1
|
Xu C, Cheng Q, Chen K, Kin So P, Jin W, Gu Y, Wong ILK, Chan EWC, Wong KY, Chan KF, Chen S. Repurposing cetylpyridinium chloride and domiphen bromide as phosphoethanolamine transferase inhibitor to combat colistin-resistant Enterobacterales. Microbiol Res 2024; 288:127879. [PMID: 39182419 DOI: 10.1016/j.micres.2024.127879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The emergence of plasmid-encoded colistin resistance mechanisms, MCR-1, a phosphoethanolamine transferase, rendered colistin ineffective as last resort antibiotic against severe infections caused by clinical Gram-negative bacterial pathogens. Through screening FDA-approved drug library, we identified two structurally similar compounds, namely cetylpyridinium chloride (CET) and domiphen bromide (DOM), which potentiated colistin activity in both colistin-resistant and susceptible Enterobacterales. These compounds were found to insert their long carbon chain to a hydrophobic pocket of bacterial phosphoethanolamine transferases including MCR-1, competitively blocking the binding of lipid A tail for substrate recognition and modification, resulting in the increase of bacterial sensitivity to colistin. In addition, these compounds were also found to dissipate bacterial membrane potential leading to the increase of bacterial sensitivity to colistin. Importantly, combinational use of DOM with colistin exhibited remarkable protection of test animals against infections by colistin-resistant bacteria in both mouse thigh infection and sepsis models. For mice infected by colistin-susceptible bacteria, the combinational use of DOM and colistin enable us to use lower dose of colistin to for efficient treatment. These properties render DOM excellent adjuvant candidates that help transform colistin into a highly potent antimicrobial agent for treatment of colistin-resistant Gram-negative bacterial infections and allowed us to use of a much lower dosage of colistin to reduce its toxicity against colistin-susceptible bacterial infection such as carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qipeng Cheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pui Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wenbin Jin
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yanjuan Gu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Iris Lai-King Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kin Fai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Murtha AN, Kazi MI, Kim EY, Torres FV, Rosch KM, Dörr T. Multiple resistance factors collectively promote inoculum-dependent dynamic survival during antimicrobial peptide exposure in Enterobacter cloacae. PLoS Pathog 2024; 20:e1012488. [PMID: 39186812 PMCID: PMC11379400 DOI: 10.1371/journal.ppat.1012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, our data suggest that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.
Collapse
Affiliation(s)
- Andrew N Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Misha I Kazi
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Eileen Y Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Facundo V Torres
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Kelly M Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Raman AS. Combatting superbugs using the evolutionary record of microbial warfare. Cell Host Microbe 2024; 32:1037-1039. [PMID: 38991497 DOI: 10.1016/j.chom.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
New therapies to treat multi-drug-resistant (MDR) pathogens are needed. Santos-Júnior et al. discover new antimicrobials by leveraging the history of warfare within microbial communities. This study in Cell highlights the immense power of combining large biological databases with emerging computational methods, creating a key resource (AMPSphere) to be used for treating superbugs.
Collapse
Affiliation(s)
- Arjun S Raman
- Department of Pathology, University of Chicago, Chicago, IL, USA; Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL, USA; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Abdullahi AD, Unban K, Saenjum C, Kodchasee P, Kangwan N, Thananchai H, Shetty K, Khanongnuch C. Antibacterial activities of Miang extracts against selected pathogens and the potential of the tannin-free extracts in the growth inhibition of Streptococcus mutans. PLoS One 2024; 19:e0302717. [PMID: 38718045 PMCID: PMC11078415 DOI: 10.1371/journal.pone.0302717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.
Collapse
Affiliation(s)
- Aliyu Dantani Abdullahi
- Interdisciplinary Program in Biotechnology, The Graduate School, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Kridsada Unban
- Faculty of Agro-Industry, Division of Food Science and Technology, School of Agro-Industry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Chalermpong Saenjum
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pratthana Kodchasee
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Hathairat Thananchai
- Faculty of Medicine, Department of Microbiology, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Kalidas Shetty
- Faculty of Agriculture, Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Muang, Chiang Mai, Thailand
- Faculty of Science, Department of Biology, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Lavekar AG, Thakare R, Saima, Equbal D, Chopra S, Sinha AK. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug Dev Res 2024; 85:e22123. [PMID: 37840429 DOI: 10.1002/ddr.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.
Collapse
Affiliation(s)
- Aditya G Lavekar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ritesh Thakare
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saima
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- School of Advanced Chemical Sciences, Solan, Himachal Pradesh, India
| | - Danish Equbal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Igo M, Xu L, Krishna A, Stewart S, Xu L, Li Z, Weaver JL, Stone H, Sacks L, Bensman T, Florian J, Rouse R, Han X. A metagenomic analysis for combination therapy of multiple classes of antibiotics on the prevention of the spread of antibiotic-resistant genes. Gut Microbes 2023; 15:2271150. [PMID: 37908118 PMCID: PMC10621307 DOI: 10.1080/19490976.2023.2271150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Antibiotics used systemically to treat infections may have off-target effects on the gut microbiome, potentially resulting in the emergence of drug-resistant bacteria or selection of pathogenic species. These organisms may present a risk to the host and spread to the environment with a risk of transmission in the community. To investigate the risk of emergent antibiotic resistance in the gut microbiome following systemic treatment with antibiotics, this metagenomic analysis project used next-generation sequencing, a custom-built metagenomics pipeline, and differential abundance analysis to study the effect of antibiotics (ampicillin, ciprofloxacin, and fosfomycin) in monotherapy and different combinations at high and low doses, to determine the effect on resistome and taxonomic composition in the gut of Balb/c mice. The results showed that low-dose monotherapy treatments showed little change in microbiome composition but did show an increase in expression of many antibiotic-resistant genes (ARGs) posttreatment. Dual combination treatments allowed the emergence of some conditionally pathogenic bacteria and some increase in the abundance of ARGs despite a general decrease in microbiota diversity. Triple combination treatment was the most successful in inhibiting emergence of relevant opportunistic pathogens and completely suppressed all ARGs after 72 h of treatment. The relative abundances of mobile genetic elements that can enhance transmission of antibiotic resistance either decreased or remained the same for combination therapy while increasing for low-dose monotherapy. Combination therapy prevented the emergence of ARGs and decreased bacterial diversity, while low-dose monotherapy treatment increased ARGs and did not greatly change bacterial diversity.
Collapse
Affiliation(s)
- Matthew Igo
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashok Krishna
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lin Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - James L. Weaver
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Stone
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Leonard Sacks
- Office of Medical Policy, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Timothy Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
7
|
Pinto L, Shastry RP, Alva S, Rao RSP, Ghate SD. Functional network analysis identifies multiple virulence and antibiotic resistance targets in Stenotrophomonas maltophilia. Microb Pathog 2023; 183:106314. [PMID: 37619913 DOI: 10.1016/j.micpath.2023.106314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Stenotrophomonas maltophilia, an emerging multidrug-resistant opportunistic bacterium in humans is of major concern for immunocompromised individuals for causing pneumonia and bloodborne infections. This bacterial pathogen is associated with a considerable fatality/case ratio, with up to 100%, when presented as hemorrhagic fever. It is resistant to commonly used drugs as well as to antibiotic combinations. In-silico based functional network analysis is a key approach to get novel insights into virulence and resistance in pathogenic organisms. This study included the protein-protein interaction (PPI) network analysis of 150 specific genes identified for antibiotic resistance mechanism and virulence pathways. Eight proteins, namely, PilL, FliA, Smlt2260, Smlt2267, CheW, Smlt2318, CheZ, and FliM were identified as hub proteins. Further docking studies of 58 selected phytochemicals were performed against the identified hub proteins. Deoxytubulosine and corosolic acid were found to be potent inhibitors of hub proteins of pathogenic S. maltophilia based on protein-ligand interactive study. Further pharmacophore studies are warranted with these molecules to develop them as novel antibiotics against S. maltophilia.
