1
|
Poulsen C, Norrman M, Thomsen JK, Wahlund PO. Structure, Self-Association, and Aggregation Properties of a Long-Acting Amylin Receptor Agonist. Mol Pharm 2025. [PMID: 40405715 DOI: 10.1021/acs.molpharmaceut.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Pharmacokinetic (PK) properties of therapeutic peptides can be extended through covalent conjugation to albumin-binding fatty acids. The present study examines the effects of fatty acid conjugation and vehicle composition on structure, self-association pattern, and aggregation propensity of an amylin analogue. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and circular dichroism (CD) were applied to elucidate structural features and self-association patterns, whereas the propensity toward formation of amyloid fibrils under extreme stressful conditions was assessed based on thioflavin T fluorescence. Fatty acid conjugation of the unstructured amylin analogue induced a transition from a flexible and disordered state to a helix-enriched globular core-shell self-associate consistent with a size average of five monomers (pentamer). These structural changes did not increase the propensity toward formation of amyloid fibrils, suggesting that the self-associated species are not on the pathway to amyloid fibril formation. Increasing concentration of the fatty acid-conjugated amylin analogue 1) induced self-association to an average size corresponding to a pentamer around 30 μM, 2) increased repulsion between self-associated species, and 3) increased α-helix content which leveled off around 0.25 mM. Only at significantly higher peptide concentrations (2.2 mM), amyloid fibril formation was observed following 24 h continuous exposure to extreme mechanical stress conditions. The extent of electrostatic repulsion between the self-associated species was reduced by increasing NaCl concentration (up to 50 mM) or by raising pH (from pH 3 to pH 5). However, under conditions with the least electrostatic repulsion, 4 h of continuous exposure to extreme mechanical stress was needed to induce formation of amyloid fibrils of this inherently stable molecule.
Collapse
Affiliation(s)
- Christian Poulsen
- Therapeutics Discovery & Accelerated Execution, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Mathias Norrman
- Therapeutics Discovery & Accelerated Execution, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Per-Olof Wahlund
- Therapeutics Discovery & Accelerated Execution, Novo Nordisk A/S, Måløv DK-2760, Denmark
| |
Collapse
|
2
|
Gelb M, Messina KMM, Vinciguerra D, Ko JH, Collins J, Tamboline M, Xu S, Ibarrondo FJ, Maynard HD. Poly(trehalose methacrylate) as an Excipient for Insulin Stabilization: Mechanism and Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37410-37423. [PMID: 35968684 PMCID: PMC9412841 DOI: 10.1021/acsami.2c09301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 05/07/2023]
Abstract
Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability. One approach to stabilize insulin is the addition of poly(trehalose methacrylate) (pTrMA) as an excipient. The polymer increases the stability of the peptide to heat and mechanical agitation and has a low viscosity suitable for injection and pumps. However, the safety and stabilizing mechanism of pTrMA is not yet known and is required to understand the potential suitability of pTrMA as an insulin excipient. Herein is reported the immune response, biodistribution, and insulin plasma lifetime in mice, as well as investigation into insulin stabilization. pTrMA alone or formulated with ovalbumin did not elicit an antibody response over 3 weeks in mice, and there was no observable cytokine production in response to pTrMA. Micropositron emission tomography/microcomputer tomography of 64Cu-labeled pTrMA showed excretion of 78-79% ID/cc within 24 h and minimal liver accumulation at 6-8% ID/cc when studied out to 120 h. Further, the plasma lifetime of insulin in mice was not altered by added pTrMA. Formulating insulin with 2 mol equiv of pTrMA improved the stability of insulin to standard storage conditions: 46 weeks at 4 °C yielded 87.0% intact insulin with pTrMA present as compared to 7.8% intact insulin without the polymer. The mechanism by which pTrMA-stabilized insulin was revealed to be a combination of inhibiting deamidation of amino acid residues and preventing fibrillation, followed by aggregation of inactive and immunogenic amyloids all without complexing insulin into its hexameric state, which could delay the onset of insulin activity. Based on the data reported here, we suggest that pTrMA stabilizes insulin as an excipient without adverse effects in vivo and is promising to investigate further for the safe formulation of insulin.
