1
|
Xu J, PerezSanchez P, Sadravi S. Unlocking the full potential of plant cell-based production for valuable proteins: Challenges and innovative strategies. Biotechnol Adv 2025; 79:108526. [PMID: 39914685 PMCID: PMC11845290 DOI: 10.1016/j.biotechadv.2025.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Plant cell-based bioproduction systems offer a promising platform for the sustainable production of valuable proteins as they provide distinctive advantages over mammalian cell culture and whole plant cultivation. However, significant technical challenges remain, including low productivity, altered efficacy of plant-derived proteins, along with issues in culture process development, such as cell clumping, genetic instability, and difficulties with cryopreservation. To date, the full production potential of this platform remains largely untapped. This review addresses these critical challenges and proposes innovative strategies to unlock the full potential of the production platform. Rather than simply revisiting past advancements or summarizing current progress, it proposes forward-thinking solutions with a particular emphasis on cellular engineering. Key strategies include designing novel protein partners to enhance recombinant protein accumulation and functionality, employing precise gene integration techniques in genome to enhance transgene transcription, implementing cutting-edge methods for screening and maintaining elite cell lines to mitigate genetic instability, and leveraging genome editing tools for cellular engineering to develop new plant cell lines optimized for bioproduction. A key focus is on cell wall engineering to develop cellulose- or pectin-deficient cell lines, facilitating modifications to the morphology of existing plant cell lines. By exploring these innovative approaches, this review aims to foster innovative thinking and inspire future research in plant cell-based bioproduction.
Collapse
Affiliation(s)
- Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Shekoofeh Sadravi
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
2
|
Shin J, Oh S, Jang M, Lee S, Min C, Eu Y, Begum H, Kim J, Lee GR, Oh H, Paul MJ, Ma JK, Gwak H, Youn H, Kim S. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3068-3081. [PMID: 39016470 PMCID: PMC11500988 DOI: 10.1111/pbi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.
Collapse
Affiliation(s)
- Jun‐Hye Shin
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| | - Sera Oh
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | | | - Seok‐Yong Lee
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Chanhong Min
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | | | - Hilal Begum
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Jong‐Chan Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Gap Ryol Lee
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Han‐Bin Oh
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Matthew J. Paul
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K.‐C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Ho‐Shin Gwak
- National Cancer Center KoreaGoyang‐si, Kyunggi‐doSouth Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Ryong Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| |
Collapse
|
3
|
Jung JW, Kim SR. β1,3-galactosyltransferase on chromosome 6 is essential for the formation of Lewis a structure on N-glycan in Oryza sativa. Transgenic Res 2023; 32:487-496. [PMID: 37540410 DOI: 10.1007/s11248-023-00360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
β1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis a structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of β1,3-galactose and α1,4-fucose by individual β1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis a antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing β1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis a epitope formation.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
- PhytoMab Co., 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea.
- PhytoMab Co., 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
4
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
van der Kaaij A, van Noort K, Nibbering P, Wilbers RHP, Schots A. Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:882835. [PMID: 35574113 PMCID: PMC9100689 DOI: 10.3389/fpls.2022.882835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Glycoproteins are the dominant category among approved biopharmaceuticals, indicating their importance as therapeutic proteins. Glycoproteins are decorated with carbohydrate structures (or glycans) in a process called glycosylation. Glycosylation is a post-translational modification that is present in all kingdoms of life, albeit with differences in core modifications, terminal glycan structures, and incorporation of different sugar residues. Glycans play pivotal roles in many biological processes and can impact the efficacy of therapeutic glycoproteins. The majority of biopharmaceuticals are based on human glycoproteins, but non-human glycoproteins, originating from for instance parasitic worms (helminths), form an untapped pool of potential therapeutics for immune-related diseases and vaccine candidates. The production of sufficient quantities of correctly glycosylated putative therapeutic helminth proteins is often challenging and requires extensive engineering of the glycosylation pathway. Therefore, a flexible glycoprotein production system is required that allows straightforward introduction of heterologous glycosylation machinery composed of glycosyltransferases and glycosidases to obtain desired glycan structures. The glycome of plants creates an ideal starting point for N- and O-glyco-engineering of helminth glycans. Plants are also tolerant toward the introduction of heterologous glycosylation enzymes as well as the obtained glycans. Thus, a potent production platform emerges that enables the production of recombinant helminth proteins with unusual glycans. In this review, we discuss recent advances in plant glyco-engineering of potentially therapeutic helminth glycoproteins, challenges and their future prospects.