Collapse
Affiliation(s)
- Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Shivakiran Alva
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India; Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to Be University, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India; Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to Be University, Mangaluru, 575018, India.
| |
Collapse
|
8
|
Yuan C, Hao X. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon 2023; 9:e18742. [PMID: 37636470 PMCID: PMC10458342 DOI: 10.1016/j.heliyon.2023.e18742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The primary objective of this research work was to study the antibacterial effects of Cupressus funebris essential oil (EO) against various drug resistant bacterial pathogens along with studying the molecular docking interactions of the major components of the EO with the key bacterial proteins/enzymes. Gas chromatography-mass spectrometry was used to analyse the chemical composition of the Cupressus funebris EO. The initial antibacterial screening was performed by using disc diffusion and microdilution methods. Scanning electron microscopy was also performed in order to study effects of the EO on bacterial cell morphology. Further, molecular docking studies were performed using Autodock Vina and results were visualised by BIOVIA Discovery Studio. The chemical composition of the EO showed the presence of 15 components with citronellal, terpinene-4-ol, α-phellandrene and 1,8-cineole as the major components of the EO. Results indicated that the EO of Cupressus funebris exhibited dose-dependent as well as time dependent antibacterial effects. The scanning electron microscopy indicated that the Cupressus funebris EO led to membrane rupture and permeabilization of the bacterial cells. Molecular docking studies indicated that the major compounds of the EO (citronellal and terpinene-4ol) showed strong interactions with the active site of the bacterial DNA gyrase enzyme explaining the antibacterial mode of action of the EO. Ciprofloxacin was also used for docking which showed stronger interactions with the target protein than citronellal or terpinene-4-ol. In conclusion, the major findings of the current study were that the EO of Cupressus funebris causes bacterial membrane rupture and permeabilization, shows time-dependent and dose-dependent antibacterial action, along with interacting with crucial bacterial enzyme viz., DNA gyrase as indicated by molecular docking studies.
Collapse
Affiliation(s)
- Caixin Yuan
- Department of Supply Room, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang City, Hebei Province, 050011, PR China
| | - Xiuqiao Hao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang City, Hebei Province, 050011, PR China
| |
Collapse
|
9
|
Canli K, Turu D, Benek A, Bozyel ME, Simsek Ö, Altuner EM. Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Curr Issues Mol Biol 2023; 45:4970-4984. [PMID: 37367065 DOI: 10.3390/cimb45060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, the chemical composition and biological activity of Allium scorodoprasum subsp. jajlae (Vved.) Stearn were investigated for the first time, focusing on its antimicrobial, antioxidant, and antibiofilm properties. A GC-MS analysis was employed to evaluate the composition of its secondary metabolites, identifying linoleic acid, palmitic acid, and octadecanoic acid 2,3-dihydroxypropyl ester as the major compounds in ethanol extract. The antimicrobial activity of A. scorodoprasum subsp. jajlae was assessed against 26 strains, including standard, food isolate, clinical isolate, and multidrug-resistant ones, as well as three Candida species using the disc diffusion method and the determination of the minimum inhibitory concentration (MIC). The extract showed strong antimicrobial activity against Staphylococcus aureus strains, including methicillin-resistant and multidrug-resistant strains, as well as Candida tropicalis and Candida glabrata. Its antioxidant capacity was evaluated using the DPPH method, revealing a high level of antioxidant activity in the plant. Additionally, the antibiofilm activity of A. scorodoprasum subsp. jajlae was determined, demonstrating a reduction in biofilm formation for the Escherichia coli ATCC 25922 strain and an increase in biofilm formation for the other tested strains. The findings suggest potential applications of A. scorodoprasum subsp. jajlae in the development of novel antimicrobial, antioxidant, and antibiofilm agents.
Collapse
Affiliation(s)
- Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Turkey
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Turkey
| | - Mustafa Eray Bozyel
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Özcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Turkey
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
10
|
Struga M, Roszkowski P, Bielenica A, Otto-Ślusarczyk D, Stępień K, Stefańska J, Zabost A, Augustynowicz-Kopeć E, Koliński M, Kmiecik S, Myslovska A, Wrzosek M. N-Acylated Ciprofloxacin Derivatives: Synthesis and In Vitro Biological Evaluation as Antibacterial and Anticancer Agents. ACS OMEGA 2023; 8:18663-18684. [PMID: 37273589 PMCID: PMC10233829 DOI: 10.1021/acsomega.3c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
A novel series of N-acylated ciprofloxacin (CP) conjugates 1-21 were synthesized and screened as potential antimicrobial agents. Conjugates 1 and 2 were 1.25-10-fold more potent than CP toward all Staphylococci (minimal inhibitory concentration 0.05-0.4 μg/mL). Most of the chloro- (3-7), bromo- (8-11), and CF3-alkanoyl (14-16) derivatives expressed higher or comparable activity to CP against selected Gram-positive strains. A few CP analogues (5, 10, and 11) were also more effective toward the chosen clinical Gram-negative rods. Conjugates 5, 10, and 11 considerably influenced the phases of the bacterial growth cycle over 18 h. Additionally, compounds 2, 4-7, 9-12, and 21 exerted stronger tuberculostatic action against three Mycobacterium tuberculosis isolates than the first-line antitubercular drugs. Amides 1, 2, 5, 6, 10, and 11 targeted gyrase and topoisomerase IV at 2.7-10.0 μg/mL, which suggests a mechanism of antibacterial action related to CP. These findings were confirmed by molecular docking studies. In addition, compounds 3 and 15 showed high antiproliferative activities against prostate PC3 cells (IC50 2.02-4.8 μM), up to 6.5-2.75 stronger than cisplatin. They almost completely reduced the growth and proliferation rates in these cells, without a cytotoxic action against normal HaCaT cell lines. Furthermore, derivatives 3 and 21 induced apoptosis/necrosis in PC3 cells, probably by increasing the intracellular ROS amount, as well as they diminished the IL-6 level in tumor cells.
Collapse
Affiliation(s)
- Marta Struga
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Roszkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Bielenica
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Karolina Stępień
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Stefańska
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Zabost
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Michał Koliński
- Bioinformatics
Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Alina Myslovska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department
of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Alkyl Gallates as Potential Antibiofilm Agents: A Review. Molecules 2023; 28:molecules28041751. [PMID: 36838739 PMCID: PMC9959617 DOI: 10.3390/molecules28041751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Biofilms, which consist of microorganisms embedded in a polymer-rich matrix, contribute to a variety of infections and increase antimicrobial resistance. Thus, there is a constant need to develop new chemotherapeutic agents to combat biofilms. This review article focuses on the use of alkyl gallates, gallic acid and its esters (methyl, ethyl, propyl, butyl, hexyl, octyl, and dodecyl gallate), most of which are found in plants, to inhibit biofilm formation. The studies under review reveal that alkyl gallates have the capacity to prevent biofilm development and eradicate mature biofilms through mechanisms that suppress the synthesis of the extracellular polymeric matrix, inhibit quorum-sensing signaling, and alter the microbial cell membrane. The effects are stronger the greater the length of the alkyl chain. Moreover, the alkyl gallates' preventive activity against biofilm formation occurs at doses below the minimum inhibitory concentration. More importantly, combining alkyl gallates with antimicrobials or blue-light irradiation produces a synergistic effect on the inhibition of biofilm formation that can be used to treat infections and overcome microbial resistance.
