1
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Tennakoon A, Katharesan V, Musgrave IF, Koblar SA, Faull RLM, Curtis MA, Johnson IP. Normal aging, motor neurone disease, and Alzheimer's disease are characterized by cortical changes in inflammatory cytokines. J Neurosci Res 2021; 100:653-669. [PMID: 34882833 DOI: 10.1002/jnr.24996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
The role of increased brain inflammation in the development of neurodegenerative diseases is unclear. Here, we have compared cytokine changes in normal aging, motor neurone disease (MND), and Alzheimer's disease (AD). After an initial analysis, six candidate cytokines, interleukin (IL)- 4, 5, 6, 10, macrophage inhibitory protein (MIP)-1α, and fibroblast growth factor (FGF)-2, showing greatest changes were assayed in postmortem frozen human superior frontal gyri (n = 12) of AD patients, aging and young adult controls along with the precentral gyrus (n = 12) of MND patients. Healthy aging was associated with decreased anti-inflammatory IL-10 and FGF-2 levels. AD prefrontal cortex was associated with increased levels of IL-4, IL-5, and FGF-2, with the largest increase seen for FGF-2. Notwithstanding differences in the specific frontal lobe gyrus sampled, MND patients' primary motor cortex (precentral gyrus) was associated with increased levels of IL-5, IL-6, IL-10, and FGF-2 compared to the aging prefrontal cortex (superior frontal gyrus). Immunocytochemistry showed that FGF-2 is expressed in neurons, astrocytes, and microglia in normal aging prefrontal cortex, AD prefrontal cortex, and MND motor cortex. We report that healthy aging and age-related neurodegenerative diseases have different cortical inflammatory signatures that are characterized by increased levels of anti-inflammatory cytokines and call into question the view that increased inflammation underlies the development of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Tennakoon
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Viythia Katharesan
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Simon Andrea Koblar
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Maurice Anthony Curtis
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ian Paul Johnson
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Henderson RD, Agosti JM, McCombe PA, Thorpe K, Heggie S, Heshmat S, Appleby MW, Ziegelaar BW, Crowe DT, Redlich GL. Phase 1b dose-escalation, safety, and pharmacokinetic study of IC14, a monoclonal antibody against CD14, for the treatment of amyotrophic lateral sclerosis. Medicine (Baltimore) 2021; 100:e27421. [PMID: 34678870 PMCID: PMC8542123 DOI: 10.1097/md.0000000000027421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The primary objective was to demonstrate the safety and tolerability of monoclonal antibody against CD14 (IC14) (atibuclimab) in amyotrophic lateral sclerosis patients. The secondary objectives were pharmacokinetics, pharmacodynamics, and preliminary effects on disease status and biomarkers. METHODS In this open-label, dose-escalation trial, IC14 was administered at 2 mg/kg intravenous (IV) followed by 1 mg/kg/d IV × 3 (n = 3) and in subsequent patients at 4 mg/kg IV followed by 2 mg/kg/d IV × 3 (n = 7) (NCT03487263). Disease status was measured using the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, forced vital capacity, sniff nasal pressure, Edinburgh Cognitive and Behavioural ALS Screen, and Revised ALS-Specific Quality-of-Life Score. Disease biomarkers included cerebrospinal fluid and serum levels of neurofilament light chain (NfL) and urinary p75 neurotrophin receptor. RESULTS IC14 was safe and well tolerated. No antidrug antibodies were detected. The drug target saturation of monocyte CD14 receptors was rapid and sustained through day 8. There was no significant change in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, forced vital capacity, sniff nasal pressure, or Revised ALS-Specific Quality-of-Life Score following a single cycle of treatment. Cerebrospinal fluid NfL levels decreased in 6 of 9 patients sampled with declines of 15% to 40% between baseline (not significant [ns]) and day 8 in 3 patients. Serum NfL modestly decreased in 5 of 10 patients (ns) at day 8 and was sustained in 4 (4%-37%, ns) over 33 days of follow up. CONCLUSION IC14 quickly and durably saturated its target in all patients. This study demonstrated safety and tolerability in patients with amyotrophic lateral sclerosis. Even though only a single cycle of treatment was given, there were promising beneficial trends in the neurofilament light chain, a disease biomarker. The emerging understanding of the role of systemic inflammation in neurodegenerative diseases, and the potential for IC14 to serve as a safe, potent, and broad-spectrum inhibitor of immune dysregulation merits further clinical study. CLINICAL TRIAL REGISTRATION NCT03487263.
