1
|
Sanchez ER, Price RJ, Marangelli F, McLeary K, Harrison RJ, Kundu A. Overexpression of Vitis GRF4-GIF1 improves regeneration efficiency in diploid Fragaria vesca Hawaii 4. PLANT METHODS 2024; 20:160. [PMID: 39420380 PMCID: PMC11488064 DOI: 10.1186/s13007-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant breeding played a very important role in transforming strawberries from being a niche crop with a small geographical footprint into an economically important crop grown across the planet. But even modern marker assisted breeding takes a considerable amount of time, over multiple plant generations, to produce a plant with desirable traits. As a quicker alternative, plants with desirable traits can be raised through tissue culture by doing precise genetic manipulations. Overexpression of morphogenic regulators previously known for meristem development, the transcription factors Growth-Regulating Factors (GRFs) and the GRF-Interacting Factors (GIFs), provided an efficient strategy for easier regeneration and transformation in multiple crops. RESULTS We present here a comprehensive protocol for the diploid strawberry Fragaria vesca Hawaii 4 (strawberry) regeneration and transformation under control condition as compared to ectopic expression of different GRF4-GIF1 chimeras from different plant species. We report that ectopic expression of Vitis vinifera VvGRF4-GIF1 provides significantly higher regeneration efficiency during re-transformation over wild-type plants. On the other hand, deregulated expression of miRNA resistant version of VvGRF4-GIF1 or Triticum aestivum (wheat) TaGRF4-GIF1 resulted in abnormalities. Transcriptomic analysis between the different chimeric GRF4-GIF1 lines indicate that differential expression of FvExpansin might be responsible for the observed pleiotropic effects. Similarly, cytokinin dehydrogenase/oxygenase and cytokinin responsive response regulators also showed differential expression indicating GRF4-GIF1 pathway playing important role in controlling cytokinin homeostasis. CONCLUSION Our data indicate that ectopic expression of Vitis vinifera VvGRF4-GIF1 chimera can provide significant advantage over wild-type plants during strawberry regeneration without producing any pleiotropic effects seen for the miRNA resistant VvGRF4-GIF1 or TaGRF4-GIF1.
Collapse
Affiliation(s)
- Esther Rosales Sanchez
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
- Centre for Trophoblast Research, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | | | - Federico Marangelli
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
| | | | - Richard J Harrison
- NIAB, Cambridge, CB3 0LE, UK.
- Wageningen University and Research, Wageningen, 6708 PB, Netherlands.
| | | |
Collapse
|
2
|
Kirschner GK. Making a link: a nucleic acid linker for gene stacking. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1177-1178. [PMID: 39082782 DOI: 10.1111/tpj.16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
|
3
|
Ma X, Yue Q, Miao L, Li S, Tian J, Si W, Zhang L, Yang W, Zhou X, Zhang J, Chen R, Xu Y, Liu X. A novel nucleic acid linker for multi-gene expression enhances plant and animal synthetic biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1864-1871. [PMID: 38470090 DOI: 10.1111/tpj.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.
Collapse
Affiliation(s)
- Xuhui Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqing Miao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suzhen Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Tian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Si
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junmin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Spatola Rossi T, Fricker M, Kriechbaumer V. Gene Stacking and Stoichiometric Expression of ER-Targeted Constructs Using "2A" Self-Cleaving Peptides. Methods Mol Biol 2024; 2772:337-351. [PMID: 38411827 DOI: 10.1007/978-1-0716-3710-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Simultaneous stoichiometric expression of multiple genes plays a major part in modern research and biotechnology. Traditional methods for incorporating multiple transgenes (or "gene stacking") have drawbacks such as long time frames, uneven gene expression, gene silencing, and segregation derived from the use of multiple promoters. 2A self-cleaving peptides have emerged over the last two decades as a functional gene stacking method and have been used in plants for the co-expression of multiple genes under a single promoter. Here we describe design features of multicistronic polyproteins using 2A peptides for co-expression in plant cells and targeting to the endoplasmic reticulum (ER). We designed up to quad-cistronic vectors that could target proteins in tandem to the ER. We also exemplify the incorporation of self-excising intein domains within 2A polypeptides, to remove residue additions. These features could aid in the design of stoichiometric protein co-expression strategies in plants in combination with targeting to different subcellular compartments.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
5
|
Bibik JD, Hamberger B. Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods Mol Biol 2024; 2760:3-20. [PMID: 38468079 DOI: 10.1007/978-1-0716-3658-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Terpenoids represent the most diverse class of natural products, with a broad spectrum of industrial relevance including applications in green solvents, flavors and fragrances, nutraceuticals, colorants, and therapeutics. They are typically challenging to extract from their natural sources, where they occur in small amounts and mixtures of related but unwanted byproducts. Formal chemical synthesis, where established, is reliant on petrochemistry. Hence, there is great interest in developing sustainable solutions to assemble biosynthetic pathways in engineered host organisms. Metabolic engineering for chemical production has largely focused on microbial hosts, yet plants offer a sustainable production platform. In addition to containing the precursor pathways that generate the terpenoid building blocks as well as the cell structures and compartments required, or tractable localization for the enzymes involved, plants may provide a low input system to produce these chemicals using carbon dioxide and sunlight only. There have been significant recent advancements in the discovery of pathways to terpenoids of interest as well as strategies to boost yields in host plants. While part of the phytochemical field is focusing on the discovery of biosynthetic pathways, this review will focus on advancements using the pathway toolbox and toward engineering plants for the production of terpenoids. We will highlight strategies currently used to produce target products, optimization of known pathways to improve yields, compartmentalization of pathways within cells, and genetic tools developed to facilitate complex engineering of biosynthetic pathways. These advancements in Synthetic Biology are bringing engineered plant systems closer to commercially relevant hosts for the bioproduction of terpenoids.
Collapse
Affiliation(s)
- Jacob D Bibik
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
- MelaTech, LLC, Baltimore, MD, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Spatola Rossi T, Tolmie AF, Nichol T, Pain C, Harrison P, Smith TJ, Fricker M, Kriechbaumer V. Recombinant expression and subcellular targeting of the particulate methane monooxygenase (pMMO) protein components in plants. Sci Rep 2023; 13:15337. [PMID: 37714899 PMCID: PMC10504283 DOI: 10.1038/s41598-023-42224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Methane is a potent greenhouse gas, which has contributed to approximately a fifth of global warming since pre-industrial times. The agricultural sector produces significant methane emissions, especially from livestock, waste management and rice cultivation. Rice fields alone generate around 9% of total anthropogenic emissions. Methane is produced in waterlogged paddy fields by methanogenic archaea, and transported to the atmosphere through the aerenchyma tissue of rice plants. Thus, bioengineering rice with catalysts to detoxify methane en route could contribute to an efficient emission mitigation strategy. Particulate methane monooxygenase (pMMO) is the predominant methane catalyst found in nature, and is an enzyme complex expressed by methanotrophic bacteria. Recombinant expression of pMMO has been challenging, potentially due to its membrane localization, multimeric structure, and polycistronic operon. Here we show the first steps towards the engineering of plants for methane detoxification with the three pMMO subunits expressed in the model systems tobacco and Arabidopsis. Membrane topology and protein-protein interactions were consistent with correct folding and assembly of the pMMO subunits on the plant ER. Moreover, a synthetic self-cleaving polypeptide resulted in simultaneous expression of all three subunits, although low expression levels precluded more detailed structural investigation. The work presents plant cells as a novel heterologous system for pMMO allowing for protein expression and modification.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - A Frances Tolmie
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Tim Nichol
- Molecular Microbiology Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Patrick Harrison
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Thomas J Smith
- Molecular Microbiology Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Centre for Bioimaging, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
7
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
8
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
9
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
10
|
Yang H, Li M, Zhang C, Li N, Yao X, Li X, Li F, Wang J. Ecotoxicological and biochemical effects of di(2-ethylhexyl)phthalate on wheat (Jimai 22, Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130816. [PMID: 36680896 DOI: 10.1016/j.jhazmat.2023.130816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl)phthalate esters (DEHP) has attracted widespread attention due to its ecotoxicological effects on organisms. In this study, wheat seedlings were exposed to DEHP- contaminated soil with 4 concentration gradients (0, 1, 10, and 100 mg kg-1, respectively) for 30 days. The growth index, physiological index, oxidative damage system, and gene expression of wheat seedlings were comprehensively measured and analyzed. The results revealed that DEHP could reduce the germination rate of wheat. Only the 100 mg kg-1 treatment group significantly inhibited root length, but no effect on plant height. At the biochemical level, photosynthetic pigments of wheat seedlings were promoted first and then inhibited, while the soluble sugar content presented a trend of "inhibition - activation - inhibition". The antioxidant enzymes (SOD and POD) presented an approximate parabolic trend, while it was opposite for CAT. Whereas the corresponding antioxidant enzyme genes were up-regulated, and the Hsp70 heat-shock protein gene was down-regulated. Finally, integrated biological response index (IBR) analysis showed that the DEHP toxicity to wheat seedlings was dose dependent. Molecular docking indicated that DEHP could stably bind to GBSS and GST by intermolecular force. Overall, this study provided constructive insights for a comprehensive assessment of the toxicity risk of DEHP to wheat.
