1
|
Liu B, Alexopoulou ZS, van Ede F. Attentional shifts bias microsaccade direction but do not cause new microsaccades. COMMUNICATIONS PSYCHOLOGY 2024; 2:97. [PMID: 39438653 PMCID: PMC11496105 DOI: 10.1038/s44271-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Brain circuitry that controls where we look also contributes to attentional selection of visual contents outside current fixation, or content within the spatial layout of working memory. A behavioural manifestation of this contribution comes from modulations in microsaccade direction that accompany spatial attention shifts. Here, we address whether such modulations come about because attention shifts trigger new microsaccades or whether, instead, spatial attention only biases the direction of ongoing microsaccades that would have been made whether or not attention was also shifted. We utilised an internal-selective-attention task that has recently been shown to yield robust spatial microsaccade modulations and compared microsaccade rates following colour retrocues that were carefully matched for sensory input, but differed in whether they invited an attention shift or not. If attention shifts trigger new microsaccades then we would expect more microsaccades following attention-directing cues than following neutral cues. In contrast, we found no evidence for an increase in overall microsaccade rate, despite robust modulations in microsaccade direction. This implies that shifting spatial attention biases the direction of ongoing microsaccades without changing the probability of microsaccade occurrence. These findings help to explain why microsaccades and visual-spatial shifts of attention are often correlated but not obligatorily linked.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Zampeta-Sofia Alexopoulou
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? J Vis 2024; 24:11. [PMID: 38869372 PMCID: PMC11178122 DOI: 10.1167/jov.24.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Carrasco Lab, New York University, New York, NY, USA
| |
Collapse
|
3
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575288. [PMID: 38260406 PMCID: PMC10802594 DOI: 10.1101/2024.01.11.575288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microsaccades-tiny fixational eye movements- improve discriminability in high acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at perifovea, we examined MS characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: Horizontal-Vertical Anisotropy (better discrimination along the horizontal than vertical meridian), and Vertical Meridian Asymmetry (better discrimination along the lower- than upper-vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, USA
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
4
|
de Vries E, van Ede F. Microsaccades Track Location-Based Object Rehearsal in Visual Working Memory. eNeuro 2024; 11:ENEURO.0276-23.2023. [PMID: 38176905 PMCID: PMC10849020 DOI: 10.1523/eneuro.0276-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
Besides controlling eye movements, the brain's oculomotor system has been implicated in the control of covert spatial attention and the rehearsal of spatial information in working memory. We investigated whether the oculomotor system also contributes to rehearsing visual objects in working memory when object location is never asked about. To address this, we tracked the incidental use of locations for mnemonic rehearsal via directional biases in microsaccades while participants maintained two visual objects (colored oriented gratings) in working memory. By varying the stimulus configuration (horizontal, diagonal, and vertical) at encoding, we could quantify whether microsaccades were more aligned with the configurational axis of the memory contents, as opposed to the orthogonal axis. Experiment 1 revealed that microsaccades continued to be biased along the axis of the memory content several seconds into the working memory delay. In Experiment 2, we confirmed that this directional microsaccade bias was specific to memory demands, ruling out lingering effects from passive and attentive encoding of the same visual objects in the same configurations. Thus, by studying microsaccade directions, we uncover oculomotor-driven rehearsal of visual objects in working memory through their associated locations.
Collapse
Affiliation(s)
- Eelke de Vries
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Freek van Ede
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
5
|
Marini M, Sapienza A, Paglieri F. There is more to attraction than meets the eye: Studying decoy‐induced attention allocation without eye tracking. JOURNAL OF BEHAVIORAL DECISION MAKING 2022. [DOI: 10.1002/bdm.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Marini
- Institute of Cognitive Sciences and Technologies National Research Council Rome Italy
- Department of Psychology Sapienza University of Rome Rome Italy
| | - Alessandro Sapienza
- Institute of Cognitive Sciences and Technologies National Research Council Rome Italy
| | - Fabio Paglieri
- Institute of Cognitive Sciences and Technologies National Research Council Rome Italy
| |
Collapse
|
6
|
Liu B, Nobre AC, van Ede F. Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nat Commun 2022; 13:3503. [PMID: 35715471 PMCID: PMC9205986 DOI: 10.1038/s41467-022-31217-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Covert spatial attention is associated with spatial modulation of neural activity as well as with directional biases in fixational eye movements known as microsaccades. We studied how these two 'fingerprints' of attention are interrelated in humans. We investigated spatial modulation of 8-12 Hz EEG alpha activity and microsaccades when attention is directed internally within the spatial layout of visual working memory. Consistent with a common origin, spatial modulations of alpha activity and microsaccades co-vary: alpha lateralisation is stronger in trials with microsaccades toward versus away from the memorised location of the to-be-attended item and occurs earlier in trials with earlier microsaccades toward this item. Critically, however, trials without attention-driven microsaccades nevertheless show clear spatial modulation of alpha activity - comparable to trials with attention-driven microsaccades. Thus, directional biases in microsaccades correlate with neural signatures of spatial attention, but they are not necessary for neural modulation by spatial attention to be manifest.
Collapse
Affiliation(s)
- Baiwei Liu
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
The dynamics of microsaccade amplitude reflect shifting of covert attention. Conscious Cogn 2022; 101:103322. [PMID: 35395549 DOI: 10.1016/j.concog.2022.103322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Attention flexibly shifts between spatial locations to accommodate task demands. The present study examined if the dynamics of attentional shifting are seen in microsaccades whose direction has been shown to accompany the shifts of covert attention. In a spatial cueing task, the cue predicted the target location on 100%, 75%, or 50% of the trials. The results revealed that microsaccade rate and amplitude were both reduced following cue onset and then rebounded. Both microsaccade rate and amplitude were biased towards the opposite direction of the cue and then returned to the cued direction. Importantly, the cue validity modulated the temporal profile of microsaccade amplitude but had little impact on the temporal profile of microsaccade rate. In line with this, the cueing effect measured with target response accuracy was correlated with the microsaccade amplitude only. These results indicate that the temporal dynamics of microsaccade amplitude reflect shifting of covert attention.