Collapse
Affiliation(s)
- Madeline
B. Gelb
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Daniele Vinciguerra
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - F. Javier Ibarrondo
- Division
of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Sim EZ, Enomoto T, Shiraki N, Furuta N, Kashio S, Kambe T, Tsuyama T, Arakawa A, Ozawa H, Yokoyama M, Miura M, Kume S. Methionine metabolism regulates pluripotent stem cell pluripotency and differentiation through zinc mobilization. Cell Rep 2022; 40:111120. [PMID: 35858556 DOI: 10.1016/j.celrep.2022.111120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Pluripotent stem cells (PSCs) exhibit a unique feature that requires S-adenosylmethionine (SAM) for the maintenance of their pluripotency. Methionine deprivation in the medium causes a reduction in intracellular SAM, thus rendering PSCs in a state potentiated for differentiation. In this study, we find that methionine deprivation triggers a reduction in intracellular protein-bound Zn content and upregulation of Zn exporter SLC30A1 in PSCs. Culturing PSCs in Zn-deprived medium results in decreased intracellular protein-bound Zn content, reduced cell growth, and potentiated differentiation, which partially mimics methionine deprivation. PSCs cultured under Zn deprivation exhibit an altered methionine metabolism-related metabolite profile. We conclude that methionine deprivation potentiates differentiation partly by lowering cellular Zn content. We establish a protocol to generate functional pancreatic β cells by applying methionine and Zn deprivation. Our results reveal a link between Zn signaling and methionine metabolism in the regulation of cell fate in PSCs.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takayuki Enomoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Nao Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomonori Tsuyama
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akihiro Arakawa
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto, Kawasaki-shi, Kanagawa, Japan
| | - Hiroki Ozawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mizuho Yokoyama
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto, Kawasaki-shi, Kanagawa, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
4
|
De Block CEM, Van Cauwenberghe J, Bochanen N, Dirinck E. Rapid-acting insulin analogues: Theory and best clinical practice in type 1 and type 2 diabetes. Diabetes Obes Metab 2022; 24 Suppl 1:63-74. [PMID: 35403348 DOI: 10.1111/dom.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
Since the discovery of insulin 100 years ago, insulin preparations have improved significantly. Starting from purified animal insulins, evolving to human insulins produced by genetically modified organisms, and ultimately to insulin analogues, all in an attempt to mimic physiological insulin action profiles seen in individuals without diabetes. Achieving strict glucose control without hypoglycaemia and preventing chronic complications of diabetes while preserving quality of life remains a challenging goal, but the advent of newer ultra-rapid-acting insulin analogues may enable intensive insulin therapy without being too disruptive to daily life. Ultra-rapid-acting insulin analogues can be administered shortly before meals and give better coverage of mealtime-induced glucose excursions than conventional insulin preparations. They also increase convenience with timing of bolus dosing. In this review, we focus on the progress that has been made in rapid-acting insulins. We summarize pharmacokinetic and pharmacodynamic data, clinical trial data supporting the use of these new formulations as part of a basal-bolus regimen and continuous subcutaneous insulin infusion, and provide a clinical perspective to help guide healthcare professionals when and for whom to use ultra-fast-acting insulins.
Collapse
Affiliation(s)
- Christophe E M De Block
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), Wilrijk, Belgium
| | - Jolijn Van Cauwenberghe
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), Wilrijk, Belgium
| | - Niels Bochanen
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), Wilrijk, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), Wilrijk, Belgium
| |
Collapse
|
5
|
Henry H, Lannoy D, Maboudou P, Seguy D, Dine T, Pigny P, Odou P. Addition of Regular Insulin to Ternary Parenteral Nutrition: A Stability Study. Pharmaceutics 2021; 13:pharmaceutics13040458. [PMID: 33801784 PMCID: PMC8066181 DOI: 10.3390/pharmaceutics13040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Parenteral nutrition (PN) is a complex medium in which added insulin can become unstable. The aim of this study is, therefore, to evaluate the stability of insulin in PN and to identify influencing factors. Methods: A total of 20 IU/L of regular insulin was added to PN in either glass or Ethylene Vinyl Acetate (EVA) containers. A 24 h stability study was performed via an electrochemiluminescence immunoassay in different media: A ternary PN admixture, separate compartments of the PN bag and a binary admixture. This study was repeated in the absence of zinc, with the addition of serum albumin or tween and with pH adjustment (3.6 or 6.3). Insulin concentration at t time was expressed as a percentage of the initial insulin concentration. Analysis of covariance (ANCOVA) was applied to determine the factors that influence insulin stability. Results: In all PN admixtures, the insulin concentration ratio decreased, stabilising at a 60% and then plateauing after 6 h. At pH 3.6, the ratio was above 90%, while at pH 6.3 it decreased, except in the amino acid solution. ANCOVA (r2 = 0.68, p = 0.01) identified dextrose and pH as significant factors influencing insulin stability. Conclusion: A low pH level seems to stabilise insulin in PN admixtures. The influence of dextrose content suggests that insulin glycation may influence stability.
Collapse
Affiliation(s)
- Heloise Henry
- ULR 7365–GRITA–Groupe de Recherche sur les Formes Injectables et les Technologies Associées, University of Lille, F-59000 Lille, France; (H.H.); (T.D.); (P.O.)
- Institut de Pharmacie, CHU Lille, F-59000 Lille, France
| | - Damien Lannoy
- ULR 7365–GRITA–Groupe de Recherche sur les Formes Injectables et les Technologies Associées, University of Lille, F-59000 Lille, France; (H.H.); (T.D.); (P.O.)
- Institut de Pharmacie, CHU Lille, F-59000 Lille, France
- Correspondence: ; Tel.: +33-(0)3-20-96-40-29; Fax: +33-(0)3-20-95-90-09
| | - Patrice Maboudou
- Service de Biochimie Automatisée Protéines, CHU Lille, F-59000 Lille, France;
| | - David Seguy
- Service Endocrinologie Diabétologie Maladies Métaboliques et Nutrition, CHU Lille, F-59000 Lille, France;
- U 1286–Infinite–Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
- Inserm, U 1286, F-59000 Lille, France
| | - Thierry Dine
- ULR 7365–GRITA–Groupe de Recherche sur les Formes Injectables et les Technologies Associées, University of Lille, F-59000 Lille, France; (H.H.); (T.D.); (P.O.)
| | - Pascal Pigny
- Laboratoire de Biochimie & Hormonologie, Centre de Biologie Pathologie, CHU Lille, F-59000 Lille, France;
| | - Pascal Odou
- ULR 7365–GRITA–Groupe de Recherche sur les Formes Injectables et les Technologies Associées, University of Lille, F-59000 Lille, France; (H.H.); (T.D.); (P.O.)