Collapse
Affiliation(s)
- Huiyan Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an 271000, PR China
| | - Cui Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Fang Li
- College of Economics and Management, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
11
|
Kong F, Li M, Liu K, Ge Y, Yamasaki T, Beyly-Adriano A, Ohama T, Li-Beisson Y. Efficient approaches for nuclear transgene stacking in the unicellular green microalga Chlamydomonas reinhardtii. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Antony Ceasar S, Ignacimuthu S. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:724-730. [PMID: 36812799 DOI: 10.1016/j.plaphy.2023.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Genome editing tools based on CRISPR/Cas system have been posed to solve many issues in agriculture and improve food production. Genetic engineering by Agrobacterium-mediated transformation has helped to impart specific traits straightaway in many crops. Many GM crops have also reached the field for commercial cultivation. Genetic engineering requires mostly a transformation protocol often mediated by Agrobacterium to insert a specific gene at a random locus. Genome editing with CRISPR/Cas system is a more precise technique for the targeted modification of genes/bases in the host plant genome. Unlike the conventional transformation system, wherein elimination of marker/foreign gene was possible only post-transformation, CRISPR/Cas system could generate transgene-free plants by delivering CRISPR/Cas reagents such as the Cas protein and guide RNAs gRNA(s) preassembled to form ribonucleoproteins (RNPs) into plant cells. CRISPR reagent delivery might be helpful to overcome issues with plants that are recalcitrant to Agrobacterium transformation and the legal hurdles due to the presence of the foreign gene. More recently, the grafting of wild-type shoots to transgenic donor rootstocks developed by the CRISPR/Cas system has reported transgene-free genome editing. CRISPR/Cas system also requires only a small piece of gRNA besides Cas9 or other effectors to target a specific region in the genome. So this system has been projected to be a key contributor to future crop breeding. In this article, we recap the main events of plant transformation, compare the difference between genetic transformation and CRISPR/Cas-mediated genome editing, and draw insights into the future application of the CRISPR/Cas system.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology & Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India.
| | - S Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India
| |
Collapse
|
13
|
Heterologous mogrosides biosynthesis in cucumber and tomato by genetic manipulation. Commun Biol 2023; 6:191. [PMID: 36805532 PMCID: PMC9938114 DOI: 10.1038/s42003-023-04553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Mogrosides are widely used as high-value natural zero-calorie sweeteners that exhibit an array of biological activities and allow for vegetable flavour breeding by modern molecular biotechnology. In this study, we developed an In-fusion based gene stacking strategy for transgene stacking and a multi-gene vector harbouring 6 mogrosides biosynthesis genes and transformed it into Cucumis sativus and Lycopersicon esculentum. Here we show that transgenic cucumber can produce mogroside V and siamenoside I at 587 ng/g FW and 113 ng/g FW, respectively, and cultivated transgenic tomato with mogroside III. This study provides a strategy for vegetable flavour improvement, paving the way for heterologous biosynthesis of mogrosides.
Collapse
|
14
|
Jin K, Chen G, Yang Y, Zhang Z, Lu T. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C 3 photosynthesis: Prospects on modern crop improvement. PLANT, CELL & ENVIRONMENT 2023; 46:363-378. [PMID: 36444099 DOI: 10.1111/pce.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.
Collapse
Affiliation(s)
- Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
15
|
Confirmation of 'Pollen- and Seed-Specific Gene Deletor' System Efficiency for Transgene Excision from Transgenic Nicotiana tabacum under Field Conditions. Int J Mol Sci 2023; 24:ijms24021160. [PMID: 36674672 PMCID: PMC9866632 DOI: 10.3390/ijms24021160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
The commercial application of genetically modified plants has been seriously impeded by public concern surrounding the potential risks posed by such plants to the ecosystem and human health. Previously, we have developed a 'pollen- and seed-specific Gene Deletor' system that automatically excised all transgenes from the pollen and seeds of greenhouse-grown transgenic Nicotiana tabacum. In this study, we conducted seven field experiments over three consecutive years to evaluate the stability of transgene excision under field conditions. Our results showed that transgenes were stably excised from transgenic Nicotiana tabacum under field conditions with 100% efficiency. The stability of transgene excision was confirmed based on PCR, as well as the GUS staining patterns of various organs (roots, leaves, petiole, stem, flower, fruit, and seeds) from transgenic N. tabacum. In six transgenic lines (D4, D10, D31, D56, and D43), the transgenes were stably deleted in the T0 and T1 generations. Thus, the 'Gene Deletor' system is an efficient and reliable method to reduce pollen- and seed-mediated unintentional gene flow. This system might help to alleviate the food safety concerns associated with transgenic crops.