Collapse
|
8
|
Attentional Orienting in Front and Rear Spaces in a Virtual Reality Discrimination Task. Vision (Basel) 2022; 6:vision6010003. [PMID: 35076635 PMCID: PMC8788563 DOI: 10.3390/vision6010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies on covert attention suggested that the visual processing of information in front of us is different, depending on whether the information is present in front of us or if it is a reflection of information behind us (mirror information). This difference in processing suggests that we have different processes for directing our attention to objects in front of us (front space) or behind us (rear space). In this study, we investigated the effects of attentional orienting in front and rear space consecutive of visual or auditory endogenous cues. Twenty-one participants performed a modified version of the Posner paradigm in virtual reality during a spaceship discrimination task. An eye tracker integrated into the virtual reality headset was used to make sure that the participants did not move their eyes and used their covert attention. The results show that informative cues produced faster response times than non-informative cues but no impact on target identification was observed. In addition, we observed faster response times when the target occurred in front space rather than in rear space. These results are consistent with an orienting cognitive process differentiation in the front and rear spaces. Several explanations are discussed. No effect was found on subjects’ eye movements, suggesting that participants did not use their overt attention to improve task performance.
Collapse
|
9
|
Chow A, Quan Y, Chui C, Itier RJ, Thompson B. Orienting of covert attention by neutral and emotional gaze cues appears to be unaffected by mild to moderate amblyopia. J Vis 2021; 21:5. [PMID: 34623398 PMCID: PMC8504194 DOI: 10.1167/jov.21.11.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amblyopia is a developmental disorder of vision associated with higher-order visual attention deficits. We explored whether amblyopia affects the orienting of covert spatial attention by measuring the magnitude of the gaze cueing effect from emotional faces. Gaze and emotion cues are key components of social attention. Participants with normal vision (n = 30), anisometropic (n = 7) or strabismic/mixed (n = 5) amblyopia performed a cued peripheral target detection task under monocular and binocular viewing conditions. The cue consisted of a centrally presented face with left or right gaze (50% validity to target location) and a fearful, happy, or neutral expression. The magnitude of spatial cueing was computed as the reaction time difference between congruent and incongruent trials for each expression. Fearful facial expressions oriented spatial attention significantly more than happy or neutral expressions. The magnitude of the gaze cueing effect in our cohort of mild-to-moderate amblyopia was comparable to that in normal vision and was not correlated with the severity of amblyopia. There were no statistical group or amblyopia subtype differences for reaction time in any viewing condition. These results place constraints on the range of attentional mechanisms affected by amblyopia and possibly suggest normal covert processing of emotional face stimuli in mild and moderate amblyopia.
Collapse
Affiliation(s)
- Amy Chow
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Yiwei Quan
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Celine Chui
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Roxane J Itier
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Eye and Vision Research, 17W Science Park, Hong Kong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Abstract
Eye trackers are sometimes used to study the miniature eye movements such as drift that occur while observers fixate a static location on a screen. Specifically, analysis of such eye-tracking data can be performed by examining the temporal spectrum composition of the recorded gaze position signal, allowing to assess its color. However, not only rotations of the eyeball but also filters in the eye tracker may affect the signal’s spectral color. Here, we therefore ask whether colored, as opposed to white, signal dynamics in eye-tracking recordings reflect fixational eye movements, or whether they are instead largely due to filters. We recorded gaze position data with five eye trackers from four pairs of human eyes performing fixation sequences, and also from artificial eyes. We examined the spectral color of the gaze position signals produced by the eye trackers, both with their filters switched on, and for unfiltered data. We found that while filtered data recorded from both human and artificial eyes were colored for all eye trackers, for most eye trackers the signal was white when examining both unfiltered human and unfiltered artificial eye data. These results suggest that color in the eye-movement recordings was due to filters for all eye trackers except the most precise eye tracker where it may partly reflect fixational eye movements. As such, researchers studying fixational eye movements should be careful to examine the properties of the filters in their eye tracker to ensure they are studying eyeball rotation and not filter properties.
Collapse
|
11
|
Exploring the temporal dynamics of inhibition of return using steady-state visual evoked potentials. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1349-1364. [PMID: 33236297 DOI: 10.3758/s13415-020-00846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 11/08/2022]
Abstract
Inhibition of return is characterized by delayed responses to previously attended locations when the interval between stimuli is long enough. The present study employed steady-state visual evoked potentials (SSVEPs) as a measure of attentional modulation to explore the nature and time course of input- and output-based inhibitory cueing mechanisms that each slow response times at previously stimulated locations under different experimental conditions. The neural effects of behavioral inhibition were examined by comparing post-cue SSVEPs between cued and uncued locations measured across two tasks that differed only in the response modality (saccadic or manual response to targets). Grand averages of SSVEP amplitudes for each condition showed a reduction in amplitude at cued locations in the window of 100-500 ms post-cue, revealing an early, short-term decrease in the responses of neurons that can be attributed to sensory adaptation, regardless of response modality. Because primary visual cortex has been found to be one of the major sources of SSVEP signals, the results suggest that the SSVEP modulations observed were caused by input-based inhibition that occurred in V1, or visual areas earlier than V1, as a consequence of reduced visual input activity at previously cued locations. No SSVEP modulations were observed in either response condition late in the cue-target interval, suggesting that neither late input- nor output-based IOR modulates SSVEPs. These findings provide further electrophysiological support for the theory of multiple mechanisms contributing to behavioral cueing effects.
Collapse
|
12
|
Xue C, Calapai A, Krumbiegel J, Treue S. Sustained spatial attention accounts for the direction bias of human microsaccades. Sci Rep 2020; 10:20604. [PMID: 33244086 PMCID: PMC7692503 DOI: 10.1038/s41598-020-77455-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Small ballistic eye movements, so called microsaccades, occur even while foveating an object. Previous studies using covert attention tasks have shown that shortly after a symbolic spatial cue, specifying a behaviorally relevant location, microsaccades tend to be directed toward the cued location. This suggests that microsaccades can serve as an index for the covert orientation of spatial attention. However, this hypothesis faces two major challenges: First, effects associated with visual spatial attention are hard to distinguish from those that associated with the contemplation of foveating a peripheral stimulus. Second, it is less clear whether endogenously sustained attention alone can bias microsaccade directions without a spatial cue on each trial. To address the first issue, we investigated the direction of microsaccades in human subjects while they attended to a behaviorally relevant location and prepared a response eye movement either toward or away from this location. We find that directions of microsaccades are biased toward the attended location rather than towards the saccade target. To tackle the second issue, we verbally indicated the location to attend before the start of each block of trials, to exclude potential visual cue-specific effects on microsaccades. Our results indicate that sustained spatial attention alone reliably produces the microsaccade direction effect. Overall, our findings demonstrate that sustained spatial attention alone, even in the absence of saccade planning or a spatial cue, is sufficient to explain the direction bias observed in microsaccades.