Collapse
|
12
|
Validation and Application of Long-Read Whole-Genome Sequencing for Antimicrobial Resistance Gene Detection and Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 2023; 67:e0107222. [PMID: 36533931 PMCID: PMC9872642 DOI: 10.1128/aac.01072-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing applications are increasingly used for detection and characterization of antimicrobial-resistant pathogens in clinical settings. Oxford Nanopore Technologies (ONT) sequencing offers advantages for clinical use compared with other sequencing methodologies because it enables real-time basecalling, produces long sequencing reads that increase the ability to correctly assemble DNA fragments, provides short turnaround times, and requires relatively uncomplicated sample preparation. A drawback of ONT sequencing, however, is its lower per-read accuracy than short-read sequencing. We sought to identify best practices in ONT sequencing protocols. As some variability in sequencing results may be introduced by the DNA extraction methodology, we tested three DNA extraction kits across three independent laboratories using a representative set of six bacterial isolates to investigate accuracy and reproducibility of ONT technology. All DNA extraction techniques showed comparable performance; however, the DNeasy PowerSoil Pro kit had the highest sequencing yield. This kit was subsequently applied to 42 sequentially collected bacterial isolates from blood cultures to assess Ares Genetics's pipelines for predictive whole-genome sequencing antimicrobial susceptibility testing (WGS-AST) performance compared to phenotypic triplicate broth microdilution results. WGS-AST results ranged across the organisms and resulted in an overall categorical agreement of 95% for penicillins, 82.4% for cephalosporins, 76.7% for carbapenems, 86.9% for fluoroquinolones, and 96.2% for aminoglycosides. Very major errors/major errors were 0%/16.7% (penicillins), 11.7%/3.6% (cephalosporins), 0%/24.4% (carbapenems), 2.5%/7.7% (fluoroquinolones), and 0%/4.1% (aminoglycosides), respectively. This work showed that, although additional refinements are necessary, ONT sequencing demonstrates potential as a method to perform WGS-AST on cultured isolates for patient care.
Collapse
|
13
|
Obaid HM, Saleh SS, Boundenga L. Pharmaceutical activity of a synthetic heterocyclic (C15H12N5OCL) compound on Entamoeba histolytica and Giardia lamblia. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-pao-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abstract:
Background: Intestinal parasites are among the most important infectious agents with an impact on human health. Indeed, in the lack of an available treatment option, these parasites could constitute a real health problem in the population.
Aim: In the present study, we investigated the effect of a synthetic heterocyclic compound on two intestinal parasites (Entamoeda histolytica and Gardia lamblia).
Methods: The parasite isolates tested were collected from outpatients at the General Pediatric Hospital in Kirkuk, Iraq, between September 2019 and January 2020. Thus, we studied the in vivo and in vitro pharmaceutical activity of the ingredient on both parasites. The toxicological effects of the substance on some blood parameters and liver and kidney function tests were also studied.
Results: After five days of treatment, the drug's in vivo action on G. lamblia resulted in an inhibition rate of 88.2 percent at a dose of 1 mg/kg. On the other hand, we observed that the influence of this synthetic substance on cultured E. histolytica was very close to the metronidazole effect. The maximum result was at a concentration of 1 g/ml and was obtained after 72 hours of incubation with an inhibition rate of 89.4%. The substance did not affect the blood parameters or the studied liver and kidney functions.
Conclusion: It can be concluded that this substance is highly effective against both E. histolytica and G. lamblia, and that it has no toxic effects on the studied parameters. Therefore, it could be a promising pharmacophore for intestinal protozoan parasites including E. histolytica and G. lamblia and an alternative or competitor to the current medications available.
Collapse
|
14
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
15
|
Troudi A, Bolla JM, Klibi N, Brunel JM. An Original and Efficient Antibiotic Adjuvant Strategy to Enhance the Activity of Macrolide Antibiotics against Gram-Negative Resistant Strains. Int J Mol Sci 2022; 23:12457. [PMID: 36293314 PMCID: PMC9604434 DOI: 10.3390/ijms232012457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Gram-negative bacteria were reported as a significant cause of infections in both community and nosocomial settings. Considered as one of the greatest threats to public health, the spread of bacteria drug resistance and the lack of effective alternative treatment options remains problematic. Herein, we report a promising strategy to combat Gram-negative resistant strains consisting of the combination of a macrolide antibiotic with a polyaminoisoprenyl adjuvant derivative leading to a significant decrease of antibiotic resistance.
Collapse
Affiliation(s)
- Azza Troudi
- Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | |
Collapse
|
16
|
Schena CA, de’Angelis GL, Carra MC, Bianchi G, de’Angelis N. Antimicrobial Challenge in Acute Care Surgery. Antibiotics (Basel) 2022; 11:1315. [PMID: 36289973 PMCID: PMC9598495 DOI: 10.3390/antibiotics11101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/07/2022] Open
Abstract
The burden of infections in acute care surgery (ACS) is huge. Surgical emergencies alone account for three million admissions per year in the United States (US) with estimated financial costs of USD 28 billion per year. Acute care facilities and ACS patients represent boost sanctuaries for the emergence, development and transmission of infections and multi-resistant organisms. According to the World Health Organization, healthcare-associated infections affected around 4 million cases in Europe and 1.7 million in the US alone in 2011 with 39,000 and 99,000 directly attributable deaths, respectively. In this scenario, antimicrobial resistance arose as a public-health emergency that worsens patients' morbidity and mortality and increases healthcare costs. The optimal patient care requires the application of comprehensive evidence-based policies and strategies aiming at minimizing the impact of healthcare associated infections and antimicrobial resistance, while optimizing the treatment of intra-abdominal infections. The present review provides a snapshot of two hot topics, such as antimicrobial resistance and systemic inflammatory response, and three milestones of infection management, such as source control, infection prevention, and control and antimicrobial stewardship.
Collapse
Affiliation(s)
- Carlo Alberto Schena
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Clotilde Carra
- Rothschild Hospital, AP-HP, Université Paris Cité, U.F.R. of Odontology, 75006 Paris, France
| | - Giorgio Bianchi
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| | - Nicola de’Angelis
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| |
Collapse
|
17
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022; 61:e202206168. [PMID: 35852818 PMCID: PMC9545259 DOI: 10.1002/anie.202206168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.