Collapse
|
16
|
Zierer W, Anjanappa RB, Lamm CE, Chang SH, Gruissem W, Sonnewald U. A promoter toolbox for tissue-specific expression supporting translational research in cassava ( Manihot esculenta). FRONTIERS IN PLANT SCIENCE 2022; 13:1042379. [PMID: 36605961 PMCID: PMC9807883 DOI: 10.3389/fpls.2022.1042379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
There is an urgent need to stimulate agricultural output in many tropical and subtropical countries of the world to combat hunger and malnutrition. The starchy crop cassava (Manihot esculenta), growing even under sub-optimal conditions, is a key staple food in these regions, providing millions of people with food. Cassava biotechnology is an important technique benefiting agricultural progress, but successful implementation of many biotechnological concepts depends on the availability of the right spatiotemporal expression tools. Yet, well-characterized cassava promoters are scarce in the public domain. In this study, we investigate the promoter activity and tissue specificity of 24 different promoter elements in stably transformed cassava plants. We show that many of the investigated promoters, especially from other species, have surprisingly low activity and/or tissue specificity, but feature several promoter sequences that can drive tissue-specific expression in either autotrophic-, transport- or storage tissues. We especially highlight pAtCAB1, pMePsbR, and pSlRBCS2 as strong and specific source promoters, pAtSUC2, pMeSWEET1-like, and pMeSUS1 as valuable tools for phloem and phloem parenchyma expression, and pStB33, pMeGPT, pStGBSS1, as well as pStPatatin Class I, as strong and specific promoters for heterotrophic storage tissues. We hope that the provided information and sequences prove valuable to the cassava community by contributing to the successful implementation of biotechnological concepts aimed at the improvement of cassava nutritional value and productivity.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ravi Bodampalli Anjanappa
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christian Erwin Lamm
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Uwe Sonnewald
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Characterization of a Stress-Enhanced Promoter from the Grass Halophyte, Spartina alterniflora L. BIOLOGY 2022; 11:biology11121828. [PMID: 36552337 PMCID: PMC9775435 DOI: 10.3390/biology11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Stress-inducible promoters are vital for the desirable expression of genes, especially transcription factors, which could otherwise compromise growth and development when constitutively overexpressed in plants. Here, we report on the characterization of the promoter region of a stress-responsive gene SaAsr1 from monocot halophyte cordgrass (Spartina alterniflora). Several cis-acting elements, such as ABRE (ABA-responsive element), DRE-CRT (dehydration responsive-element/C-Repeat), LTRE (low temperature-responsive element), ERE (ethylene-responsive element), LRE (light-responsive element), etc. contributed at varying degrees to salt-, drought- and ABA-enhanced expression of gusA reporter gene in Arabidopsis thaliana under the full-length promoter, pAsr11875 and its deletion derivatives with an assortment of cis-regulatory motifs. The smallest promoter, pAsr1491, with three cis-acting elements (a CCAAT box-heat responsive, an LRE, and a copper responsive element) conferred drought-enhanced expression of gusA; pAsr1755 (with an ABRE and a DRE) presented the highest expression in ABA and drought; and pAsr1994 with seven ABREs and two DREs conferred optimal induction of gusA, especially under drought and ABA. Arabidopsis transgenics expressing a known abiotic stress-responsive gene, SaADF2 (actin depolymerization factor 2), under both pAsr11875 and p35S promoters outperformed the wild type (WT) with enhanced drought and salt tolerance contributed by higher relative water content and membrane stability with no significant difference between pAsr11875:SaADF2 or p35S:SaADF2 lines. However, pAsr11875:SaADF2 lines produced healthy plants with robust shoot systems under salt stress and control compared to slightly stunted growth of the p35S:SaADF2 plants. This reestablished the evidence that transgene expression under a stress-inducible promoter is a better strategy for the genetic manipulation of crops.
Collapse
|
18
|
Edwards B, Hornstein ED, Wilson NJ, Sederoff H. High-throughput detection of T-DNA insertion sites for multiple transgenes in complex genomes. BMC Genomics 2022; 23:685. [PMID: 36195834 PMCID: PMC9533571 DOI: 10.1186/s12864-022-08918-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic engineering of crop plants has been successful in transferring traits into elite lines beyond what can be achieved with breeding techniques. Introduction of transgenes originating from other species has conferred resistance to biotic and abiotic stresses, increased efficiency, and modified developmental programs. The next challenge is now to combine multiple transgenes into elite varieties via gene stacking to combine traits. Generating stable homozygous lines with multiple transgenes requires selection of segregating generations which is time consuming and labor intensive, especially if the crop is polyploid. Insertion site effects and transgene copy number are important metrics for commercialization and trait efficiency. RESULTS We have developed a simple method to identify the sites of transgene insertions using T-DNA-specific primers and high-throughput sequencing that enables identification of multiple insertion sites in the T1 generation of any crop transformed via Agrobacterium. We present an example using the allohexaploid oil-seed plant Camelina sativa to determine insertion site location of two transgenes. CONCLUSION This new methodology enables the early selection of desirable transgene location and copy number to generate homozygous lines within two generations.
Collapse
Affiliation(s)
- Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan J Wilson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Liao J, Liu T, Xie L, Mo C, Huang X, Cui S, Jia X, Lan F, Luo Z, Ma X. Plant Metabolic Engineering by Multigene Stacking: Synthesis of Diverse Mogrosides. Int J Mol Sci 2022; 23:ijms231810422. [PMID: 36142335 PMCID: PMC9499096 DOI: 10.3390/ijms231810422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mogrosides are a group of health-promoting natural products that extracted from Siraitia grosvenorii fruit (Luo-han-guo or monk fruit), which exhibited a promising practical application in natural sweeteners and pharmaceutical development. However, the production of mogrosides is inadequate to meet the need worldwide, and uneconomical synthetic chemistry methods are not generally recommended for structural complexity. To address this issue, an in-fusion based gene stacking strategy (IGS) for multigene stacking has been developed to assemble 6 mogrosides synthase genes in pCAMBIA1300. Metabolic engineering of Nicotiana benthamiana and Arabidopsis thaliana to produce mogrosides from 2,3-oxidosqualene was carried out. Moreover, a validated HPLC-MS/MS method was used for the quantitative analysis of mogrosides in transgenic plants. Herein, engineered Arabidopsis thaliana produced siamenoside I ranging from 29.65 to 1036.96 ng/g FW, and the content of mogroside III at 202.75 ng/g FW, respectively. The production of mogroside III was from 148.30 to 252.73 ng/g FW, and mogroside II-E with concentration between 339.27 and 5663.55 ng/g FW in the engineered tobacco, respectively. This study provides information potentially applicable to develop a powerful and green toolkit for the production of mogrosides.
Collapse
Affiliation(s)
- Jingjing Liao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingyao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| |
Collapse
|
20
|
Non-viral 2A-like sequences for protein coexpression. J Biotechnol 2022; 358:1-8. [PMID: 35995093 DOI: 10.1016/j.jbiotec.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Simultaneous coexpression of multiple proteins is essential for biotechnology and synthetic biology. Currently, the most popular polyprotein coexpression system utilizes the foot-and-mouth disease virus (FMDV) 2A peptide that mediates translational ribosome-skipping events. However, due to unfavorable consumer acceptance of transgenic products containing animal-virus sequences, novel non-viral 2A-like peptides from purple sea urchin (Strongylcentrotus purpuratus) and California sea slug (Aplysia californica) were investigated for polyprotein coexpression in this study. We demonstrated that these non-viral 2A sequences functioned similarly to their viral counterpart in polyprotein processing, in both plant and mammalian cells, and were successfully used to express a functional recombinant antibody. The new non-viral 2A-like sequences offer an alternative tool for engineering multigenic traits or production of protein complexes as biomedicine via coexpression of protein subunits.
Collapse
|
21
|
He MX, Wang JL, Lin YY, Huang JC, Liu AZ, Chen F. Engineering an oilseed crop for hyper-accumulation of carotenoids in the seeds without using a traditional marker gene. PLANT CELL REPORTS 2022; 41:1751-1761. [PMID: 35748890 DOI: 10.1007/s00299-022-02889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Ketocarotenoids were synthesized successfully in Camelina sativa seeds by genetic modification without using a traditional selection marker genes. This method provided an interesting tool for metabolic engineering of seed crops. Camelina sativa (L.) Crantz is an important oil crop with many excellent agronomic traits. This model oil plant has been exploited to accumulate value-added bioproducts using genetic manipulation that depends on antibiotic- or herbicide-based selection marker genes (SMG), one of the major concerns for genetically modified foods. Here we reported metabolic engineering of C. sativa to synthesize red ketocarotenoids that could serve as a reporter to visualize transgenic events without using a traditional SMG. Overexpression of a non-native β-carotene ketolase gene coupled with three other carotenogenous genes (phytoene synthase, β-carotene hydroxylase, and Orange) in C. sativa resulted in production of red seeds that were visibly distinguishable from the normal yellow ones. Constitutive expression of the transgenes led to delayed plant development and seed germination. In contrast, seed-specific transformants demonstrated normal growth and seed germination despite the accumulation of up to 70-fold the level of carotenoids in the seeds compared to the controls, including significant amounts of astaxanthin and keto-lutein. As a result, the transgenic seed oils exhibited much higher antioxidant activity. No significant changes were found in the profiles of fatty acids between transgenic and control seeds. This study provided an interesting tool for metabolic engineering of seed crops without using a disputed SMG.