Collapse
Affiliation(s)
- Robert D. Henderson
- Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
- University of Queensland, Centre for Clinical Research, Herston, Queensland, Australia
| | - Jan M. Agosti
- Implicit Bioscience, Seattle, WA
- Implicit Bioscience, Brisbane, Australia
| | - Pamela A. McCombe
- Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
- University of Queensland, Centre for Clinical Research, Herston, Queensland, Australia
| | - Kathryn Thorpe
- Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Susan Heggie
- Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Saman Heshmat
- Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Mark W. Appleby
- Implicit Bioscience, Seattle, WA
- Implicit Bioscience, Brisbane, Australia
| | - Brian W. Ziegelaar
- Implicit Bioscience, Seattle, WA
- Implicit Bioscience, Brisbane, Australia
| | - David T. Crowe
- Implicit Bioscience, Seattle, WA
- Implicit Bioscience, Brisbane, Australia
| | - Garry L. Redlich
- Implicit Bioscience, Seattle, WA
- Implicit Bioscience, Brisbane, Australia
| |
Collapse
|
4
|
Murdock BJ, Goutman SA, Boss J, Kim S, Feldman EL. Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e953. [PMID: 33531377 PMCID: PMC8057067 DOI: 10.1212/nxi.0000000000000953] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Objective To determine whether neutrophils contribute to amyotrophic lateral sclerosis
(ALS) progression, we tested the association of baseline neutrophil count on
ALS survival, whether the effect was sex specific, and whether neutrophils
accumulate in the spinal cord. Methods A prospective cohort study was conducted between June 22, 2011, and October
30, 2019. Blood leukocytes were isolated from ALS participants and
neutrophil levels assessed by flow cytometry. Participant survival outcomes
were analyzed by groups (<2 × 106, 2–4 ×
106, and >4 × 106 neutrophils/mL) with
adjustments for relevant ALS covariates and by sex. Neutrophil levels were
assessed from CNS tissue from a subset of participants. Results A total of 269 participants with ALS within 2 years of an ALS diagnosis were
included. Participants with baseline neutrophil counts over 4 ×
106/mL had a 2.1 times higher mortality rate than those with
a neutrophil count lower than 2 × 106/mL (95% CI:
1.3–3.5, p = 0.004) when adjusting for age,
sex, and other covariates. This effect was more pronounced in females, with
a hazard ratio of 3.8 (95% CI: 1.8–8.2, p =
0.001) in the >4 × 106/mL vs <2 ×
106/mL group. Furthermore, ALS participants (n = 8) had
increased neutrophils in cervical (p = 0.049) and
thoracic (p = 0.022) spinal cord segments compared
with control participants (n = 8). Conclusions Higher neutrophil counts early in ALS associate with a shorter survival in
female participants. Furthermore, neutrophils accumulate in ALS spinal cord
supporting a pathophysiologic correlate. These data justify the
consideration of immunity and sex for personalized therapeutic development
in ALS. Classification of Evidence This study provides Class III evidence that in female participants with ALS,
higher baseline neutrophil counts are associated with shorter survival.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor.
| | - Jonathan Boss
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Sehee Kim
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| |
Collapse
|
5
|
Crabé R, Aimond F, Gosset P, Scamps F, Raoul C. How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122550. [PMID: 33260927 PMCID: PMC7760029 DOI: 10.3390/cells9122550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons. We discuss the extent to which the degeneration of glial cells and interneurons also contributes to the decline of the motor system. This pathogenic cellular network therefore represents a novel strategic field of therapeutic investigation.