Collapse
Affiliation(s)
- Finn Gude
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Evelyn M Molloy
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Therese Horch
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Maria Dell
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Kyle L Dunbar
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jana Krabbe
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85747, Garching, Germany
| | - Christian Hertweck
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
18
|
Conzemius R, Bergman Y, Májek P, Beisken S, Lewis S, Jacobs EB, Tamma PD, Simner PJ. Automated antimicrobial susceptibility testing and antimicrobial resistance genotyping using Illumina and Oxford Nanopore Technologies sequencing data among Enterobacteriaceae. Front Microbiol 2022; 13:973605. [PMID: 36003946 PMCID: PMC9393496 DOI: 10.3389/fmicb.2022.973605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Whole-genome sequencing (WGS) enables the molecular characterization of bacterial pathogens. We compared the accuracy of the Illumina and Oxford Nanopore Technologies (ONT) sequencing platforms for the determination of AMR classes and antimicrobial susceptibility testing (AST) among 181 clinical Enterobacteriaceae isolates. Sequencing reads for each isolate were uploaded to AREScloud (Ares Genetics) to determine the presence of AMR markers and the predicted WGS-AST profile. The profiles of both sequencing platforms were compared to broth microdilution (BMD) AST. Isolates were delineated by resistance to third-generation cephalosporins and carbapenems as well as the presence of AMR markers to determine clinically relevant AMR classes. The overall categorical agreement (CA) was 90% (Illumina) and 88% (ONT) across all antimicrobials, 96% for the prediction of resistance to third-generation cephalosporins for both platforms, and 94% (Illumina) and 91% (ONT) for the prediction of resistance to carbapenems. Carbapenem resistance was overestimated on ONT with a major error of 16%. Sensitivity for the detection of carbapenemases, extended-spectrum β-lactamases, and plasmid-mediated ampC genes was 98, 95, and 70% by ONT compared to the Illumina dataset as the reference. Our results highlight the potential of the ONT platform's use in clinical microbiology laboratories. When combined with robust bioinformatics methods, WGS-AST predictions may be a future approach to guide effective antimicrobial decision-making.
Collapse
Affiliation(s)
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Shawna Lewis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emily B. Jacobs
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pranita D. Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Liu J, Shao M, Xu Q, Liu F, Pan X, Wu J, Xiong L, Wu Y, Tian M, Yao J, Huang S, Zhang L, Chen Y, Zhang S, Wen Z, Du H, TaoWang, Liu Y, Li W, Xu Y, Teboul JL, Chen D. Low-dose intravenous plus inhaled versus intravenous polymyxin B for the treatment of extensive drug-resistant Gram-negative ventilator-associated pneumonia in the critical illnesses: a multi-center matched case-control study. Ann Intensive Care 2022; 12:72. [PMID: 35934730 PMCID: PMC9357592 DOI: 10.1186/s13613-022-01033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background The mortality of extensively drug-resistant Gram-negative (XDR GN) bacilli-induced ventilator-associated pneumonia (VAP) is extremely high. The purpose of this study was to compare the efficacy and safety of inhaled (IH) plus intravenous (IV) polymyxin B versus IV polymyxin B in XDR GN bacilli VAP patients. Methods A retrospective multi-center observational cohort study was performed at eight ICUs between January 1st 2018, and January 1st 2020 in China. Data from all patients treated with polymyxin B for a microbiologically confirmed VAP were analyzed. The primary endpoint was the clinical cure of VAP. The favorable clinical outcome, microbiological outcome, VAP-related mortality and all-cause mortality during hospitalization, and side effects related with polymyxin B were secondary endpoints. Favorable clinical outcome included clinical cure or clinical improvement. Results 151 patients and 46 patients were treated with IV polymyxin B and IH plus IV polymyxin B, respectively. XDR Klebsiella pneumoniae was the main isolated pathogen (n = 83, 42.1%). After matching on age (± 5 years), gender, septic shock, and Apache II score (± 4 points) when polymyxin B was started, 132 patients were included. 44 patients received simultaneous IH plus IV polymyxin B and 88 patients received IV polymyxin B. The rates of clinical cure (43.2% vs 27.3%, p = 0.066), bacterial eradication (36.4% vs 23.9%, p = 0.132) as well as VAP-related mortality (27.3% vs 34.1%, p = 0.428), all-cause mortality (34.1% vs 42.0%, p = 0.378) did not show any significant difference between the two groups. However, IH plus IV polymyxin B therapy was associated with improved favorable clinical outcome (77.3% vs 58.0%, p = 0.029). Patients in the different subgroups (admitted with medical etiology, infected with XDR K. pneumoniae, without bacteremia, with immunosuppressive status) were with odd ratios (ORs) in favor of the combined therapy. No patient required polymyxin B discontinuation due to adverse events. Additional use of IH polymyxin B (aOR 2.63, 95% CI 1.06, 6.66, p = 0.037) was an independent factor associated with favorable clinical outcome. Conclusions The addition of low-dose IH polymyxin B to low-dose IV polymyxin B did not provide efficient clinical cure and bacterial eradication in VAP caused by XDR GN bacilli. Keypoints Additional use of IH polymyxin B was the sole independent risk factor of favorable clinical outcome. Patients in the different subgroups were with HRs substantially favoring additional use of IH polymyxin B. No patients required polymyxin B discontinuation due to adverse events. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01033-5.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, No.12 Lingyin Road, HangZhou, 310015, China
| | - Fen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, No.17, YongwaiZheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510010, China
| | - Lihong Xiong
- Department of Intensive Care Unit, The Second People's Hospital of Shenzhen, Futian District, Sungang West Road, Shenzhen, 3002518035, China
| | - Yueming Wu
- Emergency and Critical Care Center, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jianying Yao
- Department of Intensive Care Unit, The First People's Hospital of KunShan, No 91, Qianjin Road, KunShan, 215300, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - TaoWang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Wenzhe Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yan Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jean-Louis Teboul
- Service de Médecine-Intensive Réanimation, Hôpital Bicêtre, AP-HP. Université Paris-Saclay, Inserm UMR 999, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China.
| |
Collapse
|
20
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide‐Binding Protein Confers Antibiotic Self‐Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Finn Gude
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Evelyn M. Molloy
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Therese Horch
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Maria Dell
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Kyle L. Dunbar
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Jana Krabbe
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Michael Groll
- TU München: Technische Universitat Munchen Center for Protein Assemblies GERMANY
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Department of Biomolecular Chemistry Beutenbergstr. 11a 07745 Jena GERMANY
| |
Collapse
|
21
|
Badawy S, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol 2022; 167:1333-1341. [PMID: 35399144 PMCID: PMC9038960 DOI: 10.1007/s00705-022-05426-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
Abstract
Characterization of bacteriophages facilitates better understanding of their biology, host specificity, genomic diversity, and adaptation to their bacterial hosts. This, in turn, is important for the exploitation of phages for therapeutic purposes, as the use of uncharacterized phages may lead to treatment failure. The present study describes the isolation and characterization of a bacteriophage effective against the important clinical pathogen Escherichia coli, which shows increasing accumulation of antibiotic resistance. Phage fEg-Eco19, which is specific for a clinical E. coli strain, was isolated from an Egyptian sewage sample. Phage fEg-Eco19 formed clear, sharp-edged, round plaques. Electron microscopy showed that the isolated phage is tailed and therefore belongs to the order Caudovirales, and morphologically, it resembles siphoviruses. The diameter of the icosahedral head of fEg-Eco19 is 68 ± 2 nm, and the non-contractile tail length and diameter are 118 ± 0.2 and 13 ± 0.6 nm, respectively. The host range of the phage was found to be narrow, as it infected only two out of 137 clinical E. coli strains tested. The phage genome is 45,805 bp in length with a GC content of 50.3% and contains 76 predicted genes. Comparison of predicted and experimental restriction digestion patterns allowed rough mapping of the physical ends of the phage genome, which was confirmed using the PhageTerm tool. Annotation of the predicted genes revealed gene products belonging to several functional groups, including regulatory proteins, DNA packaging and phage structural proteins, host lysis proteins, and proteins involved in DNA/RNA metabolism and replication.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| |
Collapse
|
22
|
Wal P, Saraswat N, Vig H. A detailed insight on the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220328141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Dermatomycosis, a type of fungal infection that can infect human skin, hair, and nails; day by day the growth of fungal infections ranging from superficial to systemic infection is alarming. Common causative agents included are Candida, Cryptococcus, Aspergillus, and Pneumocystis species.
