo JR, Bastacky SI, Apodaca G, Buffington CAT, Birder LA. Inflammation and Tissue Remodeling in the Bladder and Urethra in Feline Interstitial Cystitis. Front Syst Neurosci 2018; 12:13. [PMID: 29706873 PMCID: PMC5908978 DOI: 10.3389/fnsys.2018.00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn’s nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a “sensory network” and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome.
Collapse
Affiliation(s)
- F Aura Kullmann
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bronagh M McDonnell
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amanda S Wolf-Johnston
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew M Lynn
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel Giglio
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel E Getchell
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wily G Ruiz
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irina V Zabbarova
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Youko Ikeda
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony J Kanai
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - James R Roppolo
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sheldon I Bastacky
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gerard Apodaca
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - C A Tony Buffington
- Department of Medicine and Epidemiology, University of California, Davis, Davis, CA, United States.,Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | - Lori A Birder
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Chen L, Wu X, Zhong J, Li D. L161982 alleviates collagen-induced arthritis in mice by increasing Treg cells and down-regulating Interleukin-17 and monocyte-chemoattractant protein-1 levels. BMC Musculoskelet Disord 2017; 18:462. [PMID: 29145862 PMCID: PMC5691865 DOI: 10.1186/s12891-017-1819-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To investigate the effects and potential mechanism of L161982 (a kind of EP4 antagonist) on the collagen-induced arthritis (CIA) mice model. METHODS The CIA mice model were first established by immunizing with Chicken Type II Collagen on DBA/1 mice. The CIA groups were administered once a day for 2 weeks with either 5 mg/kg L161982 by intraperitoneal injections (IP), 200 U celecoxib by intragastrical injections, or 100 μl PBS (IP). At the end of the study, total arthritis score and histopathologic examination were assessed to determine CIA severity. The plasma and tissue expressions of IL-17 and monocyte chemoattractant protein-1 (MCP-1) were detected by enzyme-linked immunosorbent assay (ELISA) and Immunohistochemical staining (IHC) respectively; The number of CD4+CD25+Foxp3+ regulatory T cells (Treg) determined as a proportion of total CD4+ cells in the lymph nodes and spleen. We also tested the proliferation of isolated Tregs and the ratio of Th17 polarization of Naïve T cells under the treatment of L161982 by BrdU assay and flow cytometry respectively. RESULTS CIA mice treated with L161982 showed reduced arthritis scores, joint swellings, cracked cartilage surface, and less hyperplasia in the connective tissue of the articular cavity. Plasma and tissue IL-17 and MCP-1 decreased, while the proportion of Treg cells is increased both in the spleen and lymph nodes of CIA mice. Otherwise, L161982 have no direct effect on Tregs proliferation; a decreased tendency of Th17 polarization in vitro were observed in L161982-treated naïve T cells. CONCLUSION Although less effective than Celecoxib, L161982 also resulted in a reduction of ankle joint inflammation in CIA mice. L161982 reduces the RA severity in CIA mice through inhibition of IL-17 and MCP-1, increasing Treg cells, and reducing inflammation. The mechanism of the reduction of IL-17 in plasma or tissue after administration of L161982 might be potentially derived from the suppression of CD4+ T cells differentiation into Th-17 cells.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, 9 Zhangzhidong Street, Wuhan, Hubei, 430060, People's Republic of China
| | - Xianglei Wu
- Laboratory of Immunology, University of Lorraine, Avenue du Morvan, 54511 Vandoeuvre lès Nancy, Nancy, France
| | - Jun Zhong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 9 Zhangzhidong Street, Wuhan, Hubei, 430060, People's Republic of China