Collapse
|
6
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
7
|
Bohlender LL, Parsons J, Hoernstein SNW, Bangert N, Rodríguez-Jahnke F, Reski R, Decker EL. Unexpected Arabinosylation after Humanization of Plant Protein N-Glycosylation. Front Bioeng Biotechnol 2022; 10:838365. [PMID: 35252146 PMCID: PMC8894861 DOI: 10.3389/fbioe.2022.838365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 02/03/2023] Open
Abstract
As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g., on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Nina Bangert
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez-Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
8
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
9
|
Karki U, Fang H, Guo W, Unnold-Cofre C, Xu J. Cellular engineering of plant cells for improved therapeutic protein production. PLANT CELL REPORTS 2021; 40:1087-1099. [PMID: 33837823 PMCID: PMC8035600 DOI: 10.1007/s00299-021-02693-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
In vitro cultured plant cells, in particular the tobacco BY-2 cell, have demonstrated their potential to provide a promising bioproduction platform for therapeutic proteins by integrating the merits of whole-plant cultivation systems with those of microbial and mammalian cell cultures. Over the past three decades, substantial progress has been made in improving the plant cell culture system, resulting in a few commercial success cases, such as taliglucerase alfa (Elelyso®), the first FDA-approved recombinant pharmaceutical protein derived from plant cells. However, compared to the major expression hosts (bacteria, yeast, and mammalian cells), plant cells are still largely underutilized, mainly due to low productivity and non-human glycosylation. Modern molecular biology tools, in particular RNAi and the latest genome editing technology CRISPR/Cas9, have been used to modulate the genome of plant cells to create new cell lines that exhibit desired "traits" for producing therapeutic proteins. This review highlights the recent advances in cellular engineering of plant cells towards improved recombinant protein production, including creating cell lines with deficient protease levels or humanized glycosylation, and considers potential development in the future.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Hong Fang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Wenzheng Guo
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Carmela Unnold-Cofre
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
10
|
Jung JW, Shin JH, Lee WK, Begum H, Min CH, Jang MH, Oh HB, Yang MS, Kim SR. Inactivation of the β (1, 2)-xylosyltransferase and the α (1, 3)-fucosyltransferase gene in rice (Oryza sativa) by multiplex CRISPR/Cas9 strategy. PLANT CELL REPORTS 2021; 40:1025-1035. [PMID: 33547931 DOI: 10.1007/s00299-021-02667-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE CRISPR/Cas9-mediated OsXylT and OsFucT mutation caused the elimination of plant-specific β1,2-xylose and α1,3-fucose residues on glycoproteins in rice, which is the first report of OsXylT/OsFucT double KO mutation in rice. N-glycosylation pathway is the one of post-translational mechanism and is known as highly conserved in eukaryotes. However, the process for complex-N-glycan modification is different between mammals and plants. In plant-specific manner, β1,2-xylose and α1,3-fucose residues are transferred to N-glycan core structure on glycoproteins by β1,2-xylosyltransferase (β1,2-XylT) and α1,3-fucosyltransferase (α1,3-FucT), respectively. As an effort to use plants as a platform to produce biopharmaceuticals, the plant-specific N-glycan genes of rice (Oryza sativa), β1,2-xylT (OsXylT) and α1,3-FucT (OsFucT), were knocked out using multiplex CRISPR/Cas9 technology. The double knock-out lines were found to have frameshift mutations by INDELs. Both β1,2-xylose and α1,3-fucose residues in the lines were not detected in Western blot analysis. Consistently, there was no peak corresponding to the N-glycans in MALDI-TOF/MS analysis. Although α1,3-fucose and β1,2-xylose residues were not detected in the line, other plant-specific residues of β1,3-galactose and α1,4-fucose were detected. Thus, we suggest that each enzymes working on the process for complex N-glycan biosynthesis might independently act in rice, hence the double knock-out of both OsXylT and OsFucT might be not enough to humanize N-glycan structure in rice.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Republic of Korea