Objective:
The effective treatment of the fungal infection includes the use of proper antifungal drug therapy. Antifungal drugs are classified into various classes. This paper focuses on understanding and interpreting the detailed molecular and cellular mechanism of action of various classes of an anti-fungal drug along with their important characteristics along with the safety and efficacy data of individual drugs of the particular class.
Methods:
The data selection for carrying out the respective study has been done by studying the combination of review articles and research papers from different databases like Research Gate, PubMed, MDPI, Elsevier, Science Direct, and Med Crave ranging from the year 1972 to 2019 by using the keywords like “anti-fungal agents”, “dermatophytes”, “cutaneous candidiasis”, “superficial fungal infections”, “oral candidiasis”, “amphotericin”, “echinocandins”, “azoles”, “polyenes” “ketoconazole”, “terbinafine”, “griseofulvin”, “azoles”.
Result:
Based on interpretation, we have concluded that the different classes of antifungal drugs follow the different mechanisms of action and target the fungal cell membrane, and are efficient in reducing fungal disease by their respective mechanism.
Conclusion:
The prevention and cure of fungal infections can be done by oral or topical antifungal drugs that aim to destroy the fungal cell membrane. These drugs show action by their respective pathways that are either preventing the formation of ergosterol or squalene or act by inhibiting β-1,3-glucan synthase enzyme. All the drugs are effective in treating fungal infections.
Collapse
Affiliation(s)
- Pranay Wal
- Dean & Professor, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| | - Nikita Saraswat
- Assistant Professor, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| | - Himangi Vig
- Research Scholar, Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, India
| |
Collapse
|
23
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
24
|
Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics. Pharmaceuticals (Basel) 2022; 15:ph15020159. [PMID: 35215272 PMCID: PMC8880691 DOI: 10.3390/ph15020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.
Collapse
|
25
|
Abass S, Parveen R, Irfan M, Jan B, Husain SA, Ahmad S. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr Pharm Biotechnol 2022; 23:1527-1540. [PMID: 35081888 DOI: 10.2174/1389201023666220126115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The use of herbal medicines and supplements in the last thirty years has increased enormously. Herbal medication has demonstrated promising and effective potential against various diseases. Herbal and phytoconstituent medications are gaining popularity globally and many people are adopting herbal remedies to deal with different health issues. The indiscriminate use of antibiotics, due to the development of antimicrobial resistance, poses an unprecedented problem for human civilization. Bacterial infections are difficult to cure because of the propensity of microbes to acquire resistance to a wide range of antimicrobial drugs. New compounds are being explored and quantified for possible antibacterial activity with little or no side effects. Researchers are investigating the range of therapeutic plants mentioned in Unani, Ayurveda, and Siddha around the globe. Known and commonly acclaimed global databases such as PubMed, Research Gate, Science Direct, Google Scholar, were searched using different search strings such as Indian medicinal plants, multidrug resistance (MDR), thin layer chromatography (TLC), antimicrobials, and Synergism were used in diverse combinations to reclaim numerous citations associated with this area. Thus, the current review aims to shed a light on the information of medicinal plants as a potential foundation of herbal drugs and elucidate how synergism and TLC bioautography plays a crucial role in finding antimicrobial compounds.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bisma Jan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
26
|
Mendes SR, Eckhard U, Rodríguez-Banqueri A, Guevara T, Czermak P, Marcos E, Vilcinskas A, Xavier Gomis-Rüth F. An engineered protein-based submicromolar competitive inhibitor of the Staphylococcus aureus virulence factor aureolysin. Comput Struct Biotechnol J 2022; 20:534-544. [PMID: 35465156 PMCID: PMC9002140 DOI: 10.1016/j.csbj.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
Aureolysin, a secreted metallopeptidase (MP) from the thermolysin family, functions as a major virulence factor in Staphylococcus aureus. No specific aureolysin inhibitors have yet been described, making this an important target for the development of novel antimicrobial drugs in times of rampant antibiotic resistance. Although small-molecule inhibitors are currently more common in the clinic, therapeutic proteins and peptides (TPs) are favourable due to their high selectivity, which reduces off-target toxicity and allows dosage tuning. The greater wax moth Galleria mellonella produces a unique defensive protein known as the insect metallopeptidase inhibitor (IMPI), which selectively inhibits some thermolysins from pathogenic bacteria. We determined the ability of IMPI to inhibit aureolysin in vitro and used crystal structures to ascertain its mechanism of action. This revealed that IMPI uses the “standard mechanism”, which has been poorly characterised for MPs in general. Accordingly, we designed a cohort of 12 single and multiple point mutants, the best of which (I57F) inhibited aureolysin with an estimated inhibition constant (Ki) of 346 nM. Given that animals lack thermolysins, our strategy may facilitate the development of safe TPs against staphylococcal infections, including strains resistant to conventional antibiotics.
Collapse
|
27
|
Du F, Ma J, Gong H, Bista R, Zha P, Ren Y, Gao Y, Chen D, Ran X, Wang C. Microbial Infection and Antibiotic Susceptibility of Diabetic Foot Ulcer in China: Literature Review. Front Endocrinol (Lausanne) 2022; 13:881659. [PMID: 35663325 PMCID: PMC9161694 DOI: 10.3389/fendo.2022.881659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To investigate the microbial spectrum isolated from foot ulcers among diabetic patients in China, which was conducted to help clinicians choose optimal antibiotics empirically. METHOD The PubMed, MEDLINE, Web of Science, China Biology Medicine (CBM), China National Knowledge Infrastructure (CNKI), WanFang, and VIP databases were searched for studies published between 2015 to 2019, that report primary data on diabetic foot infection (DFI) and antibiotic susceptibility in China. RESULT A total of 63 articles about DFI and antibiotic susceptibility tests among diabetic patients in China were included. There were 11,483 patients with an average age of 60.2 ± 10.1 years and a mean course of 10.6 ± 5.0 years between 2010 and 2019, covering most geographical regions of China. The prevalence of Gram-positive (GP) bacteria (43.4%) was lower than that of Gram-negative (GN) (52.4%). The most prevalent pathogens isolated were Staphylococcus aureus (17.7%), Escherichia coli (10.9%), Pseudomonas aeruginosa (10.5%), Klebsiella pneumoniae (6.2%), Staphylococcus epidermidis (5.3%), Enterococcus faecalis (4.9%), and fungus (3.7%). The prevalence of polymicrobial infection was 22.8%. GP bacteria were sensitive to linezolid, vancomycin, and teicoplanin. More than 50% of GN bacteria were resistant to third-generation cephalosporins, while the resistance rates of piperacillin/tazobactam, amikacin, meropenem, and imipenem were relatively low. Among the 6017 strains of the isolated organisms, 20% had multi-drug resistance (MDR). Staphylococcus aureus (30.4%) was the most predominant MDR bacteria, followed by extended-spectrum β-lactamase (ESBL) (19.1%). CONCLUSION The microbial infection of foot ulcers among diabetic patients in China is diverse. The microbial spectrum is different in different geographic regions and Staphylococcus aureus is the predominant bacteria. Polymicrobial and MDR bacterial infections on the foot ulcers are common. This study could be valuable in guiding the empirical use of antibiotics for diabetic foot infections.