Collapse
Affiliation(s)
- Ming-Xia He
- Southwest Forestry University, Kunming, 650224, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie-Lin Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yuan-Yuan Lin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun-Chao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| | - Ai-Zhong Liu
- Southwest Forestry University, Kunming, 650224, Yunnan, China.
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
22
|
Gaucher M, Righetti L, Aubourg S, Dugé de Bernonville T, Brisset MN, Chevreau E, Vergne E. An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance. PLANT CELL REPORTS 2022; 41:1499-1513. [PMID: 35385991 PMCID: PMC9270298 DOI: 10.1007/s00299-022-02869-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes. Intragenesis is an important alternative to transgenesis to produce modified plants containing native DNA only. A key point to develop such a strategy is the availability of regulatory sequences controlling the expression of the gene of interest. With the aim of finding apple gene promoters either inducible by the fire blight pathogen Erwinia amylovora (Ea) or moderately constitutive, we focused on polyphenoloxidase genes (PPO). These genes encode oxidative enzymes involved in many physiological processes and have been previously shown to be upregulated during the Ea infection process. We found ten PPO and two PPO-like sequences in the apple genome and characterized the promoters of MdPPO16 (pPPO16) and MdKFDV02 PPO-like (pKFDV02) for their potential as Ea-inducible and low-constitutive regulatory sequences, respectively. Expression levels of reporter genes fused to these promoters and transiently or stably expressed in apple were quantified after various treatments. Unlike pKFDV02 which displayed a variable activity, pPPO16 allowed a fast and strong expression of transgenes in apple following Ea infection in a Type 3 Secretion System dependent manner. Altogether our results does not confirmed pKFDV02 as a constitutive and weak promoter whereas pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes.
Collapse
Affiliation(s)
- Matthieu Gaucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Sébastien Aubourg
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Thomas Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 avenue Monge, 37200, Tours, France
| | | | - Elisabeth Chevreau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Emilie Vergne
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.
| |
Collapse
|
23
|
Heterologous Biosynthesis of Health-Promoting Baicalein in Lycopersicon esculentum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103086. [PMID: 35630564 PMCID: PMC9146059 DOI: 10.3390/molecules27103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
Baicalein is a valuable flavonoid isolated from the medicinal plant Scutellaria baicalensis Georgi, which exhibits intensive biological activities, such as anticancer and antiviral activities. However, its production is limited in the root with low yield. In this study, In-Fusion and 2A peptide linker were developed to assemble SbCLL-7, SbCHI, SbCHS-2, SbFNSII-2 and SbCYP82D1.1 genes driven by the AtPD7, CaMV 35S and AtUBQ10 promoters with HSP, E9 and NOS terminators, and were used to engineer baicalein biosynthesis in transgenic tomato plants. The genetically modified tomato plants with this construct synthesized baicalein, ranging from 150 ng/g to 558 ng/g FW (fresh weight). Baicalein-fortified tomatoes have the potential to be health-promoting fresh vegetables and provide an alternative source of baicalein production, with great prospects for market application.
Collapse
|
24
|
Basu D, South PF. Design and Analysis of Native Photorespiration Gene Motifs of Promoter Untranslated Region Combinations Under Short Term Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:828729. [PMID: 35251099 PMCID: PMC8888687 DOI: 10.3389/fpls.2022.828729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Quantitative traits are rarely controlled by a single gene, thereby making multi-gene transformation an indispensable component of modern synthetic biology approaches. However, the shortage of unique gene regulatory elements (GREs) for the robust simultaneous expression of multiple nuclear transgenes is a major bottleneck that impedes the engineering of complex pathways in plants. In this study, we compared the transcriptional efficacies of a comprehensive list of well-documented promoter and untranslated region (UTR) sequences side by side. The strength of GREs was examined by a dual-luciferase assay in conjunction with transient expression in tobacco. In addition, we created suites of new GREs with higher transcriptional efficacies by combining the best performing promoter-UTR sequences. We also tested the impact of elevated temperature and high irradiance on the effectiveness of these GREs. While constitutive promoters ensure robust expression of transgenes, they lack spatiotemporal regulations exhibited by native promoters. Here, we present a proof-of-principle study on the characterization of synthetic promoters based on cis-regulatory elements of three key photorespiratory genes. This conserved biochemical process normally increases under elevated temperature, low CO2, and high irradiance stress conditions and results in ∼25% loss in fixed CO2. To select stress-responsive cis-regulatory elements involved in photorespiration, we analyzed promoters of two chloroplast transporters (AtPLGG1 and AtBASS6) and a key plastidial enzyme, AtPGLP using PlantPAN3.0 and AthaMap. Our results suggest that these motifs play a critical role for PLGG1, BASS6, and PGLP in mediating response to elevated temperature and high-intensity light stress. These findings will not only enable the advancement of metabolic and genetic engineering of photorespiration but will also be instrumental in related synthetic biology approaches.
Collapse
Affiliation(s)
| | - Paul F. South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
25
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|
26
|
Yang Y, Lee JH, Poindexter MR, Shao Y, Liu W, Lenaghan SC, Ahkami AH, Blumwald E, Stewart CN. Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1354-1369. [PMID: 33471413 PMCID: PMC8313130 DOI: 10.1111/pbi.13550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Abiotic stress resistance traits may be especially crucial for sustainable production of bioenergy tree crops. Here, we show the performance of a set of rationally designed osmotic-related and salt stress-inducible synthetic promoters for use in hybrid poplar. De novo motif-detecting algorithms yielded 30 water-deficit (SD) and 34 salt stress (SS) candidate DNA motifs from relevant poplar transcriptomes. We selected three conserved water-deficit stress motifs (SD18, SD13 and SD9) found in 16 co-expressed gene promoters, and we discovered a well-conserved motif for salt response (SS16). We characterized several native poplar stress-inducible promoters to enable comparisons with our synthetic promoters. Fifteen synthetic promoters were designed using various SD and SS subdomains, in which heptameric repeats of five-to-eight subdomain bases were fused to a common core promoter downstream, which, in turn, drove a green fluorescent protein (GFP) gene for reporter assays. These 15 synthetic promoters were screened by transient expression assays in poplar leaf mesophyll protoplasts and agroinfiltrated Nicotiana benthamiana leaves under osmotic stress conditions. Twelve synthetic promoters were induced in transient expression assays with a GFP readout. Of these, five promoters (SD18-1, SD9-2, SS16-1, SS16-2 and SS16-3) endowed higher inducibility under osmotic stress conditions than native promoters. These five synthetic promoters were stably transformed into Arabidopsis thaliana to study inducibility in whole plants. Herein, SD18-1 and SD9-2 were induced by water-deficit stress, whereas SS16-1, SS16-2 and SS16-3 were induced by salt stress. The synthetic biology design pipeline resulted in five synthetic promoters that outperformed endogenous promoters in transgenic plants.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jun Hyung Lee
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Magen R. Poindexter
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Yuanhua Shao
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Wusheng Liu
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNCUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL)Pacific Northwest National Laboratory (PNNL)RichlandWAUSA
| | | | - Charles Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
27
|
Pyramiding the antimicrobial PR1aCB and AATCB genes in 'Tarocco' blood orange (Citrus sinensis Osbeck) to enhance citrus canker resistance. Transgenic Res 2021; 30:635-647. [PMID: 34076822 DOI: 10.1007/s11248-021-00245-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/17/2021] [Indexed: 01/14/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major bacterial disease responsible for substantial economic losses in citrus-producing areas. To breed transgenic citrus plants with enhanced resistance to citrus canker, two antimicrobial peptide genes, PR1aCB and AATCB, were incorporated into 'Tarocco' blood orange (Citrus sinensis Osbeck) plants via co-transformation and sequential re-transformation. The presence of PR1aCB and AATCB in double transgenic plants was confirmed by PCR. The expression of PR1aCB and AATCB in double transformants was demonstrated by quantitative real-time PCR. An in vivo disease resistance assay involving the injection of Xcc revealed that the double transformants were more resistant to citrus canker than the single gene transformants and wild-type plants. An analysis of the bacterial population indicated that the enhanced citrus canker resistance of the double transformants was due to inhibited Xcc growth. These results proved that the pyramiding of multiple genes is a more effective strategy for increasing the disease resistance of transgenic citrus plants than single gene transformations.