| | - Dongqing Li
- Department of Microbiology, School of Basic Medical Science, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
12
|
Liu Q, Lin X, Li H, Yuan J, Peng Y, Dong L, Dai S. Paeoniflorin ameliorates renal function in cyclophosphamide-induced mice via AMPK suppressed inflammation and apoptosis. Biomed Pharmacother 2016; 84:1899-1905. [DOI: 10.1016/j.biopha.2016.10.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
|
13
|
Lee WC, Wu CC, Chuang YC, Tain YL, Chiang PH. Ba-Wei-Die-Huang-Wan (Hachimi-jio-gan) can ameliorate cyclophosphamide-induced ongoing bladder overactivity and acidic adenosine triphosphate solution-induced hyperactivity on rats prestimulated bladder. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:1-9. [PMID: 26719284 DOI: 10.1016/j.jep.2015.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/17/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ba-Wei-Die-Huang-Wan (BWDHW) is the traditional Chinese medicine formula containing eight ingredients, namely Rehmannia glutinosa (Gaetn.) DC., root, steamed & dried; Cornus officinalis Siebold & Zucc., fructus, dried; Dioscorea oppositifolia L., root, dried; Alisma plantago-aquatica, subsp. orientale (Sam.) Sam., tuber, dried; Poria cocos (Fr.) Wolf., sclerotium, dried; Paeonia×suffruticosa Andrews, bark, dried; Cinnamomum cassia (Nees & T.Nees) J. Presl, bark, dried; Aconitum carmichaeli Debeaux, lateral root, dried & processed. It has been used for diabetes and urinary frequency treatments. AIM OF THE STUDY We investigate effects of BWDHW on cyclophosphamide (CYP)-induced ongoing bladder overactivity and acidic adenosine triphosphate (ATP) solution-induced hyperactivity on rat's prestimulated bladder. MATERIAL AND METHODS Female Wistar rats were injected with intraperitoneal CYP (100mg/kg) or saline respectively. Rats were treated with BWDHW (90mg/kg/day) or vehicle for the next five days. After treatments animals were evaluated both in metabolic cage model and then by cystometry. Acidic ATP solution (5mM, pH 3.3) was instilled to provoke bladder hyperactivity. Bladder mucosa and muscle proteins were assessed by Western blotting. RESULTS As compared to the controls, the CYP group showed significantly decreased mean cystometric intercontractile interval and increased micturition frequency, whereas the CYP/BWDWH group did not. The CYP group had significant protein overexpression in mucosal M2, M3, P2X2, and P2X3 receptors as well as detrusor M2 and M3 receptors. However, the CYP/BWDWH group had insignificant changes from controls. In the provoking test, the control/BWDHW and CYP/BWDHW groups were less affected by acidic ATP stimulation of intercontractile interval changes than the control group. Compared to the control group, the control/BWDHW group showed significantly lower mucosal P2X3 protein expression and the CYP group showed significant mucosal TRPV1 protein upregulation after the provoking test. CONCLUSION BWDHW treatment can ameliorate CYP-induced ongoing bladder overactivity and suppress mucosal P2X2, P2X3, M2, and M3 receptor protein overexpression, as well as detrusor M2 and M3 receptor protein overexpression. BWDHW pretreatment can reduce acidic ATP solution-provoked hyperactivity by preventing TRPV1 receptor overexpression in CYP-treated bladder mucosa and inhibiting P2X3 receptor overexpression in naïve bladder mucosa.
Collapse
MESH Headings
- Adenosine Triphosphate
- Animals
- Cyclophosphamide
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Hydrogen-Ion Concentration
- Medicine, Chinese Traditional
- Mucous Membrane/drug effects
- Mucous Membrane/metabolism
- Phytotherapy
- Rats, Wistar
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/metabolism
- Receptors, Purinergic P2X2/metabolism
- Receptors, Purinergic P2X3/metabolism
- Solutions
- TRPV Cation Channels/metabolism
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/physiology
- Urinary Bladder, Overactive/chemically induced
- Urinary Bladder, Overactive/drug therapy
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/physiopathology
Collapse
Affiliation(s)
- Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chia-Ching Wu
- Department of International Business, College of Commerce and Management, Cheng Shiu University, Kaohsiung, Taiwan.