Collapse
|
28
|
Thermo-acoustic, spectroscopic, and electrochemical investigation of sparfloxacin–ionic surfactant interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
30
|
D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, Parks JM, Rybenkov VV, Ruggerone P, Zgurskaya HI, Walker JK. Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides. ACS Infect Dis 2021; 7:2650-2665. [PMID: 34379382 DOI: 10.1021/acsinfecdis.1c00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.
Collapse
Affiliation(s)
- Napoleon D’Cunha
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Keith Haynes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Enrico Margiotta
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Feng Cao
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K. Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
31
|
Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing. Microorganisms 2021; 9:microorganisms9081672. [PMID: 34442751 PMCID: PMC8398375 DOI: 10.3390/microorganisms9081672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing incidence of antimicrobial resistance (AMR) is a major global challenge. Routine techniques for molecular AMR marker detection are largely based on low-plex PCR and detect dozens to hundreds of AMR markers. To allow for comprehensive and sensitive profiling of AMR markers, we developed a capture-based next generation sequencing (NGS) workflow featuring a novel AMR marker panel based on the curated AMR database ARESdb. Our primary objective was to compare the sensitivity of target enrichment-based AMR marker detection to metagenomics sequencing. Therefore, we determined the limit of detection (LOD) in synovial fluid and urine samples across four key pathogens. We further demonstrated proof-of-concept for AMR marker profiling from septic samples using a selection of urine samples with confirmed monoinfection. The results showed that the capture-based workflow is more sensitive and requires lower sequencing depth compared with metagenomics sequencing, allowing for comprehensive AMR marker detection with an LOD of 1000 CFU/mL. Combining the ARESdb AMR panel with 16S rRNA gene sequencing allowed for the culture-free detection of bacterial taxa and AMR markers directly from septic patient samples at an average sensitivity of 99%. Summarizing, the newly developed ARESdb AMR panel may serve as a valuable tool for comprehensive and sensitive AMR marker detection.
Collapse
|
32
|
Dahiya S, Sharma N, Punia A, Choudhary P, Gulia P, Parmar VS, Chhillar AK. Antimycotic Drugs and their Mechanisms of Resistance to Candida Species. Curr Drug Targets 2021; 23:116-125. [PMID: 34551694 DOI: 10.2174/1389450122666210719124143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Fungal infections have shown an upsurge in recent decades, which is mainly because of the increasing number of immunocompromised patients and the occurrence of invasive candidiasis has been found to be 7-15 fold greater than that of invasive aspergillosis. The genus Candida comprises more than 150 distinct species, however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45% and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections. which include azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole- based compounds. Due to the occurrence of antifungal drug resistance, the success rates of treatment have been reduced as well as major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Namita Sharma
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Aruna Punia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Pooja Choudhary
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Prity Gulia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225. India
| | - Anil K Chhillar
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| |
Collapse
|
33
|
Mali SN, Pandey A. 1,2,5-Thiadiazole Scaffold: A review on recent progress in biological activities. Comb Chem High Throughput Screen 2021; 25:771-787. [PMID: 34161208 DOI: 10.2174/1386207324666210622162001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiadiazoles can be considered as the privileged scaffold having diverse pharmacological potentials such as antihypertensive, anti-HIV, antimicrobials, antileishmanial agents, etc. In particular, 1,2,5-thiadiazoles and their fused analogues are subjects of fast-growing interest due to their higher significance in the fields of biomedicine and material sciences. OBJECTIVE This study aims to collect detailed medicinal information about aspects of 1,2,5-thiadiazole. METHODS A systemic search has been carried out using PubMed, Google Scholar, CNKI, etc., for relevant studies having the keyword, '1,2,5-thiadiazole'. RESULTS AND CONCLUSION In this mini-review, we have covered known procedures of the synthesis and explored in detail all known advancements of this scaffold concerning to its biological activities.
Collapse
Affiliation(s)
- Suraj N Mali
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Anima Pandey
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| |
Collapse
|
34
|
Zhu J, Teng G, Li D, Hou R, Xia Y. Synthesis and antibacterial activity of novel Schiff bases of thiosemicarbazone derivatives with adamantane moiety. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02759-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
New Quinone Antibiotics against Methicillin-Resistant S. aureus. Antibiotics (Basel) 2021; 10:antibiotics10060614. [PMID: 34063846 PMCID: PMC8224091 DOI: 10.3390/antibiotics10060614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need for the development of new antibiotics. Here, we describe the inhibitory activity of new quinone compounds against methicillin-resistant Staphylococcus aureus (ATCC® 43300), methicillin-sensitive S. aureus (ATCC® 29213), and two clinical isolates from Chile (ISP-213 and ISP-214). We observed 99.9% reduction in viability within 2 h of exposure without the cultures exhibiting any post-antibiotic effect, which was twice the kinetics to that observed with vancomycin. These clinical isolates did not acquire resistance to these quinone derivatives during the course of our study. We found that these compounds protected larvae of the greater wax moth, sp. Galleria mellonella, from infection by these MRSA clinical strains as effectively as vancomycin. These quinone derivatives are potential drug candidates worth further development.
Collapse
|
36
|
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1490732. [PMID: 33834062 PMCID: PMC8016564 DOI: 10.1155/2021/1490732] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.
Collapse
|
37
|
Troudi A, Douafer H, Bolla JM, Klibi N, Brunel JM. Antibiotic Adjuvants to Rescue Pseudomonas aeruginosa from Tetracycline Antibiotics Resistance. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2211352518999200629164624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
An attractive antibiotic-adjuvant strategy consisting of the design and
synthesis of polyaminoisoprenyl molecules able to restore the antibiotic activity of tetracycline antibiotics
against resistant Pseudomonas aeruginosa bacterial strains has been developed.
Methods:
These chemo-sensitizers are readily prepared from geraniol and farnesol in an efficient
two steps synthesis with good to moderate yields varying from 38 to 64% and leading to a significant
decrease in antibiotic resistance.
Results:
Thus, the influence of the nature of the tetracycline antibiotic used as well as the structure
of the polyaminoisoprenyl derivatives involved in the outcome of the antibiotic-adjuvant combination
against P. aeruginosa resistance to tetracyclines were investigated.
Conclusion:
Additionally, our data suggested that their mechanism of action is closely associated
with the increase of the outer-membrane permeability.
Collapse
Affiliation(s)
- Azza Troudi
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | | | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jean M. Brunel
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
38
|
Mohid SA, Bhunia A. Combining Antimicrobial Peptides with Nanotechnology: An Emerging Field in Theranostics. Curr Protein Pept Sci 2021; 21:413-428. [PMID: 31889488 DOI: 10.2174/1389203721666191231111634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/11/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug-resistant pathogens and their rapid adaptation against new antibiotics is a major challenge for scientists and medical professionals. Different approaches have been taken to combat this problem, which includes rationally designed potent antimicrobial peptides (AMPs) and several nanoparticles and quantum dots. AMPs are considered as a new generation of super antibiotics that hold enormous potential to fight against bacterial resistance by the rapidly killing planktonic as well as their biofilm form while keeping low toxicity profile against eukaryotic cells. Various nanoparticles and quantum dots have proved their effectiveness against a vast array of infections and diseases. Conjugation and functionalization of nanoparticles with potentially active antimicrobial peptides have added advantages that widen their applications in the field of drug discovery as well as delivery system including imaging and diagnostics. This article reviews the current progress and implementation of different nanoparticles and quantum dots conjugated antimicrobial peptides in terms of bio-stability, drug delivery, and therapeutic applications.
