1
|
Novel Thieno [2,3-b]pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism. Int J Mol Sci 2022; 23:ijms231911457. [PMID: 36232754 PMCID: PMC9569594 DOI: 10.3390/ijms231911457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022] Open
Abstract
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of six GSLs on CSCs and non-CSCs on breast cancer cell lines (MDA-MB-231 and MCF-7). We also investigated the effect of 1 on the metabolic profile of these cell lines. The MTT assay was used for cytotoxicity determination. Apoptosis and expression of GSLs were assessed by flow cytometry. A GC–MS-coupled system was used for the separation and identification of metabolites. Compound 1 was cytotoxic for both cell lines, and the majority of cells died by treatment-induced apoptosis. The percentage of CSCs was significantly lower in the MDA-MB-231 cell line. Treatment with 1 caused a decrease of CSC IV6Neu5Ac-nLc4Cer+ MDA-MB-231 cells. In the MCF-7 cell line, the percentage of GalNAc-GM1b+ CSCs was increased, while the expression of Gg3Cer was decreased in both CSC and non-CSC. Twenty-one metabolites were identified by metabolic profiling. The major impact of the treatment was in glycolysis/gluconeogenesis, pyruvate and inositol metabolism. Compound 1 exhibited higher potency in MBA-MB-231 cells, and it deserves further examination.
Collapse
|
2
|
Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, Rauf A, Aljohani AM, Al Abdulmonem W, Khalil AA, Sharma R, Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact 2022; 368:110198. [PMID: 36179774 DOI: 10.1016/j.cbi.2022.110198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
One of the leading global causes of death is cancer; even though several treatment methods have improved survival rates, the incidence and fatality rates remain high. Naphthoquinones are a type of quinone that is found in nature and has vital biological roles. These chemicals have anticancer (antineoplastic), analgesic, anti-inflammatory, antimalarial, antifungal, antiviral, antitrypanosomal, antischistosomal, leishmanicidal, and anti-ulcerative effects. Direct addition of a substituent group to the 1,4-naphthoquinone ring can alter the naphthoquinone's oxidation/reduction and acid/base characteristics, and the activity can be altered. Because of their pharmacological properties, such as anticancer activity and probable therapeutic application, naphthoquinones have greatly interested the scientific community. Some chemicals having a quinone ring in malignant cells have been found to have antiproliferative effects. Naphthoquinones' deadly impact is connected with the inhibition of electron transporters, the uncoupling of oxidative phosphorylation, the creation of ROS, and the formation of protein adducts, notably with -SH enzyme groups. This review article aims to discuss naphthoquinones and their derivatives, which act against cancer and their future perspectives. This review covers several studies highlighting the potent anticancer properties of naphthoquinones. Further, various proposed mechanisms of anticancer actions of naphthoquinones have been summarized in this review.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - AbdullahS M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Pakistan, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, College of Life and Environmental Sciences, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
Ferraris D, Lapidus R, Truong P, Bollino D, Carter-Cooper B, Lee M, Chang E, LaRossa-Garcia M, Dash S, Gartenhaus R, Choi EY, Kipe O, Lam V, Mason K, Palmer R, Williams E, Ambulos N, Kamangar F, Zhang Y, Kapadia B, Jing Y, Emadi A. Pre-Clinical Activity of Amino-Alcohol Dimeric Naphthoquinones as Potential Therapeutics for Acute Myeloid Leukemia. Anticancer Agents Med Chem 2021; 22:239-253. [PMID: 34080968 DOI: 10.2174/1871520621666210602131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The clinical outcomes of patients with acute myeloid leukemia (AML) remain unsatisfactory, therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported the anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE This study aimed to improve the potency and bioavailability of BiQ compounds and investigate the anti-leukemic activity of the lead compound in vitro and in a human AML xenograft mouse model. METHODS We designed, synthesized, and performed structure-activity relationship of several rationally designed BiQ analogues that possess amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.