Collapse
Affiliation(s)
- Cheng Xue
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany.
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Antonino Calapai
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - Julius Krumbiegel
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
| |
Collapse
|
13
|
Kinjo H, Fooken J, Spering M. Do eye movements enhance visual memory retrieval? Vision Res 2020; 176:80-90. [PMID: 32827879 DOI: 10.1016/j.visres.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
When remembering an object at a given location, participants tend to return their gaze to that location even after the object has disappeared, known as Looking-at-Nothing (LAN). However, it is unclear whether LAN is associated with better memory performance. Previous studies reporting beneficial effects of LAN have often not systematically manipulated or assessed eye movements. We asked 20 participants to remember the location and identity of eight objects arranged in a circle, shown for 5 s. Participants were prompted to judge whether a location statement (e.g., "Star Right") was correct or incorrect, or referred to a previously unseen object. During memory retrieval, participants either fixated in the screen center or were free to move their eyes. Results reveal no difference in memory accuracy and response time between free-viewing and fixation while a LAN effect was found for saccades during free viewing, but not for microsaccades during fixation. Memory performance was better in those free-viewing trials in which participants made a saccade to the critical location, and scaled with saccade accuracy. These results indicate that saccade kinematics might be related to both memory performance and memory retrieval processes, but the strength of their link would differ between individuals and task demands.
Collapse
Affiliation(s)
- Hikari Kinjo
- Faculty of Psychology, Meiji Gakuin University, Tokyo, Japan; Dept Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Jolande Fooken
- Dept Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| | - Miriam Spering
- Dept Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Attentional bias towards negative stimuli in healthy individuals and the effects of trait anxiety. Sci Rep 2020; 10:11826. [PMID: 32678129 PMCID: PMC7367300 DOI: 10.1038/s41598-020-68490-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/24/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate the time course of attentional bias for negative information in healthy individuals and to assess the associated influence of trait anxiety. Thirty-eight healthy volunteers performed an emotional dot-probe task with pairs of negative and neutral scenes, presented for either 1 or 2 s and followed by a target placed at the previous location of either negative or neutral stimulus. Analyses included eye movements during the presentation of the scenes and response times associated with target localization. In a second step, analyses focused on the influence of trait anxiety. While there was no significant difference at the behavioral level, the eye-tracking data revealed that negative information held longer attention than neutral stimuli once fixated. This initial maintenance bias towards negative pictures then increased with increasing trait anxiety. However, at later processing stages, only individuals with the highest trait anxiety appeared to fixate longer on negative pictures than neutral pictures, individuals with low trait anxiety showing the opposite pattern. This study provides novel evidence that healthy individuals display an attentional maintenance bias towards negative stimuli, which is associated with trait anxiety.
Collapse
|
15
|
Ryan AE, Keane B, Wallis G. Microsaccades and covert attention: Evidence from a continuous, divided attention task. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.6. [PMID: 33828755 PMCID: PMC7962682 DOI: 10.16910/jemr.12.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A substantial question in understanding expert behavior is isolating where experts look, and which aspects of their environment they process. While tracking the position of gaze provides some insight into this process, our ability to attend covertly to regions of space other than the current point of fixation, severely limits the diagnostic power of such data. Over the past decade, evidence has emerged suggesting that microscopic eye movements present during periods of fixation may be linked to the spatial distribution of covert attention, potentially offering a powerful tool for studying expert behavior. To date, the majority of studies in this field have tested the link under the constraints of a trial by trial, forced-response task. In the current study we sought to examine the effect when participants performed a continuous, divided-attention task, with the hope of bridging the gap to a range of more ecological, real-world tasks. We report various aspects of the eye movement and response data including (i) the relationship between microsaccades and drift correction, (ii) response behavior in brief time periods immediately following a microsaccade, (iii) response behavior briefly preceding a microsaccade. Analysis failed to reveal a link between task accuracy and the direction of a microsaccade. Most striking however, we found evidence for a timelocked relationship between the side of space responded to and the direction of the most recent microsaccade. The paper hence provides preliminary evidence that microsaccades may indeed be used to track the ongoing allocation of spatial attention.
Collapse
Affiliation(s)
- Aimee E Ryan
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Brendan Keane
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Guy Wallis
- Centre for Sensorimotor Performance, University of Queensland, Australia
| |
Collapse
|
16
|
Barnhart AS, Costela FM, Martinez-Conde S, Macknik SL, Goldinger SD. Microsaccades reflect the dynamics of misdirected attention in magic. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.7. [PMID: 33828753 PMCID: PMC7962680 DOI: 10.16910/jemr.12.6.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The methods of magicians provide powerful tools for enhancing the ecological validity of laboratory studies of attention. The current research borrows a technique from magic to explore the relationship between microsaccades and covert attention under near-natural viewing conditions. We monitored participants' eye movements as they viewed a magic trick where a coin placed beneath a napkin vanishes and reappears beneath another napkin. Many participants fail to see the coin move from one location to the other the first time around, thanks to the magician's misdirection. However, previous research was unable to distinguish whether or not participants were fooled based on their eye movements. Here, we set out to determine if microsaccades may provide a window into the efficacy of the magician's misdirection. In a multi-trial setting, participants monitored the location of the coin (which changed positions in half of the trials), while engaging in a delayed match-to-sample task at a different spatial location. Microsaccades onset times varied with task difficulty, and microsaccade directions indexed the locus of covert attention. Our combined results indicate that microsaccades may be a useful metric of covert attentional processes in applied and ecologically valid settings.