- Institut de Pharmacie, CHU Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Ben-Shushan S, Miller Y. Insulin fibrillation control by specific zinc binding sites. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01054a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present for the first time a study that identifies the morphology of full-length insulin fibrils in the absence and in the presence of Zn2+ ions.
Collapse
Affiliation(s)
- Shira Ben-Shushan
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beér Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beér Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
7
|
Østergaard M, Mishra NK, Jensen KJ. The ABC of Insulin: The Organic Chemistry of a Small Protein. Chemistry 2020; 26:8341-8357. [DOI: 10.1002/chem.202000337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mads Østergaard
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Narendra Kumar Mishra
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
8
|
Pariary R, Ghosh B, Bednarikova Z, Varnava KG, Ratha BN, Raha S, Bhattacharyya D, Gazova Z, Sarojini V, Mandal AK, Bhunia A. Targeted inhibition of amyloidogenesis using a non-toxic, serum stable strategically designed cyclic peptide with therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140378. [PMID: 32032759 DOI: 10.1016/j.bbapap.2020.140378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Amyloidogenic disorders are currently rising as a global health issue, prompting more and more studies dedicated to the development of effective targeted therapeutics. The innate affinity of these amyloidogenic proteins towards the biomembranes adds further complexities to the systems. Our previous studies have shown that biologically active peptides can effectively target amyloidogenesis serving as an efficient therapeutic alternative in several amyloidogenic disorders. The structural uniqueness of the PWWP motif in the de novo designed heptapeptide, KR7 (KPWWPRR-NH2) was demonstrated to target insulin fiber elongation specifically. By working on insulin, an important model system in amyloidogenic studies, we gained several mechanistic insights into the inhibitory actions at the protein-peptide interface. Here, we report a second-generation non-toxic and serum stable cyclic peptide, based primarily on the PWWP motif that resulted in complete inhibition of insulin fibrillation both in the presence and absence of the model membranes. Using both low- and high-resolution spectroscopic techniques, we could delineate the specific mechanism of inhibition, at atomistic resolution. Our studies put forward an effective therapeutic intervention that redirects the default aggregation kinetics towards off-pathway fibrillation. Based on the promising results, this novel cyclic peptide can be considered an excellent lead to design pharmaceutical molecules against amyloidogenesis.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Baijayanti Ghosh
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Bhisma N Ratha
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Sreyan Raha
- Department of Physics, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Atin K Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India.
| |
Collapse
|
9
|
Ratha BN, Kar RK, Kalita S, Kalita S, Raha S, Singha A, Garai K, Mandal B, Bhunia A. Sequence specificity of amylin-insulin interaction: a fragment-based insulin fibrillation inhibition study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:405-415. [DOI: 10.1016/j.bbapap.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/10/2023]
|
10
|
Insulin fibrillation: The influence and coordination of Zn 2. J Struct Biol 2017; 199:27-38. [PMID: 28527712 DOI: 10.1016/j.jsb.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022]
Abstract
Protein amyloid fibrillation is obtaining much focus because it is connected with amyloid-related human diseases such as Alzheimer's disease, diabetes mellitus type 2, or Parkinson's disease. The influence of metal ions on the fibrillation process and whether it is implemented in the amyloid fibrils has been debated for some years. We have therefore investigated the influence and binding geometry of zinc in fibrillated insulin using extended X-ray absorption fine-structure and X-ray absorption near-edge structure spectroscopy. The results were validated with fibre diffraction, Transmission Electron Microscopy and Thioflavin T fluorescence measurements. It is well-known that Zn2+ ions coordinate and stabilize the hexameric forms of insulin. However, this study is the first to show that zinc indeed binds to the insulin fibrils. Furthermore, zinc influences the kinetics and the morphology of the fibrils. It also shows that zinc coordinates to histidine residues in an environment, which is similar to the coordination seen in the insulin R6 hexamers, where three histidine residues and a chloride ion is coordinating the zinc.
Collapse
|
11
|
Hjorth CF, Norrman M, Wahlund PO, Benie AJ, Petersen BO, Jessen CM, Pedersen TÅ, Vestergaard K, Steensgaard DB, Pedersen JS, Naver H, Hubálek F, Poulsen C, Otzen D. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. J Pharm Sci 2016; 105:1376-86. [DOI: 10.1016/j.xphs.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
12
|
Vinther TN, Kjeldsen TB, Jensen KJ, Hubálek F. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond. J Pept Sci 2015; 21:797-806. [DOI: 10.1002/psc.2822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Knud J. Jensen
- Faculty of Science, Department of Chemistry; University of Copenhagen; DK-1871 Frederiksberg Denmark
| | | |
Collapse
|
13
|
Vinther TN, Pettersson I, Huus K, Schlein M, Steensgaard DB, Sørensen A, Jensen KJ, Kjeldsen T, Hubalek F. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability. Protein Sci 2015; 24:779-88. [PMID: 25627966 PMCID: PMC4420526 DOI: 10.1002/pro.2649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/26/2015] [Indexed: 11/07/2022]
Abstract
The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. Statement: A fourth disulfide bond has recently been introduced into insulin, a small two-chain protein containing three native disulfide bonds. Here we show that a prediction algorithm predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues.