Collapse
Affiliation(s)
- Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Rena Lapidus
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Phuc Truong
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Dominique Bollino
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Brandon Carter-Cooper
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Michelle Lee
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Elizabeth Chang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Maria LaRossa-Garcia
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Smaraki Dash
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ronald Gartenhaus
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Eun Yong Choi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Olivia Kipe
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Vi Lam
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Kristopher Mason
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Riley Palmer
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Elijah Williams
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Nicholas Ambulos
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Farin Kamangar
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yuji Zhang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Bandish Kapadia
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yin Jing
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ashkan Emadi
- University of Maryland School of Medicine, Morgan State University, Baltimore, MDun, United States
| |
Collapse
|
4
|
Marijan S, Markotić A, Mastelić A, Režić-Mužinić N, Pilkington LI, Reynisson J, Čulić VČ. Glycosphingolipid expression at breast cancer stem cells after novel thieno[2,3-b]pyridine anticancer compound treatment. Sci Rep 2020; 10:11876. [PMID: 32680999 PMCID: PMC7368022 DOI: 10.1038/s41598-020-68516-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosphingolipid expression differs between human breast cancer stem cells (CSC) and cancer non-stem cells (non-CSC). We performed studies of viability, type of cell death, cancer stem cell percent and glycosphingolipid expression on CSC and non-CSC after treatment of MDA-MB-231 and MDA-MB-453 triple-negative breast cancer cells with a newly developed thienopyridine anticancer compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1). Compound 1 was cytotoxic for both breast cancer cell lines and the majority of cells died by treatment-induced apoptosis. The percent of cancer stem cells and number of formed mammospheres was significantly lower. Glycosphingolipids IV6Neu5Ac-nLc4Cer and GalNAc-GM1b (IV3Neu5Ac-Gg5Cer) not reported previously, were identified in both CSCs and non-CSCs. IV6Neu5Ac-nLc4Cer had increased expression in both CSCs and non-CSCs of both cell lines after the treatment with 1, while GM3 (II3Neu5Ac-LacCer) had increased expression only on both cell subpopulations in MDA-MB-231 cell line. GalNAc-GM1b, Gb4Cer (GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) and GM2 (II3Neu5Ac-GalNAcβ1-4Galβ1-4Glcβ1-1Cer) were increased only in CSCs of both cell lines while GD3 was decreased in CSC of MDA-MB-231 cell line. Due to its effect in reducing the percentage of cancer stem cells and number of mammospheres, and its influence upon several glycosphingolipid expressions, it can be concluded that compound 1 deserves attention as a potential new drug for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Lisa Ivy Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Johannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia.
| |
Collapse
|
5
|
Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules 2019; 24:molecules24173121. [PMID: 31466259 PMCID: PMC6749238 DOI: 10.3390/molecules24173121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a neoplastic disorder resulting from clonal proliferation of poorly differentiated immature myeloid cells. Distinct genetic and epigenetic aberrations are key features of AML that account for its variable response to standard therapy. Irrespective of their oncogenic mutations, AML cells produce elevated levels of reactive oxygen species (ROS). They also alter expression and activity of antioxidant enzymes to promote cell proliferation and survival. Subsequently, selective targeting of redox homeostasis in a molecularly heterogeneous disease, such as AML, has been an appealing approach in the development of novel anti-leukemic chemotherapeutics. Naphthoquinones are able to undergo redox cycling and generate ROS in cancer cells, which have made them excellent candidates for testing against AML cells. In addition to inducing oxidative imbalance in AML cells, depending on their structure, naphthoquinones negatively affect other cellular apparatus causing neoplastic cell death. Here we provide an overview of the anti-AML activities of naphthoquinone derivatives, as well as analysis of their mechanism of action, including induction of reduction-oxidation imbalance, alteration in mitochondrial transmembrane potential, Bcl-2 modulation, initiation of DNA damage, and modulation of MAPK and STAT3 activity, alterations in the unfolded protein response and translocation of FOX-related transcription factors to the nucleus.