Collapse
Affiliation(s)
| | - Francisco M Costela
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
17
|
No supplementary evidence of attention to a spatial cue when saccadic facilitation is absent. Sci Rep 2018; 8:13289. [PMID: 30185930 PMCID: PMC6125402 DOI: 10.1038/s41598-018-31633-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Attending a location in space facilitates responses to targets at that location when the time between cue and target is short. Certain types of exogenous cues – such as sudden peripheral onsets – have been described as reflexive and automatic. Recent studies however, have been showing many cases where exogenous cues are less automatic than previously believed and do not always result in facilitation. A lack of the behavioral facilitation, however, does not automatically necessitate a lack of underlying attention to that location. We test exogenous cueing in two experiments where facilitation is and is not likely to be observed with saccadic responses. We also test alternate measures linked to the allocation of attention such as saccadic curvature, microsaccades and pupil size. As expected, we find early facilitation as measured by saccadic reaction time when CTOAs are predictable but not when they are randomized within a block. We find no impact of the cue on microsaccade direction for either experiment, and only a slight dip in the frequency of microsaccades after the cue. We do find that change in pupil size to the cue predicts the magnitude of the validity effect, but only in the experiment where facilitation was observed. In both experiments, we observed a tendency for saccadic curvature to deviate away from the cued location and this was stronger for early CTOAs and toward vertical targets. Overall, we find that only change in pupil size is consistent with observed facilitation. Saccadic curvature is influenced by the onset of the cue, buts its direction is indicative of oculomotor inhibition whether we see RT facilitation or not. Microsaccades were not diagnostic in either experiment. Finally, we see little to no evidence of attention at the cued location in any additional measures when facilitation of saccadic responses is absent.
Collapse
|
18
|
Malienko A, Harrar V, Khan AZ. Contrasting effects of exogenous cueing on saccades and reaches. J Vis 2018; 18:4. [DOI: 10.1167/18.9.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anton Malienko
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Vanessa Harrar
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Aarlenne Z. Khan
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Hannula DE. Attention and long-term memory: Bidirectional interactions and their effects on behavior. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Piras A, Raffi M, Perazzolo M, Malagoli Lanzoni I, Squatrito S. Microsaccades and interest areas during free-viewing sport task. J Sports Sci 2017; 37:980-987. [DOI: 10.1080/02640414.2017.1380893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alessandro Piras
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Milena Raffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Monica Perazzolo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ivan Malagoli Lanzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Squatrito
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Microsaccade-rate indicates absorption by music listening. Conscious Cogn 2017; 55:59-78. [PMID: 28787663 DOI: 10.1016/j.concog.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
The power of music is a literary topos, which can be attributed to intense and personally significant experiences, one of them being the state of absorption. Such phenomenal states are difficult to grasp objectively. We investigated the state of musical absorption by using eye tracking. We utilized a load related definition of state absorption: multimodal resources are committed to create a unified representation of music. Resource allocation was measured indirectly by microsaccade rate, known to indicate cognitive processing load. We showed in Exp. 1 that microsaccade rate also indicates state absorption. Hence, there is cross-modal coupling between an auditory aesthetic experience and fixational eye movements. When removing the fixational stimulus in Exp. 2, saccades are no longer generated upon visual input and the cross-modal coupling disappeared. Results are interpreted in favor of the load hypothesis of microsaccade rate and against the assumption of general slowing by state absorption.
Collapse
|
22
|
Abstract
Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the “true” microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise—although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the “true” microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package.
Collapse
Affiliation(s)
- Andra Mihali
- Center for Neural Science, New York University, New York, NY,
| | | | - Wei Ji Ma
- Center for Neural Science, New York University, New York, NY, USADepartment of Psychology, New York University, New York, NY,
| |
Collapse
|
23
|
Meyberg S, Sinn P, Engbert R, Sommer W. Revising the link between microsaccades and the spatial cueing of voluntary attention. Vision Res 2017; 133:47-60. [PMID: 28163059 DOI: 10.1016/j.visres.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 11/19/2022]
Abstract
Microsaccades - i.e., small fixational saccades generated in the superior colliculus (SC) - have been linked to spatial attention. While maintaining fixation, voluntary shifts of covert attention toward peripheral targets result in a sequence of attention-aligned and attention-opposing microsaccades. In most previous studies the direction of the voluntary shift is signaled by a spatial cue (e.g., a leftwards pointing arrow) that presents the most informative part of the cue (e.g., the arrowhead) in the to-be attended visual field. Here we directly investigated the influence of cue position and tested the hypothesis that microsaccades align with cue position rather than with the attention shift. In a spatial cueing task, we presented the task-relevant part of a symmetric cue either in the to-be attended visual field or in the opposite field. As a result, microsaccades were still weakly related to the covert attention shift; however, they were strongly related to the position of the cue even if that required a movement opposite to the cued attention shift. Moreover, if microsaccades aligned with cue position, we observed stronger cueing effects on manual response times. Our interpretation of the data is supported by numerical simulations of a computational model of microsaccade generation that is based on SC properties, where we explain our findings by separate attentional mechanisms for cue localization and the cued attention shift. We conclude that during cueing of voluntary attention, microsaccades are related to both - the overt attentional selection of the task-relevant part of the cue stimulus and the subsequent covert attention shift.
Collapse
Affiliation(s)
| | - Petra Sinn
- Universität Potsdam, 14469 Potsdam, Germany
| | | | - Werner Sommer
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
24
|
Horowitz TS, Fencsik DE, Fine EM, Yurgenson S, Wolfe JM. Microsaccades and Attention: Does a Weak Correlation Make an Index? Psychol Sci 2016. [DOI: 10.1111/j.1467-9280.2007.01905.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Todd S. Horowitz
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School
| | - David E. Fencsik
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School
| | - Elisabeth M. Fine
- Harvard Medical School
- Schepens Eye Research Institute, Boston, Massachusetts
| | | | - Jeremy M. Wolfe
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School
| |
Collapse
|
25
|
Laubrock J, Engbert R, Rolfs M, Kliegl R. Microsaccades Are an Index of Covert Attention. Psychol Sci 2016; 18:364-6; discussion 367-8. [PMID: 17470263 DOI: 10.1111/j.1467-9280.2007.01904.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jochen Laubrock
- Institut für Psychologie, University of Potsdam, Karl-Liebknecht-Strasse 24/25, DE-14476 Potsdam, Germany.
| | | | | | | |
Collapse
|
26
|
Dyson BJ. Using Published Trial Schematics to Assess a Brief (Spatial) History of Time: Questioning the Graphical Depiction of Experimental Procedures. TIMING & TIME PERCEPTION 2015. [DOI: 10.1163/22134468-03002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trial schematics are ubiquitous within psychology journals articles and have the potential to inform how we think about time in space from a non-linguistic point of view. Graphical representations of trial schematics were used to compare the spatial representations of time used by the scientific community with the dominant spatial stereotypes for temporal events reported by the scientific community. From 294 observations, approximately 81% of trial schematics contained left-to-right and / or top-to-bottom representations of first-to-last events, consistent with the dominant Western spatial expressions of time. An initially counter-intuitive left-to-right but bottom-to-top spatial stereotype used in approximately 18% of schematics is discussed with respect to its potential perceptual origins. The complications that arise from the use of multiple spatial axes in the representation of time are highlighted and given the tendency for trial schematics to be informationally poor, alternative routes for the supply of thorough experimental detail are suggested.