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
- PhytoMab Co., Seoul, Republic of Korea
| | - Won-Kyung Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Hilal Begum
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Chan-Hong Min
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Mi-Hwa Jang
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Han-Bin Oh
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Macharoen K, Li Q, Márquez-Escobar VA, Corbin JM, Lebrilla CB, Nandi S, McDonald KA. Effects of Kifunensine on Production and N-Glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor. Int J Mol Sci 2020; 21:ijms21186896. [PMID: 32962231 PMCID: PMC7555773 DOI: 10.3390/ijms21186896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar-rich medium (NB+S) and adding fresh sugar-free (NB-S) medium to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X-concentrated sugar-free medium together with an 80% reduced working volume during the media exchange led to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which was 1.5-times higher than our previous bioreactor runs using normal sugar-free (NB-S) media with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 following induction. Coomassie-stained SDS-PAGE gel and Western blot analyses revealed different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which was attributed to different N-glycoforms. N-Glycosylation analysis showed substantially increased oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, the mass-transfer limitation of kifunensine was likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.
Collapse
Affiliation(s)
- Kantharakorn Macharoen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Veronica A. Márquez-Escobar
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Jasmine M. Corbin
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
12
|
Lucas PL, Mathieu-Rivet E, Song PCT, Oltmanns A, Loutelier-Bourhis C, Plasson C, Afonso C, Hippler M, Lerouge P, Mati-Baouche N, Bardor M. Multiple xylosyltransferases heterogeneously xylosylate protein N-linked glycans in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:230-245. [PMID: 31777161 DOI: 10.1111/tpj.14620] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
Nowadays, little information is available regarding the N-glycosylation pathway in the green microalga Chlamydomonas reinhardtii. Recent investigation demonstrated that C. reinhardtii synthesizes linear oligomannosides. Maturation of these oligomannosides results in N-glycans that are partially methylated and carry one or two xylose residues. One xylose residue was demonstrated to be a core β(1,2)-xylose. Recently, N-glycoproteomic analysis performed on glycoproteins secreted by C. reinhardtii demonstrated that the xylosyltransferase A (XTA) was responsible for the addition of the core β(1,2)-xylose. Furthermore, another xylosyltransferase candidate named XTB was suggested to be involved in the xylosylation in C. reinhardtii. In the present study, we focus especially on the characterization of the structures of the xylosylated N-glycans from C. reinhardtii taking advantage of insertional mutants of XTA and XTB, and of the XTA/XTB double-mutant. The combination of mass spectrometry approaches allowed us to identify the major N-glycan structures bearing one or two xylose residues. They confirm that XTA is responsible for the addition of the core β(1,2)-xylose, whereas XTB is involved in the addition of the xylose residue onto the linear branch of the N-glycan as well as in the partial addition of the core β(1,2)-xylose suggesting that this transferase exhibits a low substrate specificity. Analysis of the double-mutant suggests that an additional xylosyltransferase is involved in the xylosylation process in C. reinhardtii. Additional putative candidates have been identified in the C. reinhardtii genome. Altogether, these results pave the way for a better understanding of the C. reinhardtii N-glycosylation pathway.