Collapse
|
6
|
Maestri V, Tarozzi A, Simoni E, Cilia A, Poggesi E, Naldi M, Nicolini B, Pruccoli L, Rosini M, Minarini A. Quinazoline based α 1 -adrenoreceptor antagonists with potent antiproliferative activity in human prostate cancer cell lines. Eur J Med Chem 2017; 136:259-269. [DOI: 10.1016/j.ejmech.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
7
|
Radan M, Carev I, Tešević V, Politeo O, Čulić VČ. Qualitative HPLC-DAD/ESI-TOF-MS Analysis, Cytotoxic, and Apoptotic Effects of Croatian Endemic Centaurea ragusina L. Aqueous Extracts. Chem Biodivers 2017; 14. [PMID: 28591430 DOI: 10.1002/cbdv.201700099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022]
Abstract
Centaurea ragusina L., an endemic Croatian plant species, revealed a good cytotoxic activity of aqueous extracts (AE) on human bladder (T24) and human glioblastoma (A1235) cancer cell lines. The chemical constituents were tentatively identified using high performance liquid chromatography HPLC-DAD/ESI-TOF-MS in negative ionization mode. The main compounds of herba extract were sesquiterpene lactones: solstitialin A 3,13-diacetate and epoxyrepdiolide; organic acid: quinic acid. The main compounds of flower extract were organic acids: quinic acid, citric acid, and malic acid; sesquiterpene lactone: cynaropicrin; phenolic compounds: chlorogenic acid and phenylpropanoid: syringin. The AE of C. ragusina were investigated for correlation of their effects on human bladder (T24) and human glioblastoma (A1235) cancer cell lines using the MTT assay. Although both extracts showed significant dose- and time-dependent cytotoxic activity against both cancer cell lines, the flower extract exhibited slightly higher activity. In order to determine type of cell death induced by treatment, cell lines were exposed subsequently to a treatment with both flower and herba AE. The majority of the cells died by induced apoptosis treatment. Flower AE (26.25%), compared to a leaf AE (22.15%) showed slightly higher percentage of an apoptosis in T24 cells, when compared to a non-treated cells (0.04%).
Collapse
Affiliation(s)
- Mila Radan
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000, Split, Croatia
| | - Ivana Carev
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000, Split, Croatia
| | - Vele Tešević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, RS-11158, Belgrade, Serbia
| | - Olivera Politeo
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000, Split, Croatia
| | - Vedrana Čikeš Čulić
- School of Medicine, University of Split, Šoltanska 2, HR-21000, Split, Croatia
| |
Collapse
|
8
|
Mastelić A, Čikeš Čulić V, Režić Mužinić N, Vuica-Ross M, Barker D, Leung EY, Reynisson J, Markotić A. Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3- b]pyridine anticancer compound. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:759-769. [PMID: 28352152 PMCID: PMC5359006 DOI: 10.2147/dddt.s121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor progression may be driven by a small subpopulation of cancer stem cells (CSCs characterized by CD44+/CD24− phenotype). We investigated the influence of a newly developed thienopyridine anticancer compound (3-amino-5-oxo-N-naphthyl-5,6,7, 8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1) on the growth, survival and glycophenotype (CD15s and GM3 containing neuraminic acid substituted with acetyl residue, NeuAc) of breast and prostate cancer stem/progenitor-like cell population. MDA-MB-231 and Du-145 cells were incubated with compound 1 alone or in combination with paclitaxel. The cellular metabolic activity was determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The type of cell death induced by 48-h treatment was assessed using a combination of Annexin-V-FITC and propidium iodide staining. Flow cytometric analysis was performed to detect the percentage of CD44+/CD24− cells, and GM3 and CD15s positive CSCs, as well as the expression of GM3 and CD15s per one CSC, in both cell lines. Compound 1 produces a dose- and time-dependent cytotoxicity, mediated mainly by apoptosis in breast cancer cells, and slightly (2.3%) but statistically significant lowering breast CSC subpopulation. GM3 expression per one breast CSC was increased, and the percentage of prostate GM3+ CSC subpopulation was decreased in cells treated with compound 1 compared with non-treated cells. The percentage of CD15s+ CSCs was lower in both cell lines after treatment with compound 1. Considering that triple-negative breast cancers are characterized by an increased percentage of breast CSCs and knowing their association with an increased risk of metastasis and mortality, compound 1 is a potentially effective drug for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Milena Vuica-Ross