Collapse
Affiliation(s)
- Tine N Vinther
- Diabetes Research UnitNovo Nordisk A/S, DK-2760, Måløv, Denmark
| | | | - Kasper Huus
- Diabetes Research UnitNovo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Morten Schlein
- Diabetes Research UnitNovo Nordisk A/S, DK-2760, Måløv, Denmark
| | | | - Anders Sørensen
- Diabetes Research UnitNovo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Knud J Jensen
- Department of Chemistry, Faculty of Science, University of CopenhagenDK-1871, Frederiksberg, Denmark
| | - Thomas Kjeldsen
- Diabetes Research UnitNovo Nordisk A/S, DK-2760, Måløv, Denmark
| | | |
Collapse
|
14
|
Addition of Zinc Improves the Physical Stability of Insulin in the Primary Emulsification Step of the Poly(lactide-co-glycolide) Microsphere Preparation Process. Polymers (Basel) 2015. [DOI: 10.3390/polym7050836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Lee HK, Kwon JH, Park SH, Kim CW. Enhanced Hypoglycemic Activity Following Intratracheal Administration of Insulin Microcrystal Suspension with Injection Adjuvant. Biosci Biotechnol Biochem 2014; 70:1003-5. [PMID: 16636470 DOI: 10.1271/bbb.70.1003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pulmonary route appears to be the most attractive alternative for non-invasive systemic delivery of insulin. We have shown the feasibility of insulin microcrystals as a long-acting formulation for pulmonary delivery. In this study, we examined the effects of adjuvant for pulmonary formulations of insulin, such as protamine, zinc, and glycerol. In an in vivo experiment with rats, only zinc enhanced the hypoglycemic effect of insulin microcrystals, with 17% of minimum reductions in blood glucose (%MRBG) and a 44% decrement in the blood glucose level (D%9h).
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| |
Collapse
|
17
|
Banerjee V, Kar RK, Datta A, Parthasarathi K, Chatterjee S, Das KP, Bhunia A. Use of a small peptide fragment as an inhibitor of insulin fibrillation process: a study by high and low resolution spectroscopy. PLoS One 2013; 8:e72318. [PMID: 24009675 PMCID: PMC3756998 DOI: 10.1371/journal.pone.0072318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023] Open
Abstract
A non-toxic, nine residue peptide, NIVNVSLVK is shown to interfere with insulin fibrillation by various biophysical methods. Insulin undergoes conformational changes under certain stress conditions leading to amyloid fibrils. Fibrillation of insulin poses a problem in its long-term storage, reducing its efficacy in treating type II diabetes. The dissociation of insulin oligomer to monomer is the key step for the onset of fibrillation. The time course of insulin fibrillation at 62°C using Thioflavin T fluorescence shows an increase in the lag time from 120 min without peptide to 236 min with peptide. Transmission electron micrographs show branched insulin fibrils in its absence and less inter-fibril association in its presence. Upon incubation at 62°C and pH 2.6, insulin lost some α-helical structure as seen by Fourier transformed infra-red spectroscopy (FT-IR), but if the peptide is added, secondary structure is almost fully maintained for 3 h, though lost partially at 4 h. FT-IR spectroscopy also shows that insulin forms the cross beta structure indicative of fibrils beyond 2 h, but in the presence of the peptide, α-helix retention is seen till 4 h. Both size exclusion chromatography and dynamic light scattering show that insulin primarily exists as trimer, whose conversion to a monomer is resisted by the peptide. Saturation transfer difference nuclear magnetic resonance confirms that the hydrophobic residues in the peptide are in close contact with an insulin hydrophobic groove. Molecular dynamics simulations in conjunction with principal component analyses reveal how the peptide interrupts insulin fibrillation. In vitro hemolytic activity of the peptide showed insignificant cytotoxicity against HT1080 cells. The insulin aggregation is probed due to the inter play of two key residues, Phe(B24) and Tyr(B26) monitored from molecular dynamics simulations studies. Further new peptide based leads may be developed from this nine residue peptide.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Aritreyee Datta
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | | | - Subhrangsu Chatterjee
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Kali P. Das
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Anirban Bhunia
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
18
|
Amino acid sequence determinants in self-assembly of insulin chiral amyloid superstructures: Role of C-terminus of B-chain in association of fibrils. FEBS Lett 2013; 587:625-30. [DOI: 10.1016/j.febslet.2013.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 11/19/2022]
|
19
|
Bode BW. Comparison of pharmacokinetic properties, physicochemical stability, and pump compatibility of 3 rapid-acting insulin analogues-aspart, lispro, and glulisine. Endocr Pract 2011; 17:271-80. [PMID: 21134878 DOI: 10.4158/ep10260.ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To compare how the rapid-acting insulin analogues (RAIAs) aspart, lispro, and glulisine perform in continuous subcutaneous insulin infusion (CSII) therapy regarding (1) pharmacokinetic properties, (2) chemical and physical stability, and (3) pump compatibility. METHODS PubMed was searched for articles pertaining to the use of RAIAs in CSII, without a restriction on the time period. RESULTS These RAIAs have pharmacokinetic profiles that more closely mimic endogenous insulin in comparison with regular human insulin and tend to produce less hypoglycemia. Among these RAIAs, the rates of absorption and clinical efficacy in terms of glycemic control were similar. Although glulisine showed a faster onset of action in some studies with aspart and lispro, this advantage lasted only for a maximum of 1 hour, after which results were similar for glulisine and aspart or lispro. Each RAIA is created by making minor amino acid substitutions to the regular human insulin molecule and adding a stabilizer to help prevent fibrillation. A series of chemical and covalent changes affecting the primary structure of an insulin preparation, however, may cause decomposition during storage, handling, and use, diminishing the potency of the insulin molecule while contained in an insulin pump. Precipitation, fibrillation, and occlusion may ensue, undermining compatibility for CSII pump use. Aspart has demonstrated the greatest chemical and physical stability in the insulin pump, with the lowest rates of overall occlusion in comparison with lispro and glulisine (aspart 9.2%, lispro 15.7%, and glulisine 40.9%; P<.01). CONCLUSION Aspart is the most compatible of the 3 RAIAs for pump use.