Collapse
Affiliation(s)
- Pierre-Louis Lucas
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Elodie Mathieu-Rivet
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Philippe C T Song
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, Plate-Forme de Protéomique PISSARO, Rouen, France
| | - Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, Rouen, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Narimane Mati-Baouche
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, Normandie University, UNIROUEN, Rouen, France
- Normandie University, UNIROUEN, SFR NORVEGE, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
13
|
Bohlender LL, Parsons J, Hoernstein SNW, Rempfer C, Ruiz-Molina N, Lorenz T, Rodríguez Jahnke F, Figl R, Fode B, Altmann F, Reski R, Decker EL. Stable Protein Sialylation in Physcomitrella. FRONTIERS IN PLANT SCIENCE 2020; 11:610032. [PMID: 33391325 PMCID: PMC7775405 DOI: 10.3389/fpls.2020.610032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 05/07/2023]
Abstract
Recombinantly produced proteins are indispensable tools for medical applications. Since the majority of them are glycoproteins, their N-glycosylation profiles are major determinants for their activity, structural properties and safety. For therapeutical applications, a glycosylation pattern adapted to product and treatment requirements is advantageous. Physcomitrium patens (Physcomitrella, moss) is able to perform highly homogeneous complex-type N-glycosylation. Additionally, it has been glyco-engineered to eliminate plant-specific sugar residues by knock-out of the β1,2-xylosyltransferase and α1,3-fucosyltransferase genes (Δxt/ft). Furthermore, Physcomitrella meets wide-ranging biopharmaceutical requirements such as GMP compliance, product safety, scalability and outstanding possibilities for precise genome engineering. However, all plants, in contrast to mammals, lack the capability to perform N-glycan sialylation. Since sialic acids are a common terminal modification on human N-glycans, the property to perform N-glycan sialylation is highly desired within the plant-based biopharmaceutical sector. In this study, we present the successful achievement of protein N-glycan sialylation in stably transformed Physcomitrella. The sialylation ability was achieved in a Δxt/ft moss line by stable expression of seven mammalian coding sequences combined with targeted organelle-specific localization of the encoded enzymes responsible for the generation of β1,4-galactosylated acceptor N-glycans as well as the synthesis, activation, transport and transfer of sialic acid. Production of free (Neu5Ac) and activated (CMP-Neu5Ac) sialic acid was proven. The glycosidic anchor for the attachment of terminal sialic acid was generated by the introduction of a chimeric human β1,4-galactosyltransferase gene under the simultaneous knock-out of the gene encoding the endogenous β1,3-galactosyltransferase. Functional complex-type N-glycan sialylation was confirmed via mass spectrometric analysis of a stably co-expressed recombinant human protein.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Rudolf Figl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
14
|
Inhibition of Autolysosome Formation Improves rrhGAA Production Driven by RAmy3D Promoter in Transgenic Rice Cell Culture. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Montero-Morales L, Steinkellner H. Advanced Plant-Based Glycan Engineering. Front Bioeng Biotechnol 2018; 6:81. [PMID: 29963553 PMCID: PMC6010556 DOI: 10.3389/fbioe.2018.00081] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
With respect to biomanufacturing, glycosylation is one of the most addressed post-translational modifications, since it is well-known that the attachment of sugar residues efficiently affects protein homogeneity and functionality. Much effort has been taken into engineering various expression systems to control glycosylation and to generate molecules with targeted sugar profiles. Nevertheless, engineering of N- and O-linked glycans on well-established expression systems remains challenging. On the one side the glycosylation machinery in mammalian cells is hard to control due to its complexity. Most bacteria, on the other side, completely lack such glycan formations, and in general exhibit fundamental differences in their glycosylation abilities. Beyond that, plants generate complex N-glycans typical of higher eukaryotes, but simpler than those produced by mammals. Paradoxically, it seems that the limited glycosylation capacity of plant cells is an advantage for specific glycan manipulations. This review focuses on recent achievements in plant glycan engineering and provides a short outlook on how new developments (in synthetic biology) might have a positive impact.
Collapse
Affiliation(s)
- Laura Montero-Morales
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Rozov SM, Permyakova NV, Deineko EV. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:215-232. [PMID: 29625542 DOI: 10.1134/s0006297918030033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.