Collapse
Affiliation(s)
- Roxane Crabé
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Franck Aimond
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Philippe Gosset
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
6
|
Christoforidou E, Joilin G, Hafezparast M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflammation 2020; 17:135. [PMID: 32345319 PMCID: PMC7187511 DOI: 10.1186/s12974-020-01822-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs), which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated miRNAs may be promising candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
| | - Greig Joilin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
7
|
Jin M, Günther R, Akgün K, Hermann A, Ziemssen T. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep 2020; 10:5941. [PMID: 32246039 PMCID: PMC7125229 DOI: 10.1038/s41598-020-62756-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), but only limited data are available on systematic peripheral and central immune cell profiles in ALS. We studied detailed immune profiles of 73 ALS patients and 48 healthy controls (controls) in peripheral blood by fluorescence-activated cell sorting as well as cytokine expression profiles in serum. In a subgroup of 16 ALS patients and 10 controls we additionally studied cerebrospinal fluid (CSF) samples. In peripheral blood, T cell subtypes presented a shift towards pro-inflammatory Th 1 and Th 17 cells whereas anti-inflammatory Th2 and T regulatory cells were decreased. Important players in innate immunity including distinct monocyte (Mo) and natural killer (NK) cell subtypes were changed in ALS patients compared to controls. Pro-inflammatory serum cytokines such as interleukin (IL)-1 beta, IL-6 and interferon-gamma (IFN-gamma) were increased and the anti-inflammatory cytokine IL-10 was decreased. Correlation analysis revealed moderate negative correlations between Th1 and Th17 to the ALS functional rating scale revised (ALSFRS-R) and to forced vital capacity. In CSF samples, no relevant alteration of the immune profile was found. In conclusion, the immune profile in ALS was shifted towards a Th1/Th17 cell-mediated pro-inflammatory immune response and correlated to disease severity and progression. Large prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Rene Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Katja Akgün
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
8
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis. Curr Pharm Des 2017; 23:5010-5021. [PMID: 28641533 PMCID: PMC5740017 DOI: 10.2174/1381612823666170622095802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/04/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis. Astrogliosis is a complex remodeling of astrocyte biology and most likely represents a continuum of potential phenotypes that affect neuronal function and survival in an injury-specific manner. In ALS patients, reactive astrocytes surround both upper and lower degenerating motor neurons and play a key role in the pathology. It has become clear that astrocytes play a major role in ALS pathology. Through loss of normal function or acquired new characteristics, astrocytes are able to influence motor neuron fate and the progression of the disease. The use of different cell culture models indicates that ALS-astrocytes are able to induce motor neuron death by secreting a soluble factor(s). Here, we discuss several pathogenic mechanisms that have been proposed to explain astrocyte-mediated motor neuron death in ALS. In addition, examples of strategies that revert astrocyte-mediated motor neuron toxicity are reviewed to illustrate the therapeutic potential of astrocytes in ALS. Due to the central role played by astrocytes in ALS pathology, therapies aimed at modulating astrocyte biology may contribute to the development of integral therapeutic approaches to halt ALS progression.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A. Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelby M. Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marcelo R. Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Srivastava AK, Gross SK, Almad AA, Bulte CA, Maragakis NJ, Bulte JWM. Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2016; 289:96-102. [PMID: 28038988 DOI: 10.1016/j.expneurol.