Collapse
Affiliation(s)
- Bruce W Bode
- Atlanta Diabetes Associates, Atlanta, Georgia, USA.
| |
Collapse
|
20
|
Al-Tahami K, Oak M, Singh J. Controlled Delivery of Basal Insulin from Phase-Sensitive Polymeric Systems After Subcutaneous Administration: In Vitro Release, Stability, Biocompatibility, In Vivo Absorption, and Bioactivity of Insulin. J Pharm Sci 2011; 100:2161-71. [DOI: 10.1002/jps.22433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/07/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
|
21
|
Zn(II) ions co-secreted with insulin suppress inherent amyloidogenic properties of monomeric insulin. Biochem J 2010; 430:511-8. [DOI: 10.1042/bj20100627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin, a 51-residue peptide hormone, is an intrinsically amyloidogenic peptide, forming amyloid fibrils in vitro. In the secretory granules, insulin is densely packed together with Zn(II) into crystals of Zn2Insulin6 hexamer, which assures osmotic stability of vesicles and prevents fibrillation of the peptide. However, after release from the pancreatic β-cells, insulin dissociates into active monomers, which tend to fibrillize not only at acidic, but also at physiological, pH values. The effect of co-secreted Zn(II) ions on the fibrillation of monomeric insulin is unknown, however, it might prevent insulin fibrillation. We showed that Zn(II) inhibits fibrillation of monomeric insulin at physiological pH values by forming a soluble Zn(II)–insulin complex. The inhibitory effect of Zn(II) ions is very strong at pH 7.3 (IC50=3.5 μM), whereas at pH 5.5 it progressively weakens, pointing towards participation of the histidine residue(s) in complex formation. The results obtained indicate that Zn(II) ions might suppress fibrillation of insulin at its release sites and in circulation. It is hypothesized that misfolded oligomeric intermediates occurring in the insulin fibrillation pathway, especially in zinc-deficient conditions, might induce autoantibodies against insulin, which leads to β-cell damage and autoimmune Type 1 diabetes.
Collapse
|
22
|
Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S. Chemical and Thermal Stability of Insulin: Effects of Zinc and Ligand Binding to the Insulin Zinc-Hexamer. Pharm Res 2006; 23:2611-20. [PMID: 16969698 DOI: 10.1007/s11095-006-9098-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/23/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands. MATERIALS AND METHODS The thermal stability was investigated using differential scanning calorimetry (DSC) and near-UV circular dichroism (NUV-CD). The formation of chemical degradation products was studied with reversed-phase and size-exclusion chromatography and mass spectrometry. RESULTS An excellent correlation between the thermal stabilization by ligand binding and the deamidation of Asn(B3) was observed. The correlation between thermal stability and the formation of covalent dimer and other insulin related products was less clear. Zinc was found to specifically increase the deamidation and covalent dimer formation rate when the insulin hexamer was not further stabilized by phenolic ligand. Thiocyanate alone had no effect on the thermal stability of the insulin zinc-hexamer but significantly improved the chemical stability at 37 degrees C. At low temperatures thiocyanate induced a conformational change in the insulin hexamer. NUV-CD thermal scans revealed that this effect decreased with temperature; when the thermal denaturation temperature was reached, the effect was eliminated. CONCLUSIONS Thermal stability can be used to predict the rate of Asn(B3) deamidation in human insulin. Chemical degradation processes that do not rely on the structural stability of the protein do not necessarily correlate to the thermal stability.
Collapse
Affiliation(s)
- Kasper Huus
- Department of Pharmaceutics and Analytical Chemistry, The Danish University of Pharmaceutical Sciences, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Defelippis MR, Larimore FS. The role of formulation in insulin comparability assessments. Biologicals 2006; 34:49-54. [PMID: 16330222 DOI: 10.1016/j.biologicals.2005.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2005] [Indexed: 11/25/2022] Open
Abstract
The concept of comparability can be applied when changes are made to manufacturing processes for biotechnology products subsequent to pivotal clinical trial studies. For many process changes, comparability can be demonstrated based entirely on relevant in vitro data provided that a detailed knowledge of the process/product exists, suitable analytical methodology is employed, and historical data are available for the assessment. Insulin provides an excellent model system to illustrate many important considerations when dealing with comparability exercises for biotechnology products. The physicochemical properties of insulin demonstrate the numerous chemical reactions and physical transformations that are exclusive to proteins. These properties are heavily influenced by formulation conditions and must be carefully evaluated when process changes are made. In addition, physical and chemical testing performed on representative formulations can provide valuable insight when assessing the comparability between pre- and post-change materials. This paper reviews our experience with manufacturing changes involving insulin emphasizing the important role of formulation in the comparability exercise for protein biopharmaceuticals.