Collapse
Affiliation(s)
- Sk Abdul Mohid
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
39
|
Uchil A, Murali TS, Nayak R. Escaping ESKAPE: A chalcone perspective. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Nitric oxide-inducing Genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:10711-10724. [PMID: 33170329 DOI: 10.1007/s00253-020-11003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Increasing prevalence of multidrug-resistant untreatable infections has prompted researchers to trial alternative treatments such as a substitute for traditional antibiotics. This study endeavored to elucidate the antibacterial mechanism(s) of this isoflavone, via analysis of relationship between genistein and Escherichia coli. Furthermore, this investigation analyzed whether genistein generates nitric oxide (NO) in E. coli as NO contributes to cell death. RecA, an essential protein for the bacterial SOS response, was detected through western blot, and the activated caspases decreased without RecA. The results showed that the NO induced by genistein affected the bacterial DNA. Under conditions of acute DNA damage, an SOS response called apoptosis-like death occurred, affecting DNA repair. These results suggested that RecA was bacterial caspase-like protein. In addition, NO was toxic to the bacterial cells and induced dysfunction of the plasma membrane. Thus, membrane depolarization and phosphatidylserine exposure were observed similarly to eukaryotic apoptosis. In conclusion, the combined results demonstrated that the antibacterial mode of action(s) of genistein was a NO-induced apoptosis-like death, and the role of RecA suggested that it contributed to the SOS response of NO defense. KEY POINTS: • Genistein generates nitric oxide in E. coli. • Genistein exhibits intense SOS response in E. coli. • Genistein-induced NO causes apoptosis-like death in E. coli.
Collapse
|
42
|
Kaur H, Gahlawat S, Singh J, Narasimhan B. Molecular Docking Study of Active Diazenyl Scaffolds as Inhibitors of Essential Targets Towards Antimicrobial Drug Discovery. Curr Drug Targets 2020; 20:1587-1602. [PMID: 31215386 DOI: 10.2174/1389450120666190618122359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diazenyl compounds (-N=N- linkage) have been reported to have antimicrobial activity. In modern drug discovery, the drug-receptor interactions are generally explored by the molecular docking studies. MATERIALS AND METHODS Three categories of diazenyl scaffolds were screened for the docking studies to explore the binding mechanism of interaction with various microbial targets. The diazenyl Schiff bases (SBN-20, SBN-21, SBN-25, SBN-33, SBN-39, SBN-40 and SBN-42), naphthol pharmacophore based diazenyl Schiff bases (NS-2, NS-8, NS-12, NS-15, NS-21, and NS-23), morpholine based diazenyl chalcones (MD-6, MD-9, MD-14, MD-16, MD-20, and MD-21) were docked against various bacterial and fungal proteins in comparison with different standard drugs. Further, the drug likeliness and ADME properties of these molecules were predicted by QikProp module of the Schrodinger software. RESULTS Most of the derivatives had shown less docking scores and binding energies towards bacterial proteins, such as dihydropteroate synthase (PDB:2VEG), glucosamine-6-phosphate synthase (PDB:2VF5), dihydrofolate reductase (PDB:3SRW) in comparison with the standard drugs. The naphthol based diazenyl Schiff bases NS-21 and NS-23 were predicted to act on the cytochrome P450 sterol 14-alpha-demethylase (CYP51) (PDB:5FSA) involved in sterol biosynthesis, an essential target for antifungal drugs. The derivative MD-6, NS-2, NS-21, and NS-23 had shown high docking scores against bacterial DNA topoisomerase (PDB:3TTZ) in comparison with the standard drug ciprofloxacin. Further, most of the synthesized derivatives had shown drug like characters. CONCLUSION Hence, these compounds can be developed as novel antibacterial agents as potent DNA topoisomerase inhibitors and antifungal agents as CYP51 inhibitors.
Collapse
Affiliation(s)
- Harmeet Kaur
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Sudhir Gahlawat
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Jasbir Singh
- College of Pharmacy, Postgraduate Institute of Medical Sciences, Rohtak-124001, India
| | | |
Collapse
|
43
|
Maruthapandi M, Saravanan A, Luong JHT, Gedanken A. Antimicrobial Properties of the Polyaniline Composites against Pseudomonas aeruginosa and Klebsiella pneumoniae. J Funct Biomater 2020; 11:E59. [PMID: 32824954 PMCID: PMC7566003 DOI: 10.3390/jfb11030059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
CuO, TiO2, or SiO2 was decorated on polyaniline (PANI) by a sonochemical method, and their antimicrobial properties were investigated for two common Gram-negative pathogens: Pseudomonas aeruginosa (PA) and Klebsiella pneumoniae (KP). Without PANI, CuO, TiO2, or SiO2 with a concentration of 220 µg/mL exhibited no antimicrobial activities. In contrast, PANI-CuO and PANI-TiO2 (1 mg/mL, each) completely suppressed the PA growth after 6 h of exposure, compared to 12 h for the PANI-SiO2 at the same concentration. The damage caused by PANI-SiO2 to KP was less effective, compared to that of PANI-TiO2 with the eradication time of 12 h versus 6 h, respectively. This bacterium was not affected by PANI-CuO. All the composites bind tightly to the negative groups of bacteria cell walls to compromise their regular activities, leading to the damage of the cell wall envelope and eventual cell lysis.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - John H. T. Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| |
Collapse
|
44
|
Douafer H, Andrieu V, Wafo E, Brunel JM. Characterization of a new aerosol antibiotic/adjuvant combination for the treatment of P. aeruginosa lung infections. Int J Pharm 2020; 586:119548. [DOI: 10.1016/j.ijpharm.2020.119548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
|
45
|
Xu C, Chen K, Chan KF, Chan EWC, Guo X, Chow HY, Zhao G, Zeng P, Wang M, Zhu Y, Li X, Wong K, Chen S. Imidazole Type Antifungal Drugs Are Effective Colistin Adjuvants That Resensitize Colistin‐Resistant
Enterobacteriaceae. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chen Xu
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
- Department of Infectious Diseases and Public Health Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon 999077 Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon 999077 Hong Kong
| | - Kin Fai Chan
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Xuyun Guo
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Hoi Yee Chow
- Department of Chemistry The University of Hong Kong Pokfulam Hong Kong
| | - Guangming Zhao
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Miaomiao Wang
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
- Department of Infectious Diseases and Public Health Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon 999077 Hong Kong
| | - Ye Zhu
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Xuechen Li
- Department of Chemistry The University of Hong Kong Pokfulam Hong Kong
| | - Kwok‐Yin Wong
- State Key Lab of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon 999077 Hong Kong
| |
Collapse
|
46
|
Motika SE, Ulrich RJ, Geddes EJ, Lee HY, Lau GW, Hergenrother PJ. Gram-Negative Antibiotic Active Through Inhibition of an Essential Riboswitch. J Am Chem Soc 2020; 142:10856-10862. [PMID: 32432858 DOI: 10.1021/jacs.0c04427] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multidrug-resistant Gram-negative (GN) infections for which there are few available treatment options are increasingly common. The development of new antibiotics for these pathogens is challenging because of the inability of most small molecules to accumulate inside GN bacteria. Using recently developed predictive guidelines for compound accumulation in Escherichia coli, we have converted the antibiotic Ribocil C, which targets the flavin mononucleotide (FMN) riboswitch, from a compound lacking whole-cell activity against wild-type GN pathogens into a compound that accumulates to a high level in E. coli, is effective against Gram-negative clinical isolates, and has efficacy in mouse models of GN infections. This compound allows for the first assessment of the translational potential of FMN riboswitch binders against wild-type Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Gee W Lau
- Department of Pathobiology, University of Illinois, Urbana, Illinois 61802, United States
| | | |
Collapse
|
47
|
Mühlberg E, Umstätter F, Domhan C, Hertlein T, Ohlsen K, Krause A, Kleist C, Beijer B, Zimmermann S, Haberkorn U, Mier W, Uhl P. Vancomycin-Lipopeptide Conjugates with High Antimicrobial Activity on Vancomycin-Resistant Enterococci. Pharmaceuticals (Basel) 2020; 13:ph13060110. [PMID: 32485876 PMCID: PMC7345083 DOI: 10.3390/ph13060110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany; (T.H.); (K.O.)