Collapse
Affiliation(s)
- S M Rozov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
17
|
Abiri N, Pang J, Ou J, Shi B, Wang X, Zhang S, Sun Y, Yang D. Assessment of the immunogenicity of residual host cell protein impurities of OsrHSA. PLoS One 2018. [PMID: 29513721 PMCID: PMC5841786 DOI: 10.1371/journal.pone.0193339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in human plasma and is widely used at high doses for treating various diseases. Recombinant HSA is an alternative approach to plasma-derived HSA, providing increased safety and an unlimited supply. However, the safety of the residual host cell proteins (HCPs) co-purified with Oryza sativa HSA (OsrHSA) remains to be determined. An animal system was used to assess the immunogenicity of OsrHSA and its residual HCPs. Low immunogenicity and immunotoxicity of the residual HCPs at a dose of 25 μg/kg, equivalent to 25 times the clinical dosage of HSA, were observed. An anti-drug-antibody (ADA) analysis revealed that anti-HSA, anti-OsrHSA or anti-HCP antibodies developed with a low frequency in pHSA and OsrHSA treatments, but the titers were as low as 1.0–2.0. Furthermore, the titer and the incidence of the specific antibodies were not significantly different between the pHSA and OsrHSA groups, indicating that OsrHSA presents similar immunogenicity to that of pHSA. More importantly, no cytokines were stimulated after the administration of OsrHSA and the residual HCPs, suggesting that there was no risk of a cytokine storm. These results demonstrated that the residual HCPs from OsrHSA have low immunogenicity, indicating that the rice endosperm is one of the best hosts for plant molecular pharming.
Collapse
Affiliation(s)
- Naghmeh Abiri
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianlei Pang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiquan Ou
- Healthgen Biotechnology Co. Ltd., Wuhan, China
| | - Bo Shi
- Healthgen Biotechnology Co. Ltd., Wuhan, China
| | - Xianghong Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Yunxia Sun
- JOINN Laboratories, Inc., Beijing, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
18
|
Corbin JM, Kailemia MJ, Cadieux CL, Alkanaimsh S, Karuppanan K, Rodriguez RL, Lebrilla CB, Cerasoli DM, McDonald KA, Nandi S. Purification, characterization, and N-glycosylation of recombinant butyrylcholinesterase from transgenic rice cell suspension cultures. Biotechnol Bioeng 2018; 115:1301-1310. [PMID: 29411865 DOI: 10.1002/bit.26557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/07/2018] [Accepted: 01/29/2018] [Indexed: 11/05/2022]
Abstract
Recombinant butyrylcholinesterase produced in a metabolically regulated transgenic rice cell culture (rrBChE) was purified to produce a highly pure (95%), active form of enzyme. The developed downstream process uses common manufacturing friendly operations including tangential flow filtration, anion-exchange chromatography, and affinity chromatography to obtain a process recovery of 42% active rrBChE. The purified rrBChE was then characterized to confirm its comparability to the native human form of the molecule (hBChE). The recombinant and native enzyme demonstrated comparable enzymatic behavior and had an identical amino acid sequence. However, rrBChE differs in that it contains plant-type complex N-glycans, including an α-1,3 linked core fucose, and a β-1,2 xylose, and lacking a terminal sialic acid. Despite this difference, rrBChE is demonstrated to be an effective stoichiometric bioscavenger for five different organophosphorous nerve agents in vitro. Together, the efficient downstream processing scheme and functionality of rrBChE confirm its promise as a cost-effective alternative to hBChE for prophylactic and therapeutic use.
Collapse
Affiliation(s)
- Jasmine M Corbin
- Department of Chemical Engineering, University of California, Davis, California
| | | | - C Linn Cadieux
- Medical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Salem Alkanaimsh
- Department of Chemical Engineering, University of California, Davis, California.,Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait
| | | | - Raymond L Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| | | | - Douglas M Cerasoli
- Medical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| |
Collapse
|
19
|
Glyco-Engineering of Plant-Based Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:137-166. [PMID: 30069741 DOI: 10.1007/10_2018_76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.