Collapse
|
28
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
29
|
Vázquez-Barrios V, Boege K, Sosa-Fuentes TG, Rojas P, Wegier A. Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population. Sci Rep 2021; 11:1959. [PMID: 33479296 PMCID: PMC7820435 DOI: 10.1038/s41598-021-81567-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/31/2020] [Indexed: 01/29/2023] Open
Abstract
After 25 years of genetically modified cotton cultivation in Mexico, gene flow between transgenic individuals and their wild relatives represents an opportunity for analysing the impacts of the presence of novel genes in ecological and evolutionary processes in natural conditions. We show comprehensive empirical evidence on the physiological, metabolic, and ecological effects of transgene introgression in wild cotton, Gossypium hirsutum. We report that the expression of both the cry and cp4-epsps genes in wild cotton under natural conditions altered extrafloral nectar inducibility and thus, its association with different ant species: the dominance of the defensive species Camponotus planatus in Bt plants, the presence of cp4-epsps without defence role of Monomorium ebeninum ants, and of the invasive species Paratrechina longicornis in wild plants without transgenes. Moreover, we found an increase in herbivore damage to cp4-epsps plants. Our results reveal the influence of transgene expression on native ecological interactions. These findings can be useful in the design of risk assessment methodologies for genetically modified organisms and the in situ conservation of G. hirsutum metapopulations.
Collapse
Affiliation(s)
- Valeria Vázquez-Barrios
- grid.9486.30000 0001 2159 0001Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico ,grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karina Boege
- grid.9486.30000 0001 2159 0001Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tania Gabriela Sosa-Fuentes
- grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Rojas
- grid.452507.10000 0004 1798 0367Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Xalapa, Veracruz Mexico
| | - Ana Wegier
- grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Lee JH, Won HJ, Oh ES, Oh MH, Jung JH. Golden Gate Cloning-Compatible DNA Replicon/2A-Mediated Polycistronic Vectors for Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:559365. [PMID: 33193484 PMCID: PMC7609577 DOI: 10.3389/fpls.2020.559365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 05/31/2023]
Abstract
The expression of multiple proteins and high-throughput vector assembly system are highly relevant in the field of plant genetic engineering and synthetic biology. Deployment of the self-cleaving 2A peptide that mediates polycistronic gene expression has been an effective strategy for multigene expression, as it minimizes issues in coordinated transgene regulation and trait staking in plants. However, efficient vector assembly systems optimized for 2A peptide-mediated polycistronic expression are currently unavailable. Furthermore, it is unclear whether protein expression levels are influenced by the transgene position in the polycistronic expression cassette. In this article, we present Golden Gate cloning-compatible modular systems allowing rapid and flexible construction of polycistronic expression vectors applicable for plants. The genetic modules comprised 2A peptides (T2A and P2A)-linked tricistron expression cassette and its acceptor backbones, named pGO-DV1 and pGO-DV2. While both acceptor backbones were binary T-DNA vectors, pGO-DV2 was specially designed to function as a DNA replicon enhancing gene expression levels. Using the Golden Gate cloning, a set of six tricistronic vectors was constructed, whereby three transgenes encoding fluorescent proteins (mCherry, eYFP, and eGFP) were combinatorially placed along the expression cassette in each of the binary vectors. Transient expression of the construct in tobacco leaves revealed that the expression levels of three fluorescent proteins were comparable each other regardless of the gene positions in the tricistronic expression cassette. pGO-DV2-based constructs were able to increase protein expression level by up to 71%, as compared to pGO-DV1-based constructs.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Hyo Jun Won
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, South Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
31
|
Thagun C, Motoda Y, Kigawa T, Kodama Y, Numata K. Simultaneous introduction of multiple biomacromolecules into plant cells using a cell-penetrating peptide nanocarrier. NANOSCALE 2020; 12:18844-18856. [PMID: 32896843 DOI: 10.1039/d0nr04718j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant cells contain groups of biomolecules that participate together in a particular biological process. Exogenous codelivery of multiple biomolecules is an essential step for elucidation of the biological significance of these molecules and enables various biotechnological applications in plants. However, the currently existing biomolecule delivery methods face difficulties in delivering multiple components into plant cells, mediating transgene expression, and maintaining the stability of the numerous components and lead to delays in biomolecular function. Cell-penetrating peptides (CPPs) have demonstrated remarkable abilities to introduce diverse biomolecules into various plant species. Here, we employed the engineered CPP KH9-BP100 as a carrier to deliver multiple biomolecules into plant cells and performed a bimolecular fluorescence complementation assay to assess the simultaneous introduction of multiple biomolecules. We demonstrate that multiple biomolecule/CPP cargos can be simultaneously internalized by a particular plant cell, albeit with different efficiencies. We present a cutting-edge technique for codelivery of multiple biomolecules into plant cells that can be used for elucidation of functional correlations and for metabolic engineering.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
32
|
Dasgupta A, Chowdhury N, De RK. Metabolic pathway engineering: Perspectives and applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 192:105436. [PMID: 32199314 DOI: 10.1016/j.cmpb.2020.105436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metabolic engineering aims at contriving microbes as biocatalysts for enhanced and cost-effective production of countless secondary metabolites. These secondary metabolites can be treated as the resources of industrial chemicals, pharmaceuticals and fuels. Plants are also crucial targets for metabolic engineers to produce necessary secondary metabolites. Metabolic engineering of both microorganism and plants also contributes towards drug discovery. In order to implement advanced metabolic engineering techniques efficiently, metabolic engineers should have detailed knowledge about cell physiology and metabolism. Principle behind methodologies: Genome-scale mathematical models of integrated metabolic, signal transduction, gene regulatory and protein-protein interaction networks along with experimental validation can provide such knowledge in this context. Incorporation of omics data into these models is crucial in the case of drug discovery. Inverse metabolic engineering and metabolic control analysis (MCA) can help in developing such models. Artificial intelligence methodology can also be applied for efficient and accurate metabolic engineering. CONCLUSION In this review, we discuss, at the beginning, the perspectives of metabolic engineering and its application on microorganism and plant leading to drug discovery. At the end, we elaborate why inverse metabolic engineering and MCA are closely related to modern metabolic engineering. In addition, some crucial steps ensuring efficient and optimal metabolic engineering strategies have been discussed. Moreover, we explore the use of genomics data for the activation of silent metabolic clusters and how it can be integrated with metabolic engineering. Finally, we exhibit a few applications of artificial intelligence to metabolic engineering.