Collapse
Affiliation(s)
- Michael R Defelippis
- Biopharmaceutical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Drop Code 3844, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
24
|
Abstract
Rapid-acting genetically engineered insulin analogues emerging in the last 10 years are now established as more effective prandial insulins than traditional short-acting human insulin. The development of analogues for use as basal insulin, however, has been much slower. Methods of pro-tracting the time-action curve of injected insulin include complexing with proteins, insulin crystal formation, shifting the iso-electric point of the amino acid sequence or attaching a fatty-acid side chain to the molecule. The latter two methods have been more successful in producing physiologic insulin profiles when compared with the former methods. The principle of acylation has also been applied to prolong the action of other hormones, such as glucagon-like peptide 1 (GLP-1), as the native peptide has a very short half-life. Preliminary results with this compound and other GLP-1 analogues show promise in treating patients with type 2 diabetes. In summary, the development of new insulin and other hormone preparations by the manipulation of native peptide structure has recently improved our antidiabetic armamentarium, and further research will continue this fruitful approach.
Collapse
Affiliation(s)
- Alan J Garber
- Department of Medicine, Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Soenderkaer S, van de Weert M, Lindgaard Hansen L, Flink J, Frokjaer S. Evaluation of statistical design/modeling for prediction of the effect of amino acids on agitation-induced aggregation of human growth hormone and human insulin. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Kwon JH, Lee BH, Lee JJ, Kim CW. Insulin microcrystal suspension as a long-acting formulation for pulmonary delivery. Eur J Pharm Sci 2004; 22:107-16. [PMID: 15158896 DOI: 10.1016/j.ejps.2004.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 12/03/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Pulmonary delivery provides the most promising non-parenteral route of insulin administration. Insulin was used as a model protein to demonstrate the feasibility of using protein crystals for the pulmonary delivery of a sustained-release protein drug formulation. Insulin microcrystals with a mean diameter of 3 microm were prepared using a seed zone method. The yield of crystallization was very high (95.8 +/- 0.97%), and the microcrystals were recovered with high efficiency (>98%) by centrifugation. Morphological examination using scanning electron microphotography showed the microcrystals to be of a homogeneous rhombohedral shape, with some rhombus forms, without aggregates. After the administration of 32 U/kg of the microcrystal suspension to STZ-induced diabetic SD rats by intratracheal instillation, the blood glucose levels were reduced and hypoglycemia was prolonged over 13 h, as compared to the insulin solution. The percent minimum reductions of the blood glucose concentration (% MRBG) produced by the microcrystal suspension and insulin solution reached 36.5 and 37.2%, respectively, of the initial level, and the percent total reductions in blood glucose (% TRBG(13 h)) were 34.4 and 25.0%, respectively. In the case of inhalation using a sieve-type ultrasonic nebulizer, the % MRBG produced by the microcrystal suspension and insulin solution were 21.7 and 26.3%, respectively, of the initial level, and the % TRBG(13 h) were 66.7 and 58.4%, respectively. However, the hypoglycemic effects of the microcrystal suspension were prolonged over 7 h, which compares favorably with the insulin solution (P<0.5 by unpaired t-test). These results could be attributed to the sustained-release of insulin from the microcrystals, which were deposited widely throughout the entire lung.
Collapse
Affiliation(s)
- Jai-Hyun Kwon
- Graduate School of Life Sciences and Biotechnology, Korea University, 1-5 Anam-dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Nielsen L, Frokjaer S, Carpenter JF, Brange J. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. J Pharm Sci 2001; 90:29-37. [PMID: 11064376 DOI: 10.1002/1520-6017(200101)90:1<29::aid-jps4>3.0.co;2-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment.
Collapse
Affiliation(s)
- L Nielsen
- Department of Pharmaceutics, The Royal Danish School of Pharmacy, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Richards JP, Stickelmeyer MP, Flora DB, Chance RE, Frank BH, DeFelippis MR. Self-association properties of monomeric insulin analogs under formulation conditions. Pharm Res 1998; 15:1434-41. [PMID: 9755897 DOI: 10.1023/a:1011961923870] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The purpose of the current study was to investigate the effects of two important excipients, zinc and m-cresol, on the self-association properties of a series of monomeric insulin analogs. In this way, the effects on formulation behavior of individual amino acid substitutions in the C-terminal region of the insulin B-chain could be compared. METHODS The self-association of ten insulin analogs was monitored by equilibrium and velocity analytical ultracentrifugation under three different conditions: (i) in neutral buffer alone; (ii) in neutral buffer containing zinc ion; and (iii) in neutral buffer containing both zinc ion and phenolic preservative (a typical condition for insulin formulations). The self-association properties of these analogs were compared to those of human insulin and the rapid-acting insulin analog Lys(B28)Pro(B29)-human insulin. RESULTS The analogs in the current study exhibited a wide range of association properties when examined in neutral buffer alone or in neutral buffer containing zinc ion. However, all of these analogs had association properties similar to human insulin in the presence of both zinc and m-cresol. Under these formulation conditions each analog had an apparent sedimentation coefficient of s* = 2.9-3.1 S, which corresponds to the insulin hexamer. CONCLUSIONS Analogs with changes in the B27-B29 region of human insulin form soluble hexamers in the presence of both zinc and m-cresol, and m-cresol binding overrides the otherwise destabilizing effects of these mutations on self assembly.