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/27/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are being investigated as a possible treatment for amyotrophic lateral sclerosis (ALS) through intraspinal transplantation, but no longitudinal imaging studies exist that describe the survival of engrafted cells over time. Allogeneic firefly luciferase-expressing murine NSCs (Luc+-NSCs) were transplanted bilaterally (100,000 cells/2μl) into the cervical spinal cord (C5) parenchyma of pre-symptomatic (63day-old) SOD1G93A ALS mice (n=14) and wild-type age-matched littermates (n=14). Six control SOD1G93A ALS mice were injected with saline. Mice were immunosuppressed using a combination of tacrolimus+sirolimus (1mg/kg each, i.p.) daily. Compared to saline-injected SOD1G93A ALS control mice, a transient improvement (p<0.05) in motor performance (rotarod test) was observed after NSC transplantation only at the early disease stage (weeks 2 and 3 post-transplantation). Compared to day one post-transplantation, there was a significant decline in bioluminescent imaging (BLI) signal in SOD1G93A ALS mice at the time of disease onset (71.7±17.9% at 4weeks post-transplantation, p<0.05), with a complete loss of BLI signal at endpoint (120day-old mice). In contrast, BLI signal intensity was observed in wild-type littermates throughout the entire study period, with only a 41.4±8.7% decline at the endpoint. In SOD1G93A ALS mice, poor cell survival was accompanied by accumulation of mature macrophages and the presence of astrogliosis and microgliosis. We conclude that the disease progression adversely affects the survival of engrafted murine Luc+-NSCs in SOD1G93A ALS mice as a result of the hostile ALS spinal cord microenvironment, further emphasizing the challenges that face successful cell therapy of ALS.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah K Gross
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akshata A Almad
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
NF-κB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat. J Virol 2016; 90:9338-49. [PMID: 27512062 DOI: 10.1128/jvi.01503-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Thousands of endogenous retroviruses (ERV), viral fossils of ancient germ line infections, reside within the human genome. Evidence of ERV activity has been observed widely in both health and disease. While this is most often cited as a bystander effect of cell culture or disease states, it is unclear which signals control ERV transcription. Bioinformatic analysis suggests that the viral promoter of endogenous retrovirus K (ERVK) is responsive to inflammatory transcription factors. Here we show that one reason for ERVK upregulation in amyotrophic lateral sclerosis (ALS) is the presence of functional interferon-stimulated response elements (ISREs) in the viral promoter. Transcription factor overexpression assays revealed independent and synergistic upregulation of ERVK by interferon regulatory factor 1 (IRF1) and NF-κB isoforms. Tumor necrosis factor alpha (TNF-α) and LIGHT cytokine treatments of human astrocytes and neurons enhanced ERVK transcription and protein levels through IRF1 and NF-κB binding to the ISREs. We further show that in ALS brain tissue, neuronal ERVK reactivation is associated with the nuclear translocation of IRF1 and NF-κB isoforms p50 and p65. ERVK overexpression can cause motor neuron pathology in murine models. Our results implicate neuroinflammation as a key trigger of ERVK provirus reactivation in ALS. These molecular mechanisms may also extend to the pathobiology of other ERVK-associated inflammatory diseases, such as cancers, HIV infection, rheumatoid arthritis, and schizophrenia. IMPORTANCE It has been well established that inflammatory signaling pathways in ALS converge at NF-κB to promote neuronal damage. Our findings suggest that inflammation-driven IRF1 and NF-κB activity promotes ERVK reactivation in neurons of the motor cortex in ALS. Thus, quenching ERVK activity through antiretroviral or immunomodulatory regimens may hinder virus-mediated neuropathology and improve the symptoms of ALS or other ERVK-associated diseases.
Collapse
|
11
|
Staats KA, Humblet-Baron S, Bento-Abreu A, Scheveneels W, Nikolaou A, Deckers K, Lemmens R, Goris A, Van Ginderachter JA, Van Damme P, Hisatsune C, Mikoshiba K, Liston A, Robberecht W, Van Den Bosch L. Genetic ablation of IP3 receptor 2 increases cytokines and decreases survival of SOD1G93A mice. Hum Mol Genet 2016; 25:3491-3499. [PMID: 27378687 PMCID: PMC5179944 DOI: 10.1093/hmg/ddw190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP3 receptor 2 (IP3R2), was detected in sporadic ALS patients. Here, we demonstrate that IP3R2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IP3R2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IP3R2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1G93A mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IP3R2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1G93A mice. Besides systemic inflammation, IP3R2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IP3R2 protects against the negative effects of inflammation, suggesting that the increase in IP3R2 expression in ALS patients is a protective response.