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Nirmalya Chowdhury
- Department of Computer Science & Engineering, Jadavpur University, Kolkata 700032, India
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India.
| |
Collapse
|
33
|
Pathak B, Srivastava V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. PLANT DIRECT 2020; 4:e00236. [PMID: 32760877 PMCID: PMC7391932 DOI: 10.1002/pld3.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
Efficient methods for multigene transformation are important for developing novel crop varieties. Methods based on random integrations of multiple genes have been successfully used for metabolic engineering in plants. However, efficiency of co-integration and co-expression of the genes could present a bottleneck. Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of targeted integration that leads to the generation of stable transgenic lines at a high rate. This method has the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is needed. Here, the recombinase technology based on Cre-lox recombination was evaluated for developing multigenic lines harboring constitutively-expressed and inducible genes. Targeted integration of a five genes cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the resulting multigenic lines expressed each gene reliably as defined by their promoter activity. The stable constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-stability of the multigene locus. Co-localization of two distinctly inducible genes by heat or cold with the strongly constitutive genes did not appear to interfere with each other's expression pattern. In summary, high rate of co-integration and co-expression of the multigene cassette installed by the recombinase technology in rice shows that this approach is appropriate for multigene transformation and introduction of co-segregating traits. SIGNIFICANCE STATEMENT Recombinase-mediated site-specific integration approach was found to be highly efficacious in multigene transformation of rice showing proper regulation of each gene driven by constitutive or inducible promoter. This approach holds promise for streamlining gene stacking in crops and expressing complex multigenic traits.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
34
|
The Impact of Bt Corn on Aflatoxin-Related Insurance Claims in the United States. Sci Rep 2020; 10:10046. [PMID: 32572162 PMCID: PMC7308289 DOI: 10.1038/s41598-020-66955-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
Previous field studies have reached no collective consensus on whether Bt corn, the most commonly planted transgenic crop worldwide, has significantly lower aflatoxin levels than non-Bt isolines. Aflatoxin, a mycotoxin contaminating corn and other commodities, causes liver cancer in humans and can pose severe economic losses to farmers. We found that from 2001-2016, a significant inverse correlation existed between Bt corn planting and aflatoxin-related insurance claims in the United States, when controlling for temperature and drought. Estimated benefits of aflatoxin reduction resulting from Bt corn planting are about $120 million to $167 million per year over 16 states on average. These results suggest that Bt corn use is an important strategy in reducing aflatoxin risk, with corresponding economic benefits. If the same principles hold true in other world regions, then Bt corn hybrids adapted to diverse agronomic regions may have a role in reducing aflatoxin in areas prone to high aflatoxin contamination, and where corn is a dietary staple.
Collapse
|
35
|
Khosla A, Rodriguez‐Furlan C, Kapoor S, Van Norman JM, Nelson DC. A series of dual-reporter vectors for ratiometric analysis of protein abundance in plants. PLANT DIRECT 2020; 4:e00231. [PMID: 32582876 PMCID: PMC7306620 DOI: 10.1002/pld3.231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 05/06/2023]
Abstract
Ratiometric reporter systems enable comparisons of the abundance of a protein of interest, or "target," relative to a reference protein. Both proteins are encoded on a single transcript but are separated during translation. This arrangement bypasses the potential for discordant expression that can arise when the target and reference proteins are encoded by separate genes. We generated a set of 18 Gateway-compatible vectors termed pRATIO that combine a variety of promoters, fluorescent, and bioluminescent reporters, and 2A "self-cleaving" peptides. These constructs are easily modified to produce additional combinations or introduce new reporter proteins. We found that mScarlet-I provides the best signal-to-noise ratio among several fluorescent reporter proteins during transient expression experiments in Nicotiana benthamiana. Firefly and Gaussia luciferase also produce high signal-to-noise in N. benthamiana. As proof of concept, we used this system to investigate whether degradation of the receptor KAI2 after karrikin treatment is influenced by its subcellular localization. KAI2 is normally found in the cytoplasm and the nucleus of plant cells. In N. benthamiana, karrikin-induced degradation of KAI2 was only observed when it was retained in the nucleus. These vectors are tools to easily monitor in vivo the abundance of a protein that is transiently expressed in plants, and will be particularly useful for investigating protein turnover in response to different stimuli.
Collapse
Affiliation(s)
- Aashima Khosla
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| | | | - Suraj Kapoor
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | | | - David C. Nelson
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
36
|
Jose M, Vertuan H, Soares D, Sordi D, Bellini LF, Kotsubo R, Berger GU. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton. PLoS One 2020; 15:e0231733. [PMID: 32339186 PMCID: PMC7185713 DOI: 10.1371/journal.pone.0231733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.
Collapse
Affiliation(s)
- Marcia Jose
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | | - Daniel Soares
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Daniel Sordi
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Luiz F. Bellini
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Rafael Kotsubo
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | |
Collapse
|
37
|
Ramkumar TR, Lenka SK, Arya SS, Bansal KC. A Short History and Perspectives on Plant Genetic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2124:39-68. [PMID: 32277448 DOI: 10.1007/978-1-0716-0356-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.
Collapse
Affiliation(s)
- Thakku R Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
| | - Sangram K Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Sagar S Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Kailash C Bansal
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
| |
Collapse
|
38
|
Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int J Mol Sci 2020; 21:E2590. [PMID: 32276445 PMCID: PMC7177917 DOI: 10.3390/ijms21072590] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023] Open
Abstract
In most crop breeding programs, the rate of yield increment is insufficient to cope with the increased food demand caused by a rapidly expanding global population. In plant breeding, the development of improved crop varieties is limited by the very long crop duration. Given the many phases of crossing, selection, and testing involved in the production of new plant varieties, it can take one or two decades to create a new cultivar. One possible way of alleviating food scarcity problems and increasing food security is to develop improved plant varieties rapidly. Traditional farming methods practiced since quite some time have decreased the genetic variability of crops. To improve agronomic traits associated with yield, quality, and resistance to biotic and abiotic stresses in crop plants, several conventional and molecular approaches have been used, including genetic selection, mutagenic breeding, somaclonal variations, whole-genome sequence-based approaches, physical maps, and functional genomic tools. However, recent advances in genome editing technology using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated (Cas) proteins have opened the door to a new plant breeding era. Therefore, to increase the efficiency of crop breeding, plant breeders and researchers around the world are using novel strategies such as speed breeding, genome editing tools, and high-throughput phenotyping. In this review, we summarize recent findings on several aspects of crop breeding to describe the evolution of plant breeding practices, from traditional to modern speed breeding combined with genome editing tools, which aim to produce crop generations with desired traits annually.
Collapse
Affiliation(s)
- Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (S.A.); (M.U.Q.)