Collapse
|
20
|
Jung JW, Huy NX, Kim HB, Kim NS, Van Giap D, Yang MS. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol 2017; 249:42-50. [PMID: 28363873 DOI: 10.1016/j.jbiotec.2017.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Lysosomal storage diseases are a group of inherited metabolic disorders. Patients are treated with enzyme replacement therapy (ERT), in which the replacement enzymes are required to carry terminal mannose or mannose 6-phosphate residues to allow efficient uptake into target cells and tissues. N-acetylglucosaminyltransferase-I (GnTI) mediates N-glycosylation in the cis cisternae of the Golgi apparatus by adding N-acetylglucosamine to the exposed terminal mannose residue of core N-glycan structures for further processing. Mutant rice lacking GnTI produces only high mannosylated glycoproteins. In this study, we introduced a gene encoding recombinant human acid α-glucosidase (rhGAA), which is used in ERT for Pompe disease, into gnt1 rice callus by particle bombardment. Integration of the target gene into the genome of the gnt1 rice line and its mRNA expression were confirmed by PCR and Northern blot, respectively. Western blot analysis was performed to confirm secretion of the target proteins into the culture media. Using an indirect enzyme linked immunosorbent assay, we determined the maximum expression of rhGAA to be approximately 45mg/L, 13days after induction. To assay the enzymatic activity and determine the N-glycan profile of rhGAA, we purified the protein using a 6×histidine tag. The in vitro α-glucosidase activity of rhGAA from gnt1 rice callus (gnt1-GAA) was 3.092U/mg, similar to the activity of the Chinese hamster ovary cell-derived GAA (3.154U/mg). N-glycan analysis revealed the presence of high-mannose N-glycans on gnt1-GAA. In addition, the production of high-mannose GAA using gnt1 rice calli as an expression host was characterized, which may aid the future development of therapeutic enzymes for the treatment of Pompe disease.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Biology Department, Hue University of Education, 34 Le Loi, Hue, Viet Nam
| | - Hyo-Boon Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Do Van Giap
- Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Research Center of Bioactive Materials, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
21
|
Mercx S, Smargiasso N, Chaumont F, De Pauw E, Boutry M, Navarre C. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans. FRONTIERS IN PLANT SCIENCE 2017; 8:403. [PMID: 28396675 PMCID: PMC5366340 DOI: 10.3389/fpls.2017.00403] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/09/2017] [Indexed: 05/19/2023]
Abstract
Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker (bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.
Collapse
Affiliation(s)
- Sébastien Mercx
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Molecular Systems Research Unit, Université de LiègeLiège, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Molecular Systems Research Unit, Université de LiègeLiège, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
- *Correspondence: Marc Boutry,
| | - Catherine Navarre
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Wang X, Jiang D, Shi J, Yang D. Expression of α-1,6-fucosyltransferase (FUT8) in rice grain and immunogenicity evaluation of plant-specific glycans. J Biotechnol 2016; 242:111-121. [PMID: 28013072 DOI: 10.1016/j.jbiotec.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Rice seed is a cost-effective bioreactor for the large-scale production of pharmaceuticals. However, convincing evidence of the immunogenicity of plant-specific glycans is still limited although plant-specific glycans are considered potential allergic antigens. In the present study, we found that the α-1,3-fucose content of the glycoprotein produced from rice seed was much lower than that in leaf, and conversely, a higher β-1,2-xylose content was detected in seed than that in leaf. We detected the α-1,6-fucose content in the glutelin and recombinant human α1-antitrypsin (OsrAAT). The further results in a line containing AAT and FUT8 genes indicated that the α-1,6-fucose content of modified glycosylated recombinant α1-antitrypsin (mgOsrAAT) was 38.4%, while glutelin was only 6.8%. Interestingly, the α-1,3-fucose content of mgOsrAAT was significantly reduced by 59.8% compared with that of OsrAAT. Furthermore, we assessed the immunogenicity of OsrAAT, mgOsrAAT and human α1-antitrypsin (hAAT) using an animal system. The PCA results indicated no significant differences in the IgG, IgM and IgE titers among OsrAAT, mgOsrAAT and hAAT. Further studies revealed that those antibodies were mainly from α-1,3-fucose, but not from β-1,2-xylose, indicating that α-1,3-fucose was the major immunogenic resource. Our results demonstrated that α-1,3-fucose contents in seed proteins was much less than that of leaf, and could not be a plant-specific glycan because it also exists in human proteins.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daiming Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jingni Shi
- Healthgen Biotechnology Corp., Gaoxin Avenue, Wuhan 430074, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A. Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol 2016; 33:4. [DOI: 10.1007/s11274-016-2172-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/04/2016] [Indexed: 01/27/2023]
|
24
|
Kim J, Park H, Park BT, Hwang HS, Kim JI, Kim DK, Kim HH. O-glycans and O-glycosylation sites of recombinant human GM-CSF derived from suspension-cultured rice cells, and their structural role. Biochem Biophys Res Commun 2016; 479:266-271. [DOI: 10.1016/j.bbrc.2016.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/14/2023]
|
25
|
Production and characterization of recombinant human acid α-glucosidase in transgenic rice cell suspension culture. J Biotechnol 2016; 226:44-53. [DOI: 10.1016/j.jbiotec.2016.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
|
26
|
Burlakovskiy MS, Yemelyanov VV, Lutova LA. Plant Based Bioreactors of Recombinant Cytokines (Review). APPL BIOCHEM MICRO+ 2016; 52:121-137. [PMID: 32214409 PMCID: PMC7087682 DOI: 10.1134/s0003683816020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/16/2023]
Abstract
Cytokines are a family of signaling polypeptides involved in intercellular interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants.