Collapse
Affiliation(s)
- Kim A Staats
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology
| | | | - Andre Bento-Abreu
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology
| | - Wendy Scheveneels
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology
| | - Alexandros Nikolaou
- Molecular and Biochemical Pharmacology Laboratory, Vrije Universiteit Brussel.,Myeloid Cell Immunology Laboratory, VIB, Inflammation Research Center.,Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kato Deckers
- Center for Molecular and Vascular Biology, University of Leuven
| | - Robin Lemmens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology.,University Hospitals Leuven, Department of Neurology
| | - An Goris
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory for Neuroimmunology, Leuven, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Inflammation Research Center.,Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology.,University Hospitals Leuven, Department of Neurology
| | - Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Adrian Liston
- VIB and Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND).,VIB, Vesalius Research Center, Laboratory of Neurobiology.,University Hospitals Leuven, Department of Neurology
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) .,VIB, Vesalius Research Center, Laboratory of Neurobiology
| |
Collapse
|
12
|
Lu CH, Allen K, Oei F, Leoni E, Kuhle J, Tree T, Fratta P, Sharma N, Sidle K, Howard R, Orrell R, Fish M, Greensmith L, Pearce N, Gallo V, Malaspina A. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e244. [PMID: 27308305 PMCID: PMC4897985 DOI: 10.1212/nxi.0000000000000244] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/14/2016] [Indexed: 11/20/2022]
Abstract
Objective: To evaluate the combined blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis (ALS). Methods: Logistic regression adjusted for markers of the systemic inflammatory state and principal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11 cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating biomarkers were used to study survival by Cox regression analysis and correlated with disease progression and neurofilament light chain (NfL) levels available from a previous study. Cytokines expression was also tested in blood samples longitudinally collected for up to 4 years from 59 patients with ALS. Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–α, and interleukin (IL)–1β, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–γ were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-α, and IFN-γ were the most highly regulated markers when all explanatory variables were jointly analyzed. High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated with CK, as was TNF-α with NfL. IL-6 was strongly associated with CRP levels and was the only marker showing increasing expression towards end-stage disease in the longitudinal analysis. Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory markers mostly active on T-cell immune responses. Disease stratification based on the prognostic value of circulating inflammatory markers could improve clinical trials design in ALS.
Collapse
Affiliation(s)
- Ching-Hua Lu
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Kezia Allen
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Felicia Oei
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Emanuela Leoni
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Jens Kuhle
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Timothy Tree
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Pietro Fratta
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Nikhil Sharma
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Katie Sidle
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Robin Howard
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Richard Orrell
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Mark Fish
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Linda Greensmith
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Neil Pearce
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Valentina Gallo
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| | - Andrea Malaspina
- Centre for Neuroscience & Trauma (C.L., F.O., J.K., A.M.) and Centre of Primary Care and Public Health (V.G.), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; Sobell Department of Motor Neuroscience and Movement Disorders (C.L., P.F., L.G.), MRC Centre for Neuromuscular Diseases (P.F., L.G.), MRC Unit for Lifelong Health and Ageing (N.S.), Department of Molecular Neuroscience (K.S.), and Department of Clinical Neuroscience (R.O.), UCL Institute of Neurology; Basildon and Thurrock University Hospitals (K.A., A.M.), NHS Foundation Trust, Basildon; William Harvey Hospital (F.O.), Kent; Proteome Sciences plc (E.L.), South Wing Laboratory, Institute of Psychiatry, UK; Neurology (J.K.), University Hospital Basel, Switzerland; Department of Immunobiology (T.T.), King's College London; National Hospital for Neurology and Neurosurgery (N.S., R.H., R.O.), London; Musgrove Park Hospital (M.F.), Taunton; and Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
13
|
Elevated Levels of IFN-γ in CSF and Serum of Patients with Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0136937. [PMID: 26332465 PMCID: PMC4557946 DOI: 10.1371/journal.pone.0136937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives To explore whether the levels of IFN-γ in cerebral spinal fluid (CSF) and serum are elevated in ALS patients and to analyze the correlations between the IFN-γ levels and disease progression. Methods CSF and serum samples were obtained from 52 ALS patients and 31 non-ALS patients. The levels of IFN-γ in CSF and serum were assessed, and disease progression parameters, including the disease interval (months from onset, MFO), the revised ALS Functional Rating Scale (ALSFRS-r) score and the disease progression rate (DPR) were analyzed by registered neurologists. All samples were measured using a commercial enzyme-linked immunosorbent assay. Statistical analyses were performed using Prism software. Results Compared to the non-ALS patients, the ALS patients displayed significantly increased levels of IFN-γ in both CSF and serum, and these values consistently correlated with disease progression. Conclusions These results demonstrated that IFN-γ in CSF may serve as a biomarker of ALS differentiation and progression. CSF IFN-γ was a more reliable biomarker of disease diagnosis and progression than serum IFN-γ.