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan 430070, China;
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology and State Key Laboratory of Microbial Biosensor, College of Life Sciences Huazhong Agriculture University, Wuhan 430070, China
| | - Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (S.A.); (M.U.Q.)
| | - Mustansar Mubeen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Kakar KU, Nawaz Z, Cui Z, Ahemd N, Ren X. Molecular breeding approaches for production of disease-resilient commercially important tobacco. Brief Funct Genomics 2020; 19:10-25. [PMID: 31942928 DOI: 10.1093/bfgp/elz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Tobacco is one of the most widely cultivated nonfood cash crops, a source of income, model organism for plant molecular research, a natural pesticide and of pharmaceutical importance. First domesticated in South Americas, the modern-day tobacco (Nicotiana tabacum) is now cultivated in more than 125 countries to generate revenues worth billions of dollars each year. However, the production of this crop is highly threatened by the global presence of devastating infectious agents, which cause huge fiscal loss. These threats have been battled through breeding for acquiring disease resilience in tobacco plants, first, via conventional and now with the use of modern molecular breeding approaches. For efficacy and precision, the characterization of the genetic components underlying disease resistance is the key tool in tobacco for resistance breeding programs. The past few decades have witnessed significant progress in resilience breeding through advanced molecular techniques. The current review discusses history of tobacco breeding since its time of origin till date, highlighting the most widely used techniques and recent advances in molecular research and strategies for resistance breeding. In addition, we narrate the budding possibilities for the future. This review will provide a comprehensive and valuable information for the tobacco growers and researchers to deal with the destructive infectious diseases.
Collapse
|
40
|
Kim SE, Lee CJ, Ji CY, Kim HS, Park SU, Lim YH, Park WS, Ahn MJ, Bian X, Xie Y, Guo X, Kwak SS. Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:436-444. [PMID: 31639559 DOI: 10.1016/j.plaphy.2019.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 05/14/2023]
Abstract
Oxidative stress caused by reactive oxygen species (ROS) under various environmental stresses significantly reduces plant productivity. Tocopherols (collectively known as vitamin E) are a group of lipophilic antioxidants that protect cellular components against oxidative stress. Previously, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including tocopherol cyclase (IbTC). In this study, we generated transgenic sweetpotato plants overexpressing IbTC under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as TC plants) via Agrobacterium-mediated transformation to understand the function of IbTC in sweetpotato. Three transgenic lines (TC2, TC9, and TC11) with high transcript levels of IbTC were selected for further characterization. High performance liquid chromatography (HPLC) analysis revealed that α-tocopherol was the most predominant form of tocopherol in sweetpotato tissues. The content of α-tocopherol was 1.6-3.3-fold higher in TC leaves than in non-transgenic (NT) leaves. No significant difference was observed in the tocopherol content of storage roots between TC and NT plants. Additionally, compared with NT plants, TC plants showed enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses, and showed consistently higher levels of photosystem II activity and chlorophyll content, indicating abiotic stress tolerance. These results suggest IbTC as a strong candidate gene for the development of sweetpotato cultivars with increased α-tocopherol levels and enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Ye-Hoon Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yizhi Xie
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xiaodong Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
41
|
Zhang B, Han Z, Kumar S, Gupta M, Su WW. Intein-ubiquitin chimeric domain for coordinated protein coexpression. J Biotechnol 2019; 304:38-43. [DOI: 10.1016/j.jbiotec.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
42
|
Wang X, Zhang X, Yang J, Liu X, Song Y, Wang Z. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding. BMC PLANT BIOLOGY 2019; 19:346. [PMID: 31391002 PMCID: PMC6686426 DOI: 10.1186/s12870-019-1956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The safety assessment and control of stacked transgenic crops is increasingly important due to continuous crop development and is urgently needed in China. The genetic stability of foreign genes and unintended effects are the primary problems encountered in safety assessment. Omics techniques are useful for addressing these problems. The stacked transgenic maize variety 12-5 × IE034, which has insect-resistant and glyphosate-tolerant traits, was developed via a breeding stack using 12-5 and IE034 as parents. Using 12-5 × IE034, its parents (12-5 and IE034), and different maize varieties as materials, we performed proteomic profiling, molecular characterization and a genetic stability analysis. RESULTS Our results showed that the copy number of foreign genes in 12-5 × IE034 is identical to that of its parents 12-5 and IE034. Foreign genes can be stably inherited over different generations. Proteomic profiling analysis found no newly expressed proteins in 12-5 × IE034, and the differences in protein expression between 12 and 5 × IE034 and its parents were within the range of variation of conventional maize varieties. The expression levels of key enzymes participating in the shikimic acid pathway which is related to glyphosate tolerance of 12-5 × IE034 were not significantly different from those of its parents or five conventional maize varieties, which indicated that without selective pressure by glyphosate, the introduced EPSPS synthase is not has a pronounced impact on the synthesis of aromatic amino acids in maize. CONCLUSIONS Stacked-trait development via conventional breeding did not have an impact on the genetic stability of T-DNA, and the impact of stacked breeding on the maize proteome was less significant than that of genotypic differences. The results of this study provide a theoretical basis for the development of a safety assessment approach for stacked-trait transgenic crops in China.
Collapse
Affiliation(s)
- Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Xin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Yaya Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, 12 Zhuangguancun South Street, Beijing, 100081 China
| |
Collapse
|
43
|
Zhao Q, Du Y, Wang H, Rogers HJ, Yu C, Liu W, Zhao M, Xie F. 5-Azacytidine promotes shoot regeneration during Agrobacterium-mediated soybean transformation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:40-50. [PMID: 31128562 DOI: 10.1016/j.plaphy.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/07/2019] [Accepted: 05/14/2019] [Indexed: 05/27/2023]
Abstract
Agrobacterium-mediated soybean transformation has been greatly improved in recent years, however the transformation efficiency is still low and highly genotype-dependent when compared to other species. Here, we characterized seventeen soybean genotypes based on their genetic transformation efficiencies, i.e., high and low, during Agrobacterium-mediated transformation. To reveal the molecular basis of this transformation difference, we constructed a highly efficient transient transgene expression system using soybean cotyledon protoplasts and then assess the methylation levels of promoter and coding regions of an EYFP (enhanced yellow fluorescent protein) gene introduced into the protoplast cultures of various soybean genotypes using BSP (bisulfite sequencing PCR). Increased methylation was found to be associated with the considerably decreased transfection efficiency (as percentage of EYFP fluorescent protoplasts) in low-efficacy genotypes as compared with those in high-efficacy on three DAT (day after transfection). 5-Azacytidine (5-Azac), a demethylating reagent commonly applied in epigenetic researches, significantly improved the transient transfection efficiency and transgene expression level in low-efficiency genotypes. Furthermore, the shoot regeneration efficiency in low-efficiency genotypes was substantially increased by 5-Azac treatment in an Agrobacterium-mediated soybean transformation system. Taken together, we concluded that lower methylation level in transgene contributed to enhanced shoot regeneration in Agrobacterium-mediated soybean transformation.
Collapse
Affiliation(s)
- Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Yanli Du
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Hetong Wang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Hilary J Rogers
- Cardiff University, School of Biosciences, Cardiff, CF10 3TL, UK.
| | - Cuimei Yu
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Mingzhe Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| | - Futi Xie
- Agricultural College, Shenyang Agricultural University, Shenyang, 10866, PR China.
| |
Collapse
|
44
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
45
|
Wu J, Reca I, Spinelli F, Lironi D, De Lorenzo G, Poltronieri P, Cervone F, Joosten MH, Ferrari S, Brutus A. An EFR-Cf-9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1- and BAK1-dependent recognition of elf18. MOLECULAR PLANT PATHOLOGY 2019; 20:751-764. [PMID: 30938041 PMCID: PMC6637901 DOI: 10.1111/mpp.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transfer of well-studied native and chimeric pattern recognition receptors (PRRs) to susceptible plants is a proven strategy to improve host resistance. In most cases, the ectodomain determines PRR recognition specificity, while the endodomain determines the intensity of the immune response. Here we report the generation and characterization of the chimeric receptor EFR-Cf-9, which carries the ectodomain of the Arabidopsis thaliana EF-Tu receptor (EFR) and the endodomain of the tomato Cf-9 resistance protein. Both transient and stable expression of EFR-Cf-9 triggered a robust hypersensitive response (HR) upon elf18 treatment in tobacco. Co-immunoprecipitation and virus-induced gene silencing studies showed that EFR-Cf-9 constitutively interacts with SUPPRESSOR OF BIR1-1 (SOBIR1) co-receptor, and requires both SOBIR1 and kinase-active BRI1-ASSOCIATED KINASE1 (BAK1) for its function. Transgenic plants expressing EFR-Cf-9 were more resistant to the (hemi)biotrophic bacterial pathogens Pseudomonas amygdali pv. tabaci (Pta) 11528 and Pseudomonas syringae pv. tomato DC3000, and mounted an HR in response to high doses of Pta 11528 and P. carotovorum. Taken together, these data indicate that the EFR-Cf-9 chimera is a valuable tool for both investigating the molecular mechanisms responsible for the activation of defence responses by PRRs, and for potential biotechnological use to improve crop disease resistance.