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Barker
- School of Chemical Sciences, The University of Auckland
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, The University of Auckland; Molecular Medicine and Pathology Department, The University of Auckland, Auckland, New Zealand
| | | | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
9
|
Carter-Cooper BA, Fletcher S, Ferraris D, Choi EY, Kronfli D, Dash S, Truong P, Sausville EA, Lapidus RG, Emadi A. Synthesis, characterization and antineoplastic activity of bis-aziridinyl dimeric naphthoquinone - A novel class of compounds with potent activity against acute myeloid leukemia cells. Bioorg Med Chem Lett 2016; 27:6-10. [PMID: 27890379 DOI: 10.1016/j.bmcl.2016.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023]
Abstract
The synthesis, characterization and antileukemic activity of rationally designed amino dimeric naphthoquinone (BiQ) possessing aziridine as alkylating moiety is described. Bis-aziridinyl BiQ decreased proliferation of acute myeloid leukemia (AML) cell lines and primary cells from patients, and exhibited potent (nanomolar) inhibition of colony formation and overall cell survival in AML cells. Effective production of reactive oxygen species (ROS) and double stranded DNA breaks (DSB) induced by bis-aziridinyl BiQ is reported. Bis-dimethylamine BiQ, as the isostere of bis-aziridinyl BiQ but without the alkylating moiety did not show as potent anti-AML activity. Systemic administration of bis-aziridinyl BiQ was well tolerated in NSG mice.
Collapse
Affiliation(s)
- Brandon A Carter-Cooper
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, United States
| | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD, United States
| | - Eun Yong Choi
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Dahlia Kronfli
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Smaraki Dash
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Phuc Truong
- Department of Chemistry, McDaniel College, Westminster, MD, United States
| | - Edward A Sausville
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ashkan Emadi
- University of Maryland School of Medicine, Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
10
|
Pidugu LSM, Mbimba JCE, Ahmad M, Pozharski E, Sausville EA, Emadi A, Toth EA. A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone. BMC STRUCTURAL BIOLOGY 2016; 16:1. [PMID: 26822308 PMCID: PMC4730606 DOI: 10.1186/s12900-016-0052-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multimeric naphthoquinones are redox-active compounds that exhibit antineoplastic, antiprotozoal, and antiviral activities. Due to their multimodal effect on perturbation of cellular oxidative state, these compounds hold great potential as therapeutic agents against highly proliferative neoplastic cells. In our previous work, we developed a series of novel dimeric naphthoquinones and showed that they were selectively cytotoxic to human acute myeloid leukemia (AML), breast and prostate cancer cell lines. We subsequently identified the oxidoreductase NAD(P)H dehydrogenase, quinone 1 (NQO1) as the major target of dimeric naphthoquinones and proposed a mechanism of action that entailed induction of a futile redox cycling. RESULTS Here, for the first time, we describe a direct physical interaction between the bromohydroxy dimeric naphthoquinone E6a and NQO1. Moreover, our studies reveal an extensive binding interface between E6a and the isoalloxazine ring of the flavin adenine dinucleotide (FAD) cofactor of NQO1 in addition to interactions with protein side chains in the active site. We also present biochemical evidence that dimeric naphthoquinones affect the redox state of the FAD cofactor of NQO1. Comparison of the mode of binding of E6a with those of other chemotherapeutics reveals unique characteristics of the interaction that can be leveraged in future drug optimization efforts. CONCLUSION The first structure of a dimeric naphthoquinone-NQO1 complex was reported, which can be used for design and synthesis of more potent next generation dimeric naphthoquinones to target NQO1 with higher affinity and specificity.