Collapse
Affiliation(s)
- J P Richards
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | |
Collapse
|
29
|
Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci 1997; 86:517-25. [PMID: 9145374 DOI: 10.1021/js960297s] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.
Collapse
Affiliation(s)
- J Brange
- Novo Nordisk A/S, Novo Alle, Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J Brange
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | | |
Collapse
|
31
|
Markussen J, Havelund S, Kurtzhals P, Andersen AS, Halstrøm J, Hasselager E, Larsen UD, Ribel U, Schäffer L, Vad K, Jonassen I. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 1996; 39:281-8. [PMID: 8721773 DOI: 10.1007/bf00418343] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have synthesized insulins acylated by fatty acids in the epsilon-amino group of LysB29. Soluble preparations can be made in the usual concentration of 600 nmol/ml (100 IU/ml) at neutral pH. The time for 50% disappearance after subcutaneous injection of the corresponding TyrA14(125I)-labelled insulins in pigs correlated with the affinity for binding to albumin (r = 0.97), suggesting that the mechanism of prolonged disappearance is binding to albumin in subcutis. Most protracted was LysB29-tetradecanoyl des-(B30) insulin. The time for 50% disappearance was 14.3 +/- 2.2 h, significantly longer than that of Neutral Protamine Hagedorn (NPH) insulin, 10.5 +/- 4.3 h (p < 0.001), and with less inter-pig variation (p < 0.001). Intravenous bolus injections of LysB29-tetradecanoyl des-(B30) human insulin showed a protracted blood glucose lowering effect compared to that of human insulin. The relative affinity of LysB29-tetradecanoyl des-(B30) insulin to the insulin receptor is 46%. In a 24-h glucose clamp study in pigs the total glucose consumptions for LysB29-tetradecanoyl des-(B30) insulin and NPH were not significantly different (p = 0.88), whereas the times when 50% of the total glucose had been infused were significantly different, 7.9 +/- 1.0 h and 6.2 +/- 1.3 h, respectively (p < 0.04). The glucose disposal curve caused by LysB29-tetradecanoyl des-(B30) insulin was more steady than that caused by NPH, without the pronounced peak at 3 h. Unlike the crystalline insulins, the soluble LysB29-tetradecanoyl des-(B30) insulin does not elicit invasion of macrophages at the site of injection. Thus, LysB29-tetradecanoyl des-(B30) insulin might be suitable for providing basal insulin in the treatment of diabetes mellitus.
Collapse
|
32
|
Kurtzhals P, Kiehr B, Sørensen AR. The cobalt(III)-insulin hexamer is a prolonged-acting insulin prodrug. J Pharm Sci 1995; 84:1164-8. [PMID: 8801329 DOI: 10.1002/jps.2600841006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The insulin hexamer has two high-affinity metal ion binding sites, each involving three HisB10 residues, one from each dimer. Insulin hexamers containing Co2+ at both these sites were oxidized to form a stable Co(3+)-insulin complex. It is shown that the Co(3+)-coordinated insulin monomers are released extremely slowly in aqueous solution at pH 8.0, and that the hexamer does not spontaneously dissociate into subunits at nanomolar concentrations of insulin. The Co(3+)-insulin hexamer is not recognized by the insulin receptor in vitro but the complex shows a protracted action profile following subcutaneous (s.c.) injection into rabbits. The Co(3+)-insulin hexamer provides a novel prodrug approach to a soluble, prolonged-acting insulin preparation of potential use for basal insulin delivery in the treatment of diabetes.
Collapse
Affiliation(s)
- P Kurtzhals
- Novo Research Institute, Novo Nordisk A/S, Novo Alle, Bagsvaerd, Denmark
| | | | | |
Collapse
|
33
|
Abstract
Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the property of being able to counteract associated insulin from being disassembled. Chemical deterioration of insulin during storage of pharmaceutical preparations is mainly due to two categories of chemical reactions, hydrolysis and intermolecular transformation reactions leading to insulin HMWT products. The predominant hydrolysis reaction is deamidation of Asn residues which in acid solution takes place at residue A21, in neutral medium at residue B3. An amazing hydrolytic cleavage of the backbone A chain, presumably autocatalyzed by an adjacent insulin molecule, has been identified in insulin preparations containing rhombohedral crystals in combination with free zinc ions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Brange
- Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark
| | | |
Collapse
|
34
|
Brange J, Langkjaer L, Havelund S, Vølund A. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res 1992; 9:715-26. [PMID: 1409351 DOI: 10.1023/a:1015835017916] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrolysis of insulin has been studied during storage of various preparations at different temperatures. Insulin deteriorates rapidly in acid solutions due to extensive deamidation at residue AsnA21. In neutral formulations deamidation takes place at residue AsnB3 at a substantially reduced rate under formation of a mixture of isoAsp and Asp derivatives. The rate of hydrolysis at B3 is independent of the strength of the preparation, and in most cases the species of insulin, but varies with storage temperature and formulation. Total transformation at B3 is considerably reduced when insulin is in the crystalline as compared to the amorphous or soluble state, indicating that formation of the rate-limiting cyclic imide decreases when the flexibility of the tertiary structure is reduced. Neutral solutions containing phenol showed reduced deamidation probably because of a stabilizing effect of phenol on the tertiary structure (alpha-helix formation) around the deamidating residue, resulting in a reduced probability for formation of the intermediate imide. The ratio of isoAsp/Asp derivative was independent of time and temperature, suggesting a pathway involving only intermediate imide formation, without any direct side-chain hydrolysis. However, increasing formation of Asp relative to isoAsp derivative was observed with decreasing flexibility of the insulin three-dimensional structure in the formulation. In certain crystalline suspensions a cleavage of the peptide bond A8-A9 was observed. Formation of this split product is species dependent: bovine greater than porcine greater than human insulin. The hydrolytic cleavage of the peptide backbone takes place only in preparations containing rhombohedral crystals in addition to free zinc ions.