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Po-Hui Chiang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Kurihara R, Imazumi K, Takamatsu H, Ishizu K, Yoshino T, Masuda N. Effect of Selective Prostaglandin E2 EP2 Receptor Agonist CP-533,536 on Voiding Efficiency in Rats with Midodrine-Induced Functional Urethral Obstruction. Low Urin Tract Symptoms 2016; 8:130-5. [PMID: 27111626 DOI: 10.1111/luts.12080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES We investigated the effect of the selective prostaglandin E2 EP2 receptor agonist CP-533,536 on voiding efficiency in rats with midodrine-induced functional urethral obstruction. METHODS The effect of CP-533,536 (0.03-0.3 mg/kg, intravenous [i.v.]) on urethral perfusion pressure (UPP) was investigated in anesthetized rats pre-treated with midodrine (1 mg/kg, i.v.), which forms an active metabolite that acts as an α1 -adrenoceptor agonist. The effect of CP-533,536 (0.03-0.3 mg/kg, i.v.) on cystometric parameters was also investigated in anesthetized rats. In addition, the effect of CP-533,536 (0.03-0.3 mg/kg, i.v.) on residual urine volume (RV) and voiding efficiency (VE) was investigated in conscious rats treated with midodrine (1 mg/kg, i.v.). RESULTS CP-533,536 dose-dependently decreased UPP elevated by midodrine in anesthetized rats. In contrast, CP-533,536 did not affect maximum voiding pressure, intercontraction interval, or intravesical threshold pressure. In conscious rats, midodrine (1 mg/kg, i.v.) markedly increased RV and reduced VE. CP-533,536 dose-dependently ameliorated increases in RV and decreases in VE induced by midodrine. CONCLUSIONS These results suggest that a selective EP2 receptor agonist could ameliorate the elevation of RV and improve the reduction of VE in rats with functional urethral obstruction caused by stimulation of α1 -adrenoceptors. The mechanism of action might be not potentiation of bladder contraction but rather preferential relief of urethral constriction.
Collapse
Affiliation(s)
- Ryoko Kurihara
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Katsunori Imazumi
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Hajime Takamatsu
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Kenichiro Ishizu
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Taiji Yoshino
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Noriyuki Masuda
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| |
Collapse
|
15
|
Nirmal J, Tyagi P, Chuang YC, Lee WC, Yoshimura N, Huang CC, Rajaganapathy B, Chancellor MB. Functional and molecular characterization of hyposensitive underactive bladder tissue and urine in streptozotocin-induced diabetic rat. PLoS One 2014; 9:e102644. [PMID: 25050870 PMCID: PMC4106869 DOI: 10.1371/journal.pone.0102644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
Background The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats. Methodology/Principal Findings Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12. Conclusions/Significance DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder.
Collapse
Affiliation(s)
- Jayabalan Nirmal
- Department of Urology, Centre for Urology Research Excellence, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Bharathi Rajaganapathy
- Department of Urology, Centre for Urology Research Excellence, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| | - Michael B. Chancellor
- Department of Urology, Centre for Urology Research Excellence, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| |
Collapse
|
16
|
Xue R, Jia Z, Kong X, Pi G, Ma S, Yang J. Effects of PGE2 EP3/EP4 receptors on bladder dysfunction in mice with experimental autoimmune encephalomyelitis. Am J Physiol Renal Physiol 2013; 305:F1656-62. [PMID: 24154697 DOI: 10.1152/ajprenal.00271.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To investigate the expression of four subtypes of PGE2 E-prostanoid (EP) receptors (EP1-EP4) and the effects of EP3/EP4 on bladder dysfunction in a new neurogenic bladder model induced by experimental autoimmune encephalomyelitis (EAE), the mouse model of EAE was induced using a previously established method, and bladder function in mice with different defined levels of neurological impairment was then examined, including micturition frequencies and voiding weight. Bladders were then harvested for analysis of EP receptor expression by Western blot. Activities of agonists/antagonists of EP3 and EP4 receptors as well as PGE2 were also evaluated at different stages of EAE. The results showed that EAE mice developed profound bladder dysfunction characterized by significantly increased micturition and significantly decreased urine output per micturition. EAE-induced upregulation of EP3 and EP4 receptors in the bladder was accompanied by bladder dysfunction. However, EAE had no significant effect on EP1 and EP2 receptors. Moreover, PGE2 and agonists/antagonists of EP3 and EP4 receptors significantly affected bladder dysfunction in EAE mice. Thus, we believe that EAE mice are useful for investigations of the neurogenic bladder. In addition, EP3 and EP4 receptors play a role in EAE-induced bladder dysfunction, providing us with a new target for the treatment of neurogenic bladders.