Collapse
Affiliation(s)
- Lakshmi Swarna Mukhi Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - J C Emmanuel Mbimba
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - Muqeet Ahmad
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - Edward A Sausville
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ashkan Emadi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
11
|
Hydroxylated Dimeric Naphthoquinones Increase the Generation of Reactive Oxygen Species, Induce Apoptosis of Acute Myeloid Leukemia Cells and Are Not Substrates of the Multidrug Resistance Proteins ABCB1 and ABCG2. Pharmaceuticals (Basel) 2016; 9:ph9010004. [PMID: 26797621 PMCID: PMC4812368 DOI: 10.3390/ph9010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/24/2023] Open
Abstract
Selective targeting of the oxidative state, which is a tightly balanced fundamental cellular property, is an attractive strategy for developing novel anti-leukemic chemotherapeutics with potential applications in the treatment of acute myeloid leukemia (AML), a molecularly heterogeneous disease. Dimeric naphthoquinones (BiQs) with the ability to undergo redox cycling and to generate reactive oxygen species (ROS) in cancer cells are a novel class of compounds with unique characteristics that make them excellent candidates to be tested against AML cells. We evaluated the effect of two BiQ analogues and one monomeric naphthoquinone in AML cell lines and primary cells from patients. All compounds possess one halogen and one hydroxyl group on the quinone cores. Dimeric, but not monomeric, naphthoquinones demonstrated significant anti-AML activity in the cell lines and primary cells from patients with favorable therapeutic index compared to normal hematopoietic cells. BiQ-1 effectively inhibited clonogenicity and induced apoptosis as measured by Western blotting and Annexin V staining and mitochondrial membrane depolarization by flow cytometry. BiQ-1 significantly enhances intracellular ROS levels in AML cells and upregulates expression of key anti-oxidant protein, Nrf2. Notably, systemic exposure to BiQ-1 was well tolerated in mice. In conclusion, we propose that BiQ-induced therapeutic augmentation of ROS in AML cells with dysregulation of antioxidants kill leukemic cells while normal cells remain relatively intact. Further studies are warranted to better understand this class of potential chemotherapeutics.
Collapse
|
12
|
Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 2015. [DOI: 10.1039/c4ra13547d] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Naphthoquinone moieties are present in drugs such as doxorubicin which are used clinically to treat solid cancers.
Collapse
|
13
|
Vaverkova V, Vrana O, Adam V, Pekarek T, Jampilek J, Babula P. The study of naphthoquinones and their complexes with DNA by using Raman spectroscopy and surface enhanced Raman spectroscopy: new insight into interactions of DNA with plant secondary metabolites. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461393. [PMID: 25045679 PMCID: PMC4090563 DOI: 10.1155/2014/461393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022]
Abstract
Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious.
Collapse
Affiliation(s)
- Veronika Vaverkova
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, C612 65 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Pekarek
- Zentiva, k.s., Development Department, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic
| |
Collapse
|
14
|
Hook I, Mills C, Sheridan H. Bioactive Naphthoquinones from Higher Plants. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00005-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Emadi A, Le A, Harwood CJ, Stagliano KW, Kamangar F, Ross AE, Cooper CR, Dang CV, Karp JE, Vuica-Ross M. Metabolic and electrochemical mechanisms of dimeric naphthoquinones cytotoxicity in breast cancer cells. Bioorg Med Chem 2011; 19:7057-62. [PMID: 22036210 PMCID: PMC3216315 DOI: 10.1016/j.bmc.2011.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
Abstract
Cancer cells reprogram their metabolism due to genetic alteration to compensate for increased energy demand and enhanced anabolism, cell proliferation, and protection from oxidative damage. Here, we assessed the cytotoxicity of three dimeric naphthoquinones against the glycolytic MCF-7 versus the oxidative MDA-453 breast carcinoma cell lines. Dimeric naphthoquinones 1 and 2 impaired MDA-453, but not MCF-7, cell growth at IC(50)=15 μM. Significant increase in reactive oxygen species, decrease in oxygen consumption and ATP production were observed in MDA-453 cells but not in MCF-7 cell. These findings suggest that oxidative stress and mitochondrial dysfunction are mechanisms by which these agents exert their cytotoxic effects. Cyclic voltammetry and semi-empirical molecular orbital calculations further characterized the electrochemical behavior of these compounds. These results also suggest that dimeric naphthoquinones may be used to selectively target cancer cells that depend on oxidative phosphorylation for energy production and macromolecular synthesis.
Collapse
Affiliation(s)
- Ashkan Emadi
- Johns Hopkins University, School of Medicine, Department of Internal Medicine, Division of Hematology, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|