Collapse
Affiliation(s)
- M. S. Burlakovskiy
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - V. V. Yemelyanov
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - L. A. Lutova
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
27
|
Santos RB, Abranches R, Fischer R, Sack M, Holland T. Putting the Spotlight Back on Plant Suspension Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:297. [PMID: 27014320 PMCID: PMC4786539 DOI: 10.3389/fpls.2016.00297] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/25/2016] [Indexed: 05/05/2023]
Abstract
Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)-the first licensed recombinant pharmaceutical protein derived from plants-is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon.
Collapse
Affiliation(s)
- Rita B. Santos
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rainer Fischer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Markus Sack
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Tanja Holland
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- *Correspondence: Tanja Holland
| |
Collapse
|
28
|
Abstract
Plants are being developed as a cost-effective production system for biopharmaceuticals in large quantities. Although plants properly fold and assemble complex proteins from human origin, one issue that needs to be addressed is their glycan structure. In the past years we have been witnessing outstanding results in targeted manipulation of the plant N-glycosylation pathway allowing recombinant proteins to be produced with human-type oligosaccharides at large homogeneity. This opens new possibility in manufacturing next-generation biopharmaceuticals.This review presents a variety of technologies and strategies that are being employed to engineer the plant N-glycosylation, thus pointing to the enormous potential of plants being used as a novel production system with unique features and possibilities.
Collapse
|
29
|
Kim NS, Yu HY, Chung ND, Kwon TH, Yang MS. High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system. Enzyme Microb Technol 2014; 63:21-7. [DOI: 10.1016/j.enzmictec.2014.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
|
30
|
Kim TG, Kim MY, Tien NQD, Huy NX, Yang MS. Dengue Virus E Glycoprotein Production in Transgenic Rice Callus. Mol Biotechnol 2014; 56:1069-78. [DOI: 10.1007/s12033-014-9787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Loos A, Steinkellner H. Plant glyco-biotechnology on the way to synthetic biology. FRONTIERS IN PLANT SCIENCE 2014; 5:523. [PMID: 25339965 PMCID: PMC4189330 DOI: 10.3389/fpls.2014.00523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/16/2014] [Indexed: 05/04/2023]
Abstract
Plants are increasingly being used for the production of recombinant proteins. One reason is that plants are highly amenable to glycan engineering processes and allow the production of therapeutic proteins with increased efficacies due to optimized glycosylation profiles. Removal and insertion of glycosylation reactions by knock-out/knock-down approaches and introduction of glycosylation enzymes have paved the way for the humanization of the plant glycosylation pathway. The insertion of heterologous enzymes at exactly the right stage of the existing glycosylation pathway has turned out to be of utmost importance. To enable such precise targeting chimeric enzymes have been constructed. In this short review we will exemplify the importance of correct targeting of glycosyltransferases, we will give an overview of the targeting mechanism of glycosyltransferases, describe chimeric enzymes used in plant N-glycosylation engineering and illustrate how plant glycoengineering builds on the tools offered by synthetic biology to construct such chimeric enzymes.
Collapse
Affiliation(s)
| | - Herta Steinkellner
- *Correspondence: Herta Steinkellner, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
32
|
Strasser R. Biological significance of complex N-glycans in plants and their impact on plant physiology. FRONTIERS IN PLANT SCIENCE 2014; 5:363. [PMID: 25101107 PMCID: PMC4105690 DOI: 10.3389/fpls.2014.00363] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/08/2014] [Indexed: 05/18/2023]
Abstract
Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.