Collapse
Affiliation(s)
- Jinbin Wu
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenNetherlands
| | | | - Francesco Spinelli
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Damiano Lironi
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | | | - Felice Cervone
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Matthieu H.A.J. Joosten
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenNetherlands
| | - Simone Ferrari
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Alexandre Brutus
- DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
46
|
Ray T, Pandey SS, Pandey A, Srivastava M, Shanker K, Kalra A. Endophytic Consortium With Diverse Gene-Regulating Capabilities of Benzylisoquinoline Alkaloids Biosynthetic Pathway Can Enhance Endogenous Morphine Biosynthesis in Papaver somniferum. Front Microbiol 2019; 10:925. [PMID: 31114562 PMCID: PMC6503101 DOI: 10.3389/fmicb.2019.00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Secondary metabolite biosynthesis in medicinal plants is multi-step cascade known to be modulated by associated endophytes. While a single endophyte is not able to upregulate all biosynthetic steps, limiting maximum yield achievement. Therefore to compliment the deficient characteristics in an endophyte we tried consortium of endophytes to achieve maximum yield. Here, efforts were made to maximize the in planta morphine yield, using consortium of two endophytes; SM1B (Acinetobacter sp.) upregulating most of the genes of morphine biosynthesis except T6ODM and CODM, and SM3B (Marmoricola sp.) upregulating T6ODM and CODM in alkaloid-less Papaver somniferum cv. Sujata. Consortium-inoculation significantly increased morphine and thebaine content, and also increased the photosynthetic efficiency of poppy plants resulted in increased biomass, capsule weight, and seed yields compared to single-inoculation. The increment in morphine content was due to the modulation of metabolic-flow of key intermediates including reticuline and thebaine, via upregulating pertinent biosynthetic genes and enhanced expression of COR, key gene for morphine biosynthesis. This is the first report demonstrating the endophytic-consortium complimenting the functional deficiency of one endophyte by another for upregulating multiple genes of a metabolic pathway similar to transgenics (overexpressing multiple genes) for obtaining enhanced yield of pharmaceutically important metabolites.
Collapse
Affiliation(s)
- Tania Ray
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shiv S Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Alok Pandey
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Madhumita Srivastava
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Karuna Shanker
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
47
|
Xu X, Vanhercke T, Shrestha P, Luo J, Akbar S, Konik-Rose C, Venugoban L, Hussain D, Tian L, Singh S, Li Z, Sharp PJ, Liu Q. Upregulated Lipid Biosynthesis at the Expense of Starch Production in Potato ( Solanum tuberosum) Vegetative Tissues via Simultaneous Downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 Expressions. FRONTIERS IN PLANT SCIENCE 2019; 10:1444. [PMID: 31781148 PMCID: PMC6861213 DOI: 10.3389/fpls.2019.01444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 05/05/2023]
Abstract
Triacylglycerol is a major component of vegetable oil in seeds and fruits of many plants, but its production in vegetative tissues is rather limited. It would be intriguing and important to explore any possibility to expand current oil production platforms, for example from the plant vegetative tissues. By expressing a suite of transgenes involved in the triacylglycerol biosynthesis, we have previously observed substantial accumulation of triacylglycerol in tobacco (Nicotiana tabacum) leaf and potato (Solanum tuberosum) tuber. In this study, simultaneous RNA interference (RNAi) downregulation of ADP-glucose pyrophosphorylase (AGPase) and Sugar-dependent1 (SDP1), was able to increase the accumulation of triacylglycerol and other lipids in both wild type potato and the previously generated high oil potato line 69. Particularly, a 16-fold enhancement of triacylglycerol production was observed in the mature transgenic tubers derived from the wild type potato, and a two-fold increase in triacylglycerol was observed in the high oil potato line 69, accounting for about 7% of tuber dry weight, which is the highest triacylglycerol accumulation ever reported in potato. In addition to the alterations of lipid content and fatty acid composition, sugar accumulation, starch content of the RNAi potato lines in both tuber and leaf tissues were also substantially changed, as well as the tuber starch properties. Microscopic analysis further revealed variation of lipid droplet distribution and starch granule morphology in the mature transgenic tubers compared to their parent lines. This study reflects that the carbon partitioning between lipid and starch in both leaves and non-photosynthetic tuber tissues, respectively, are highly orchestrated in potato, and it is promising to convert low-energy starch to storage lipids via genetic manipulation of the carbon metabolism pathways.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Vanhercke
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Pushkar Shrestha
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jixun Luo
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sehrish Akbar
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Christine Konik-Rose
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lauren Venugoban
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dawar Hussain
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lijun Tian
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Surinder Singh
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Zhongyi Li
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Qing Liu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| |
Collapse
|
48
|
Stochasticity in transcriptional expression of a negative regulator of Arabidopsis ABA network. 3 Biotech 2019; 9:15. [PMID: 30622853 DOI: 10.1007/s13205-018-1542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022] Open
Abstract
Stably heritable spatiotemporal co/over-expression of distinct transcriptional regulators across generations is a desired target as they signal traffic in the cell. Here, the stability and expression pattern of AtHB7 (Arabidopsis homeodomain-leucine zipper class I) cDNA was characterized in 220 random population of transformed tomato clones where no AtHB7 orthologous has been identified in to date. Integration of p35S::AtHB7 casette was tested by the amplification of the stretches (700/425 bp) in the target by NPT II/AtHB7 oligos. Transcriptional expression pattern for the amplicons of the specific transcripts in the leaf tissues of transformants were determined by qRT-PCR. Transgene copy number was negatively correlated with transgene expression level, yet a majority of transformants (78%) carried single-copy of transgene. About 1:3 of the lines containing two-copy inserts showed less transcript expression. Heterologous CaMV 35S promoter drove AtHB7, illuminated no penalty on transgene expression levels, stability or plant phenotype under drought stress. Integration and expression analysis of transcription factors is of great significance for reliable prediction of gene dosing/functions in plant genomes so as to sustain breeding under abiotic stress to guarantee food security.
Collapse
|
49
|
Suman J, Uhlik O, Viktorova J, Macek T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? FRONTIERS IN PLANT SCIENCE 2018; 9:1476. [PMID: 30459775 PMCID: PMC6232834 DOI: 10.3389/fpls.2018.01476] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/20/2018] [Indexed: 05/19/2023]
Abstract
Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | | | | | | |
Collapse
|
50
|
Progress in the genetic engineering of cereals to produce essential polyunsaturated fatty acids. J Biotechnol 2018; 284:115-122. [DOI: 10.1016/j.jbiotec.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
|