Collapse
|
27
|
Abstract
Microsaccade rate during fixation is modulated by the presentation of a visual stimulus. When the stimulus is an endogenous attention cue, the ensuing microsaccades tend to be directed toward the cue. This finding has been taken as evidence that microsaccades index the locus of spatial attention. But the vast majority of microsaccades that subjects make are not triggered by visual stimuli. Under natural viewing conditions, spontaneous microsaccades occur frequently (2-3 Hz), even in the absence of a stimulus or a task. While spontaneous microsaccades may depend on low-level visual demands, such as retinal fatigue, image fading, or fixation shifts, it is unknown whether their occurrence corresponds to changes in the attentional state. We developed a protocol to measure whether spontaneous microsaccades reflect shifts in spatial attention. Human subjects fixated a cross while microsaccades were detected from streaming eye-position data. Detection of a microsaccade triggered the appearance of a peripheral ring of grating patches, which were followed by an arrow (a postcue) indicating one of them as the target. The target was either congruent or incongruent (opposite) with respect to the direction of the microsaccade (which preceded the stimulus). Subjects reported the tilt of the target (clockwise or counterclockwise relative to vertical). We found that accuracy was higher for congruent than for incongruent trials. We conclude that the direction of spontaneous microsaccades is inherently linked to shifts in spatial attention.
Collapse
|
28
|
Gherri E, Forster B. Independent effects of eye gaze and spatial attention on the processing of tactile events: Evidence from event-related potentials. Biol Psychol 2015; 109:239-47. [PMID: 26101088 DOI: 10.1016/j.biopsycho.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/30/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
Directing one's gaze at a body part reduces detection speed and enhances the processing of tactile stimuli presented at the gazed location. Given the close links between spatial attention and the oculomotor system it is possible that these gaze- dependent modulations of touch are mediated by attentional mechanisms. To investigate this possibility, gaze direction and sustained tactile attention were orthogonally manipulated in the present study. Participants covertly attended to one hand to perform a tactile target-nontarget discrimination while they gazed at the same or opposite hand. Spatial attention resulted in enhancements of the somatosensory P100 and Nd components. In contrast, gaze resulted in modulations of the N140 component with more positive ERPs for gazed than non gazed stimuli. This dissociation in the pattern and timing of the effects of gaze and attention on somatosensory processing reveals that gaze and attention have independent effects on touch.
Collapse
Affiliation(s)
- Elena Gherri
- Cognitive Neuroscience Research Unit, City University London, UK.
| | - Bettina Forster
- Cognitive Neuroscience Research Unit, City University London, UK
| |
Collapse
|
29
|
Lodder GMA, Scholte RHJ, Clemens IAH, Engels RCME, Goossens L, Verhagen M. Loneliness and hypervigilance to social cues in females: an eye-tracking study. PLoS One 2015; 10:e0125141. [PMID: 25915656 PMCID: PMC4410954 DOI: 10.1371/journal.pone.0125141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Abstract
The goal of the present study was to examine whether lonely individuals differ from nonlonely individuals in their overt visual attention to social cues. Previous studies showed that loneliness was related to biased post-attentive processing of social cues (e.g., negative interpretation bias), but research on whether lonely and nonlonely individuals also show differences in an earlier information processing stage (gazing behavior) is very limited. A sample of 25 lonely and 25 nonlonely students took part in an eye-tracking study consisting of four tasks. We measured gazing (duration, number of fixations and first fixation) at the eyes, nose and mouth region of faces expressing emotions (Task 1), at emotion quadrants (anger, fear, happiness and neutral expression) (Task 2), at quadrants with positive and negative social and nonsocial images (Task 3), and at the facial area of actors in video clips with positive and negative content (Task 4). In general, participants tended to gaze most often and longest at areas that conveyed most social information, such as the eye region of the face (T1), and social images (T3). Participants gazed most often and longest at happy faces (T2) in still images, and more often and longer at the facial area in negative than in positive video clips (T4). No differences occurred between lonely and nonlonely participants in their gazing times and frequencies, nor at first fixations at social cues in the four different tasks. Based on this study, we found no evidence that overt visual attention to social cues differs between lonely and nonlonely individuals. This implies that biases in social information processing of lonely individuals may be limited to other phases of social information processing. Alternatively, biased overt attention to social cues may only occur under specific conditions, for specific stimuli or for specific lonely individuals.
Collapse
Affiliation(s)
- Gerine M. A. Lodder
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Ron H. J. Scholte
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Ivar A. H. Clemens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | | - Luc Goossens
- Research Group School Psychology and Child and Adolescent Development, KU Leuven, Leuven, Belgium
| | - Maaike Verhagen
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
30
|
|
31
|
Meyberg S, Werkle-Bergner M, Sommer W, Dimigen O. Microsaccade-related brain potentials signal the focus of visuospatial attention. Neuroimage 2015; 104:79-88. [DOI: 10.1016/j.neuroimage.2014.09.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 11/15/2022] Open
|
32
|
Snodderly DM. A physiological perspective on fixational eye movements. Vision Res 2014; 118:31-47. [PMID: 25536465 DOI: 10.1016/j.visres.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/28/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
For a behavioral neuroscientist, fixational eye movements are a double-edged sword. On one edge, they make control of visual stimuli difficult, but on the other edge they provide insight into the ways the visual system acquires information from the environment. We have studied macaque monkeys as models for human visual systems. Fixational eye movements of monkeys are similar to those of humans but they are more often vertically biased and spatially more dispersed. Eye movements scatter stimuli from their intended retinal locations, increase variability of neuronal responses, inflate estimates of receptive field size, and decrease measures of response amplitude. They also bias against successful stimulation of extremely selective cells. Compensating for eye movements reduced these errors and revealed a fine-grained motion pathway from V1 feeding the cortical ventral stream. Compensation is a useful tool for the experimenter, but rather than compensating for eye movements, the brain utilizes them as part of its input. The saccades and drifts that occur during fixation selectively activate different types of V1 neurons. Cells that prefer slower speeds respond during the drift periods with maintained discharges and tend to have smaller receptive fields that are selective for sign of contrast. They are well suited to code small details of the image and to enable our fine detailed vision. Cells that prefer higher speeds fire transient bursts of spikes when the receptive field leaves, crosses, or lands on a stimulus, but only the most transient ones (about one-third of our sample) failed to respond during drifts. Voluntary and fixational saccades had very similar effects, including the presence of a biphasic extraretinal modulation that interacted with stimulus-driven responses. Saccades evoke synchronous bursts that can enhance visibility but these bursts may also participate in the visual masking that contributes to saccadic suppression. Study of the small eye movements of fixation may illuminate some of the big problems in vision.