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany; (T.H.); (K.O.)
| | - Andreas Krause
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Stefan Zimmermann
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg Germany;
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 260, 69120 Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
- Correspondence: ; Tel.: +49-6221-56-7726
| |
Collapse
|
48
|
Juliano SA, Serafim LF, Duay SS, Heredia Chavez M, Sharma G, Rooney M, Comert F, Pierce S, Radulescu A, Cotten ML, Mihailescu M, May ER, Greenwood AI, Prabhakar R, Angeles-Boza AM. A Potent Host Defense Peptide Triggers DNA Damage and Is Active against Multidrug-Resistant Gram-Negative Pathogens. ACS Infect Dis 2020; 6:1250-1263. [PMID: 32251582 DOI: 10.1021/acsinfecdis.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gram-negative bacteria are some of the biggest threats to public health due to a large prevalence of antibiotic resistance. The difficulty in treating bacterial infections, stemming from their double membrane structure combined with efflux pumps in the outer membrane, has resulted in a much greater need for antimicrobials with activity against these pathogens. Tunicate host defense peptide (HDP), Clavanin A, is capable of not only inhibiting Gram-negative growth but also potentiating activity in the presence of Zn(II). Here, we provide evidence that the improvements of Clavanin A activity in the presence of Zn(II) are due to its novel mechanism of action. We employed E. coli TD172 (ΔrecA::kan) and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to show in cellulae that DNA damage occurs upon treatment with Clavanin A. In vitro assays demonstrated that Zn(II) ions are required for the nuclease activity of the peptide. The quantum mechanics/molecular mechanics (QM/MM) calculations were used to investigate the mechanism of DNA damage. In the rate-determining step of the proposed mechanism, due to its Lewis acidity, the Zn(II) ion activates the scissile P-O bond of DNA and creates a hydroxyl nucleophile from a water molecule. A subsequent attack by this group to the electrophilic phosphorus cleaves the scissile phosphoester bond. Additionally, we utilized bacterial cytological profiling (BCP), circular dichroism (CD) spectroscopy in the presence of lipid vesicles, and surface plasmon resonance combined with electrical impedance spectroscopy in order to address the apparent discrepancies between our results and the previous studies regarding the mechanism of action of Clavanin A. Finally, our approach may lead to the identification of additional Clavanin A like HDPs and promote the development of antimicrobial peptide based therapeutics.
Collapse
Affiliation(s)
- Samuel A. Juliano
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Searle S. Duay
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Maria Heredia Chavez
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Mary Rooney
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Fatih Comert
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Scott Pierce
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Andrei Radulescu
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Myriam L. Cotten
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alexander I. Greenwood
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
49
|
Mayandi V, Xi Q, Leng G, Koh SK, Jie T, Barathi VA, Urf Turabe Fazil MH, Somaraju Chalasani ML, Varadarajan J, Ting DSJ, Beuerman RW, Chan LW, Agrawal R, Sebastian B, Zhou L, Verma NK, Lakshminarayanan R. Rational Substitution of ε-Lysine for α-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin. J Med Chem 2020; 63:3522-3537. [PMID: 32175733 DOI: 10.1021/acs.jmedchem.9b01846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we present a rational approach that enhances the membrane selectivity of a prolific pore-forming peptide, melittin, based on experimental observations that the cationic polymer, ε-polylysine, disrupts bacterial membranes with greater affinity over mammalian cells when compared to poly-l-lysine and poly-d-lysine. We systematically replaced three α-lysine residues in melittin with ε-lysine residues and identified key residues that are important for cytotoxicity. We then assessed the antimicrobial properties of the modified peptides which carry two or three ε-lysyl residues. Two modified melittin peptides displayed rapid bactericidal properties against antibiotic-resistant strains, low innate resistance development by pathogenic bacteria, remained nonimmunogenic for T lymphocytes, and increased bioavailability in tear fluids. In proof-of-concept in vivo experiments, one of the peptides was noncytotoxic for ocular surfaces and had comparable antimicrobial efficacy to that of fluoroquinolone antibiotics. The results uncover a simple and potential strategy that can enhance the membrane selectivity of cytolytic peptides by ε-lysylation.
Collapse
Affiliation(s)
- Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551, Singapore
| | - Qingxiao Xi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Goh Leng
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Siew Kwan Koh
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Toh Jie
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Veluchamy Amutha Barathi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Mobashar Hussain Urf Turabe Fazil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| | - Madhavi Latha Somaraju Chalasani
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| | - Jayasudha Varadarajan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Darren Shu Jeng Ting
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Academic Ophthalmology, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Lai Wah Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive, 117543, Singapore
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, 308433, Singapore
| | - Barkham Sebastian
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Lei Zhou
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore.,Skin Research Institute of Singapore, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore.,Department of Pharmacy, National University of Singapore, 18 Science Drive, 117543, Singapore
| |
Collapse
|
50
|
Pahalagedara ASNW, Flint S, Palmer J, Brightwell G, Gupta TB. Antimicrobial production by strictly anaerobic Clostridium spp. Int J Antimicrob Agents 2020; 55:105910. [PMID: 31991218 DOI: 10.1016/j.ijantimicag.2020.105910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/04/2023]
Abstract
Antimicrobial resistance continues to rise on a global scale, affecting the environment, humans, animals and food systems. Use of natural antimicrobials has been favoured over synthetic molecules in food preservation owing to concerns over the adverse health effects of synthetic chemicals. The continuing need for novel natural antimicrobial compounds has spurred research to investigate natural sources, such as bacteria, for antimicrobials. The antimicrobial-producing potential of bacteria has been investigated in numerous studies. However, the discovery of antimicrobials has been biased towards aerobes and facultative anaerobes, and strict anaerobes such as Clostridium spp. have been largely neglected. In recent years, genomic studies have indicated the genetic potential of strict anaerobes to produce putative bioactive molecules and this has encouraged the exploration of Clostridium spp. for their antimicrobial production. So far, only a limited number of antimicrobial compounds have been isolated, identified and characterised from the genus Clostridium. This review discusses our current knowledge and understanding of clostridial antimicrobial compounds as well as recent genome mining studies of Clostridium spp. focused at identification of putative gene clusters encoding bacterial secondary metabolite groups and peptides reported to possess antimicrobial properties. Furthermore, opportunities and challenges in the identification of antimicrobials from Clostridium spp. using genomic-guided approaches are discussed. The limited studies conducted so far have identified the genus Clostridium as a viable source of antimicrobial compounds for future investigations.
Collapse
Affiliation(s)
- Amila Srilal Nawarathna Weligala Pahalagedara
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand; School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Gale Brightwell
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Tanushree Barua Gupta
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|