Collapse
Affiliation(s)
- Richard Strasser
- *Correspondence: Richard Strasser, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
33
|
Stoger E, Fischer R, Moloney M, Ma JKC. Plant molecular pharming for the treatment of chronic and infectious diseases. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:743-68. [PMID: 24579993 DOI: 10.1146/annurev-arplant-050213-035850] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant molecular pharming has emerged as a niche technology for the manufacture of pharmaceutical products indicated for chronic and infectious diseases, particularly for products that do not fit into the current industry-favored model of fermenter-based production campaigns. In this review, we explore the areas where molecular pharming can make the greatest impact, including the production of pharmaceuticals that have novel glycan structures or that cannot be produced efficiently in microbes or mammalian cells because they are insoluble or toxic. We also explore the market dynamics that encourage the use of molecular pharming, particularly for pharmaceuticals that are required in small amounts (such as personalized medicines) or large amounts (on a multi-ton scale, such as blood products and microbicides) and those that are needed in response to emergency situations (pandemics and bioterrorism). The impact of molecular pharming will increase as the platforms become standardized and optimized through adoption of good manufacturing practice (GMP) standards for clinical development, offering a new opportunity to produce inexpensive medicines in regional markets that are typically excluded under current business models.
Collapse
Affiliation(s)
- Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | | | | | | |
Collapse
|
34
|
Strasser R. Engineering of human-type O-glycosylation in Nicotiana benthamiana plants. Bioengineered 2013; 4:191-6. [PMID: 23147167 PMCID: PMC3728188 DOI: 10.4161/bioe.22857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 12/15/2022] Open
Abstract
Therapeutic properties of recombinant proteins are very often affected by the composition and heterogeneity of their glycans. Conventional expression systems for recombinant pharmaceutical proteins typically do not address this problem and produce a mixture of glycoforms that are neither identical to human glycans nor optimized for enhanced efficacy. In terms of glycosylation, plants offer certain advantages over mammalian cells as the N-glycosylation pathway of plants is comparably simple and a typical mammalian O-glycosylation pathway is not present at all. During the last ten years we have developed a plant-based expression platform for the generation of recombinant glycoproteins with defined N-glycans. Now we have extended our tool-box for glyco-engineering in the tobacco related species Nicotiana benthamiana toward the production of tailored mucin-type O-glycans on recombinant proteins.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
35
|
Kuo YC, Tan CC, Ku JT, Hsu WC, Su SC, Lu CA, Huang LF. Improving pharmaceutical protein production in Oryza sativa. Int J Mol Sci 2013; 14:8719-39. [PMID: 23615467 PMCID: PMC3676753 DOI: 10.3390/ijms14058719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed.
Collapse
Affiliation(s)
- Yu-Chieh Kuo
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Jung-Ting Ku
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Wei-Cho Hsu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Sung-Chieh Su
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| |
Collapse
|
36
|
Castilho A, Steinkellner H. Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 2012; 7:1088-98. [PMID: 22890723 DOI: 10.1002/biot.201200032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/20/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023]
Abstract
It is now possible to produce complex human proteins, largely correctly folded and N-glycosylated, in plants. Much effort has been invested in engineering expression technologies to develop products with superior characteristics. The results have begun to show success in controlling important posttranslational modifications such as N-glycosylation. With the emerging data increasingly indicating the significance of proper N-glycosylation for the efficacy of a drug, glyco-engineering has become an important issue not only for academia but also for the biopharmaceutical industry. Plants have demonstrated a high degree of tolerance to changes in the N-glycosylation pathway, allowing recombinant proteins to be modified into human-like structures in a specific and controlled manner. Frequently the results are a largely homogeneously glycosylated product, currently unrivalled by that of any other expression platforms. This review provides a comprehensive analysis of recent advances in plant N-glyco-engineering in the context of the expression of therapeutically relevant proteins, highlighting both the challenges and successes in the application of such powerful technologies.
Collapse
Affiliation(s)
- Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|