Collapse
Affiliation(s)
- D Max Snodderly
- Department of Neuroscience, Institute for Neuroscience, Center for Perceptual Systems, University of Texas at Austin, United States.
| |
Collapse
|
33
|
Hautala J, Parviainen T. Gaze position reveals impaired attentional shift during visual word recognition in dysfluent readers. PLoS One 2014; 9:e108937. [PMID: 25268909 PMCID: PMC4182581 DOI: 10.1371/journal.pone.0108937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022] Open
Abstract
Effects reflecting serial within-word processing are frequently found in pseudo- and non-word recognition tasks not only among fluent, but especially among dyslexic readers. However, the time course and locus of these serial within-word processing effects in the cognitive hierarchy (i.e., orthographic, phonological, lexical) have remained elusive. We studied whether a subject's eye movements during a lexical decision task would provide information about the temporal dynamics of serial within-word processing. We assumed that if there is serial within-word processing proceeding from left to right, items with informative beginnings would attract the gaze position and (micro-)saccadic eye movements earlier in time relative to those with informative endings. In addition, we compared responses to word, non-word, and pseudo-word items to study whether serial within-word processing stems mainly from a lexical, orthographic, or phonological processing level, respectively. Gaze positions showed earlier responses to anomalies located at pseudo- and non-word beginnings rather than endings, whereas informative word beginnings or endings did not affect gaze positions. The overall pattern of results suggests parallel letter processing of real words and rapid serial within-word processing when reading novel words. Dysfluent readers' gaze position responses toward anomalies located at pseudo- and non-word endings were delayed substantially, suggesting impairment in serial processing at an orthographic processing level.
Collapse
Affiliation(s)
- Jarkko Hautala
- Agora Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
34
|
Privitera CM, Carney T, Klein S, Aguilar M. Analysis of microsaccades and pupil dilation reveals a common decisional origin during visual search. Vision Res 2013; 95:43-50. [PMID: 24333280 DOI: 10.1016/j.visres.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
During free viewing visual search, observers often refixate the same locations several times before and after target detection is reported with a button press. We analyzed the rate of microsaccades in the sequence of refixations made during visual search and found two important components. One related to the visual content of the region being fixated; fixations on targets generate more microsaccades and more microsaccades are generated for those targets that are more difficult to disambiguate. The other empathizes non-visual decisional processes; fixations containing the button press generate more microsaccades than those made on the same target but without the button press. Pupil dilation during the same refixations reveals a similar modulation. We inferred that generic sympathetic arousal mechanisms are part of the articulated complex of perceptual processes governing fixational eye movements.
Collapse
Affiliation(s)
| | - Thom Carney
- School of Optometry, University of California, Berkeley, CA, United States
| | - Stanley Klein
- School of Optometry, University of California, Berkeley, CA, United States
| | - Mario Aguilar
- Intelligent Systems and Planning, Teledyne Scientific Company, Durham, NC, United States
| |
Collapse
|
35
|
Yanulevskaya V, Uijlings J, Geusebroek JM, Sebe N, Smeulders A. A proto-object-based computational model for visual saliency. J Vis 2013; 13:27. [PMID: 24281243 DOI: 10.1167/13.13.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
State-of-the-art bottom-up saliency models often assign high saliency values at or near high-contrast edges, whereas people tend to look within the regions delineated by those edges, namely the objects. To resolve this inconsistency, in this work we estimate saliency at the level of coherent image regions. According to object-based attention theory, the human brain groups similar pixels into coherent regions, which are called proto-objects. The saliency of these proto-objects is estimated and incorporated together. As usual, attention is given to the most salient image regions. In this paper we employ state-of-the-art computer vision techniques to implement a proto-object-based model for visual attention. Particularly, a hierarchical image segmentation algorithm is used to extract proto-objects. The two most powerful ways to estimate saliency, rarity-based and contrast-based saliency, are generalized to assess the saliency at the proto-object level. The rarity-based saliency assesses if the proto-object contains rare or outstanding details. The contrast-based saliency estimates how much the proto-object differs from the surroundings. However, not all image regions with high contrast to the surroundings attract human attention. We take this into account by distinguishing between external and internal contrast-based saliency. Where the external contrast-based saliency estimates the difference between the proto-object and the rest of the image, the internal contrast-based saliency estimates the complexity of the proto-object itself. We evaluate the performance of the proposed method and its components on two challenging eye-fixation datasets (Judd, Ehinger, Durand, & Torralba, 2009; Subramanian, Katti, Sebe, Kankanhalli, & Chua, 2010). The results show the importance of rarity-based and both external and internal contrast-based saliency in fixation prediction. Moreover, the comparison with state-of-the-art computational models for visual saliency demonstrates the advantage of proto-objects as units of analysis.
Collapse
Affiliation(s)
- Victoria Yanulevskaya
- Department of Information Engineering and Computer Science, University of Trento, Italy
| | | | | | | | | |
Collapse
|
36
|
Production, control, and visual guidance of saccadic eye movements. ISRN NEUROLOGY 2013; 2013:752384. [PMID: 24260720 PMCID: PMC3821953 DOI: 10.1155/2013/752384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
Abstract
Primate vision is served by rapid shifts of gaze called saccades. This review will survey current knowledge and particular problems concerning the neural control and guidance of gaze shifts.