Collapse
Affiliation(s)
- J Brange
- Novo Research Institute, Bagsvaerd, Denmark
| | | | | | | |
Collapse
|
35
|
Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A 1991; 88:9377-81. [PMID: 1946348 PMCID: PMC52720 DOI: 10.1073/pnas.88.21.9377] [Citation(s) in RCA: 382] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The stability of protein-based pharmaceuticals (e.g., insulin) is important for their production, storage, and delivery. To gain an understanding of insulin's aggregation mechanism in aqueous solutions, the effects of agitation rate, interfacial interactions, and insulin concentration on the overall aggregation rate were examined. Ultraviolet absorption spectroscopy, high-performance liquid chromatography, and quasielastic light scattering analyses were used to monitor the aggregation reaction and identify intermediate species. The reaction proceeded in two stages; insulin stability was enhanced at higher concentration. Mathematical modeling of proposed kinetic schemes was employed to identify possible reaction pathways and to explain greater stability at higher insulin concentration.
Collapse
Affiliation(s)
- V Sluzky
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
36
|
Vaag A, Pedersen KD, Lauritzen M, Hildebrandt P, Beck-Nielsen H. Intramuscular versus subcutaneous injection of unmodified insulin: consequences for blood glucose control in patients with type 1 diabetes mellitus. Diabet Med 1990; 7:335-42. [PMID: 2140087 DOI: 10.1111/j.1464-5491.1990.tb01401.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using the perpendicular injection technique lean diabetic patients may often inject insulin intramuscularly (IM). Guided by ultrasound measurements of the subcutaneous (SC) thickness of the thigh, the aim of the present study was to re-evaluate the absorption kinetics of unmodified insulin from IM and SC injection sites and to evaluate the consequences of IM injection of unmodified insulin for blood glucose control in Type 1 diabetic patients. T50% values (time until 50% of the injected insulin is absorbed from the injection site) of SC injected, radioactively labelled, human unmodified insulin (125I-Actrapid) were 338 +/- 13 (+/- SE) min, 289 +/- 27 min, and 287 +/- 27 min during rest, light physical activity, and strenuous exercise, respectively. Intramuscularly injected unmodified insulin was absorbed faster, T50% 232 +/- 20 min, 113 +/- 13 min, and 112 +/- 5 min during the same levels of physical activity in the same order. When unmodified insulin (Actrapid) was given IM 30 min before breakfast, lunch, and dinner together with intermediate-acting insulin (Protaphane) SC at 2200 h, a more physiological profile of plasma free insulin and a more stable blood glucose profile was obtained than with SC administration into the thigh. The coefficient of variation of blood glucose concentration during the study (3 days each route) was lower with IM than with SC injection of unmodified insulin (33 +/- 4 vs 43 +/- 3%, p less than 0.01). No difference in frequency of hypoglycaemic attacks was found and patients claimed that IM injection was no more painful than SC injection. These data suggest that IM injection of soluble insulin into the thigh is beneficial.
Collapse
Affiliation(s)
- A Vaag
- Hvidöre Hospital, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Melberg SG, Havelund S, Villumsen J, Brange J. Insulin compatibility with polymer materials used in external pump infusion systems. Diabet Med 1988; 5:243-7. [PMID: 2967145 DOI: 10.1111/j.1464-5491.1988.tb00977.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In a study designed to mimic actual user conditions for external insulin pump infusion, the insulin quality after passage through the infusion set was assessed by various analytical methods, including high performance liquid chromatography. The two infusion sets tested consisted of, firstly, a polyvinylchloride/rubber syringe and a polyvinylchloride catheter sterilized by gamma irradiation and, secondly, a polyethylene/polypropylene syringe connected to a polyethylene catheter and sterilized by ethylene oxide. The insulin solution delivered through the PVC infusion set showed a reduction of preservative to less than 30% of the initial content and increased formation of chemical transformation products of insulin varying from twice the reference level during the first day to more than three times on the third day. By contrast, the polyethylene/polypropylene infusion system showed only a minor decrease in preservative content and no increase in chemical transformation. These effects were observed irrespective of the brand of insulin and were not affected by increase of the zinc content of the insulin solution. Investigation of the influence of the sterilization methods performed on polyvinylchloride and polyethylene catheters revealed that gamma irradiated polyvinylchloride catheters were markedly harmful to the insulin solution, whereas ethylene oxide sterilization did not influence the chemical stability of insulin.
Collapse
|