Collapse
Affiliation(s)
- Rui Xue
- Dept. of Urology, The First Affiliated Hospital of Zhengzhou Univ., No.1 Jian She Dong Ave., Zhengzhou 450002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Lee WC, Chiang PH, Tain YL, Wu CC, Chuang YC. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome. PLoS One 2012; 7:e45578. [PMID: 23029112 PMCID: PMC3446912 DOI: 10.1371/journal.pone.0045578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/22/2012] [Indexed: 01/21/2023] Open
Abstract
Purpose To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome. Materials and Methods Female Wistar rats were fed a fructose-rich diet (60%) or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs) were divided into a group with normal detrusor function or detrusor overactivity (DO). Acidic adenosine triphosphate (ATP) solution (5mM, pH 3.3) was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting. Results Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2′,4′-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups. Conclusions Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.
Collapse
Affiliation(s)
- Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Hui Chiang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Ching Wu
- Department of International Business, College of Commerce and Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Wada N, Matsumoto S, Kita M, Watanabe M, Hashizume K, Kakizaki H. Effect of intrathecal administration of E-series prostaglandin 1 receptor antagonist in a cyclophosphamide-induced cystitis rat model. Int J Urol 2012; 20:235-40. [PMID: 22925406 DOI: 10.1111/j.1442-2042.2012.03126.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the effect of intrathecal administration of E-series prostaglandin 1 antagonist in cyclophosphamide-induced murine cystitis. METHODS Female Wistar rats were used for this experimental study. Intrathecal administration of E-series prostaglandin 1 antagonist (ONO-8711; 0.5, 5 and 50 µg) in sham controls and rats with cystitis induced by a single intraperitoneal injection of cyclophosphamide (300 mg/kg) was assessed by evaluating micturition pressure and intercontraction interval using a conscious-filling cystometry at 48 h after cyclophosphamide or saline injection. In both groups, prostaglandin E2 concentrations and the expression of E-series prostaglandin 1 receptor in the spinal cord were measured by enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction, respectively. RESULTS Rats with cyclophosphamide-induced cystitis showed a shorter intercontraction interval compared with controls, where the cumulative intrathecal administration of ONO-8711 did not significantly change micturition pressure or intercontraction interval compared with the baseline. In rats with cyclophosphamide-induced cystitis, each dose of ONO-8711 significantly increased the intercontraction interval compared with the baseline (46% increase at 50 µg intrathecally). Polymerase chain reaction revealed the expression of E-series prostaglandin 1 receptor in the spinal cord of both sham and cyclophosphamide-induced cystitis rats. In rats with cyclophosphamide-induced cystitis, PGE2 concentration in the dorsal horn of the L5-6 spinal cord was significantly higher than that in controls (3.55 ± 1.24 vs 0.99 ± 0.06 pg/mg tissue). CONCLUSIONS In rats with cyclophosphamide-induced cystitis, urinary frequency seems to be caused by prostaglandin E2 acting on E-series prostaglandin 1 receptor at the level of the spinal cord. Blockade of the spinal E-series prostaglandin 1 receptor by ONO-8711 might have a therapeutic potential in the control of interstitial cystitis/bladder pain syndrome.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Chuang YC, Tyagi P, Huang CC, Chancellor MB, Yoshimura N. Mechanisms and urodynamic effects of a potent and selective EP4 receptor antagonist, MF191, on cyclophosphamide and prostaglandin E2-induced bladder overactivity in rats. BJU Int 2012; 110:1558-64. [DOI: 10.1111/j.1464-410x.2012.11096.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
|
21
|
Chuang YC, Tyagi P, Huang HY, Yoshimura N, Wu M, Kaufman J, Chancellor MB. Intravesical immune suppression by liposomal tacrolimus in cyclophosphamide-induced inflammatory cystitis. Neurourol Urodyn 2010; 30:421-7. [DOI: 10.1002/nau.20981] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
|