Collapse
|
37
|
Pastukhov A, Vonau V, Stonkute S, Braun J. Spatial and temporal attention revealed by microsaccades. Vision Res 2013; 85:45-57. [DOI: 10.1016/j.visres.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 11/01/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
|
38
|
Solé Puig M, Pérez Zapata L, Aznar-Casanova JA, Supèr H. A role of eye vergence in covert attention. PLoS One 2013; 8:e52955. [PMID: 23382827 PMCID: PMC3561361 DOI: 10.1371/journal.pone.0052955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/22/2012] [Indexed: 11/24/2022] Open
Abstract
Covert spatial attention produces biases in perceptual and neural responses in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. Here we report the relation between fixational eye movements, namely eye vergence, and covert attention. Visual stimuli modulate the angle of eye vergence as a function of their ability to capture attention. This illustrates the relation between eye vergence and bottom-up attention. In visual and auditory cue/no-cue paradigms, the angle of vergence is greater in the cue condition than in the no-cue condition. This shows a top-down attention component. In conclusion, observations reveal a close link between covert attention and modulation in eye vergence during eye fixation. Our study suggests a basis for the use of eye vergence as a tool for measuring attention and may provide new insights into attention and perceptual disorders.
Collapse
Affiliation(s)
- Maria Solé Puig
- Department Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Laura Pérez Zapata
- Department Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - J. Antonio Aznar-Casanova
- Department Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institute for Brain, Cognition and Behavior, University of Barcelona, Barcelona, Spain
| | - Hans Supèr
- Department Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institute for Brain, Cognition and Behavior, University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Martinez-Conde S, Otero-Millan J, Macknik SL. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci 2013; 14:83-96. [PMID: 23329159 DOI: 10.1038/nrn3405] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Yokoyama T, Noguchi Y, Kita S. Attentional shifts by gaze direction in voluntary orienting: evidence from a microsaccade study. Exp Brain Res 2012; 223:291-300. [PMID: 23001417 PMCID: PMC3475970 DOI: 10.1007/s00221-012-3260-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Shifts in spatial attention can be induced by the gaze direction of another. However, it is unclear whether gaze direction influences the allocation of attention by reflexive or voluntary orienting. The present study was designed to examine which type of attentional orienting is elicited by gaze direction. We conducted two experiments to answer this question. In Experiment 1, we used a modified Posner paradigm with gaze cues and measured microsaccades to index the allocation of attention. We found that microsaccade direction followed cue direction between 200 and 400 ms after gaze cues were presented. This is consistent with the latencies observed in other microsaccade studies in which voluntary orienting is manipulated, suggesting that gaze direction elicits voluntary orienting. However, Experiment 1 did not separate voluntary and reflexive orienting directionally, so in Experiment 2, we used an anticue task in which cue direction (direction to allocate attention) was the opposite of gaze direction (direction of gaze in depicted face). The results in Experiment 2 were consistent with those from Experiment 1. Microsaccade direction followed the cue direction, not gaze direction. Taken together, these results indicate that the shift in spatial attention elicited by gaze direction is voluntary orienting.
Collapse
Affiliation(s)
- Takemasa Yokoyama
- Department of Psychology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
41
|
Lara AH, Wallis JD. Capacity and precision in an animal model of visual short-term memory. J Vis 2012; 12:12.3.13. [PMID: 22419756 DOI: 10.1167/12.3.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.
Collapse
|
42
|
Abstract
The use of awake, fixating monkeys in neuroscience has allowed significant advances in understanding numerous brain functions. However, fixation is an active process, with the occurrence of incessant eye movements, including rapid ones called microsaccades. Even though microsaccades have been shown to be modulated by stimulus and cognitive processes in humans, it is not known to what extent these results are similar in monkeys or why they occur. Here, we analyzed the stimulus-, context-, and attention-related changes in microsaccades while monkeys performed a challenging visual attention task. The distributions of microsaccade times were highly stereotypical across thousands of trials in the task. Moreover, in epochs of the task in which animals anticipated the occurrence of brief stimulus probes, microsaccade frequency decreased to a rate of less than one movement per second even on long multisecond trials. These effects were explained by the observation that microsaccades occurring at the times of the brief probes were sometimes associated with reduced perceptual performance. Microsaccade directions also exhibited temporal modulations related to the attentional demands of the task, like earlier studies in humans, and were more likely to be directed toward an attended location on successfully performed trials than on unsuccessfully completed ones. Our results show that microsaccades in nonhuman primates are correlated with the allocation of stimulus-evoked and sustained covert attention. We hypothesize that involvement of the superior colliculus in microsaccade generation and attentional allocation contributes to these observations. More importantly, our results clarify the potential role of these eye movements in modifying behavior and neural activity.
Collapse
|
43
|
Attention spatiale et contrôle saccadique : données comportementales et neurobiologiques en faveur d’une conception motrice du contrôle attentionnel. ANNEE PSYCHOLOGIQUE 2011. [DOI: 10.4074/s000350331100306x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Gershoni S, Hochstein S. Measuring pictorial balance perception at first glance using Japanese calligraphy. Iperception 2011; 2:508-27. [PMID: 23145242 PMCID: PMC3485800 DOI: 10.1068/i0472aap] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/08/2011] [Indexed: 11/06/2022] Open
Abstract
According to art theory, pictorial balance acts to unify picture elements into a cohesive composition. For asymmetrical compositions, balancing elements is thought to be similar to balancing mechanical weights in a framework of symmetry axes. Assessment of preference for balance (APB), based on the symmetry-axes framework suggested in Arnheim R, 1974 Art and Visual Perception: A Psychology of the Creative Eye (Berkeley, CA: University of California Press), successfully matched subject balance ratings of images of geometrical shapes over unlimited viewing time. We now examine pictorial balance perception of Japanese calligraphy during first fixation, isolated from later cognitive processes, comparing APB measures with results from balance-rating and comparison tasks. Results show high between-task correlation, but low correlation with APB. We repeated the rating task, expanding the image set to include five rotations of each image, comparing balance perception of artist and novice participant groups. Rotation has no effect on APB balance computation but dramatically affects balance rating, especially for art experts. We analyze the variety of rotation effects and suggest that, rather than depending on element size and position relative to symmetry axes, first fixation balance processing derives from global processes such as grouping of lines and shapes, object recognition, preference for horizontal and vertical elements, closure, and completion, enhanced by vertical symmetry.
Collapse
Affiliation(s)
- Sharon Gershoni
- Interdisciplinary Center for Neural Computation and Neurobiology Department, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; e-mail:
| | | |
Collapse
|
45
|
Kowler E. Eye movements: the past 25 years. Vision Res 2011; 51:1457-83. [PMID: 21237189 PMCID: PMC3094591 DOI: 10.1016/j.visres.2010.12.014] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/29/2010] [Accepted: 12/27/2010] [Indexed: 11/30/2022]
Abstract
This article reviews the past 25 years of research on eye movements (1986-2011). Emphasis is on three oculomotor behaviors: gaze control, smooth pursuit and saccades, and on their interactions with vision. Focus over the past 25 years has remained on the fundamental and classical questions: What are the mechanisms that keep gaze stable with either stationary or moving targets? How does the motion of the image on the retina affect vision? Where do we look - and why - when performing a complex task? How can the world appear clear and stable despite continual movements of the eyes? The past 25 years of investigation of these questions has seen progress and transformations at all levels due to new approaches (behavioral, neural and theoretical) aimed at studying how eye movements cope with real-world visual and cognitive demands. The work has led to a better understanding of how prediction, learning and attention work with sensory signals to contribute to the effective operation of eye movements in visually rich environments.
Collapse
Affiliation(s)
- Eileen Kowler
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
46
|
Meirovithz E, Ayzenshtat I, Werner-Reiss U, Shamir I, Slovin H. Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. ACTA ACUST UNITED AC 2011; 22:294-307. [PMID: 21653284 DOI: 10.1093/cercor/bhr102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During visual fixation, the eyes make fast involuntary miniature movements known as microsaccades (MSs). When MSs are executed they displace the visual image over the retina and can generate neural modulation along the visual pathway. However, the effects of MSs on neural activity have substantial variability and are not fully understood. By utilizing voltage-sensitive dye imaging, we imaged the spatiotemporal patterns induced by MSs in V1 and V2 areas of behaving monkeys while they were fixating and presented with visual stimuli. We then investigated the neuronal modulation dynamics, induced by MSs, under different visual stimulation. MSs induced monophasic or biphasic neural responses depending on stimulus size. These neural responses were accompanied by different spatiotemporal patterns of synchronization. Finally, we show that a local patch of population response evoked by a small stimulus was clearly shifted over the V1 retinotopic map after each MS. Our results demonstrate the lack of visual stability in V1 following MSs and help clarify the substantial variability reported for MSs effects on neuronal responses. The observed neural effects suggest that MSs are associated with a continuum of neuronal responses in V1 area reflecting diverse spatiotemporal dynamics.
Collapse
Affiliation(s)
- Elhanan Meirovithz
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
47
|
Abstract
Microsaccades can elevate contrast detection thresholds of human observers and modulate the activity of neurons in monkey visual cortex. Whether microsaccades elevate contrast detection thresholds in monkey observers is not known and bears on the interpretation of neurophysiological experiments. To answer this question, we trained two monkeys to perform a 2AFC contrast detection task. Performance was worse on trials in which a microsaccade occurred during the stimulus presentation. The magnitude of the effect was modest (threshold changes of <0.2 log unit) and color specific: achromatic sensitivity was impaired, but red-green sensitivity was not. To explore the neural basis of this effect, we recorded the responses of individual V1 neurons to a white noise stimulus. Microsaccades produced a suppression of spiking activity followed by an excitatory rebound that was similar for L - M cone-opponent and L + M nonopponent V1 neurons. We conclude that microsaccades in the monkey increase luminance contrast detection thresholds and modulate the spiking activity of V1 neurons, but the luminance specificity of the behavioral suppression is likely implemented downstream of V1.
Collapse
Affiliation(s)
- Charles A Hass
- Program in Neurobiology and Behavior, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
48
|
Pastukhov A, Braun J. Rare but precious: Microsaccades are highly informative about attentional allocation. Vision Res 2010; 50:1173-84. [DOI: 10.1016/j.visres.2010.04.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/03/2010] [Accepted: 04/04/2010] [Indexed: 11/30/2022]
|
49
|
|
50
|
Tse PU, Baumgartner FJ, Greenlee MW. Event-related functional MRI of cortical activity evoked by microsaccades, small visually-guided saccades, and eyeblinks in human visual cortex. Neuroimage 2010; 49:805-16. [PMID: 19646539 PMCID: PMC2764842 DOI: 10.1016/j.neuroimage.2009.07.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 07/03/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022] Open
Abstract
We used event-related functional magnetic resonance imaging (fMRI) to determine blood oxygen-level-dependent (BOLD) signal changes following microsaccades, visually-guided saccades, and eyeblinks in retinotopically mapped visual cortical areas V1-V3 and hMT+. A deconvolution analysis revealed a similar pattern of BOLD activation following a microsaccade, 0.16 degrees voluntary saccade, and 0.16 degrees displacement of the image under conditions of fixation. In all areas, an initial increase in BOLD signal peaking at approximately 4.5 s after the event was followed by a decline and decrease below baseline. This modulation appears most pronounced for microsaccades and small voluntary saccades in V1, diminishing in strength from V1 to V3. In contrast, 0.16 degrees real motion under conditions of fixation yields the same level of BOLD signal increase in V1 through V3. BOLD signal modulates parametrically with the size of voluntary saccades (0.16 degrees , 0.38 degrees , 0.82 degrees , 1.64 degrees , and 3.28 degrees ) in V1-V3, but not in hMT+. Eyeblinks generate larger modulation that peaks by 6.5 s, and dips below baseline by 10 s post-event, and also exhibits diminishing modulation from V1 to V3. Our results are consistent with the occurrence of transient neural excitation driven by changes in input to retinal ganglion cell receptive fields that are induced by microsaccades, visually-guided saccades, or small image shifts. The pattern of results in area hMT+ exhibits no significant modulation by microsaccades, relatively small modulation by eyeblinks, and substantial responses to saccades and background jumps, suggesting that spurious image motion signal arising from microsaccades and eyeblinks is relatively diminished by hMT+.
Collapse
Affiliation(s)
- Peter U Tse
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | | | | |
Collapse
|