Collapse
|
14
|
Complex Inflammation mRNA-Related Response in ALS Is Region Dependent. Neural Plast 2015; 2015:573784. [PMID: 26301107 PMCID: PMC4537753 DOI: 10.1155/2015/573784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory changes are analyzed in the anterior spinal cord and frontal cortex area 8 in typical spinal-predominant ALS cases. Increased numbers of astrocytes and activated microglia are found in the anterior horn of the spinal cord and pyramidal tracts. Significant increased expression of TLR7, CTSS, and CTSC mRNA and a trend to increased expression of IL10RA, TGFB1, and TGFB2 are found in the anterior lumbar spinal cord in ALS cases compared to control cases, whereas C1QTNF7 and TNFRSF1A mRNA expression levels are significantly decreased. IL6 is significantly upregulated and IL1B shows a nonsignificant increased expression in frontal cortex area 8 in ALS cases. IL-6 immunoreactivity is found in scattered monocyte-derived macrophages/microglia and TNF-α in a few cells of unknown origin in ALS cases. Increased expression and abnormal distribution of IL-1β occurred in motor neurons of the lumbar spinal cord in ALS. Strong IL-10 immunoreactivity colocalizes with TDP-43-positive inclusions in motor neurons in ALS cases. The present observations show a complex participation of cytokines and mediators of the inflammatory response in ALS consistent with increased proinflammatory cytokines and sequestration of anti-inflammatory IL-10 in affected neurons.
Collapse
|
15
|
C-kit is important for SOD1(G93A) mouse survival independent of mast cells. Neuroscience 2015; 301:415-20. [PMID: 26112382 DOI: 10.1016/j.neuroscience.2015.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease leading to progressive and lethal paralysis. The disease process is multi-factorial and is characterized by selective motor neuron degeneration. Previous work demonstrated that the local concentration of various growth factors can influence motor neuron survival and disease progression. A potential role for c-kit, a growth factor receptor present in the spinal cord, in ALS is unknown. To dissect the role of c-kit in ALS we interbred SOD1(G93A) mice with kit(w-sh/w-sh) mice, which have a 70% decrease in c-kit expression in the spinal cord. kit(w-sh/w-sh) SOD1(G93A) mice have a reduced survival compared to SOD1(G93A) mice, while the amount of motor neurons at end stage is similar. By means of grip strength and nerve conductance analysis we show that kit(w-sh/w-sh) mice have diminished strength and slightly impaired compound muscle action potential latency, although the number of neurons is similar across genotypes. Decreasing kit gene expression in SOD1(G93A) mice is detrimental and our results imply that this effect is independent of mast cells, as tested by ketotifen administration. To conclude, our data expand on the protective role of growth factors in ALS, as decreasing c-kit by approximately 70% is detrimental in SOD1(G93A) mice.
Collapse
|
16
|
Raposo M, Bettencourt C, Maciel P, Gao F, Ramos A, Kazachkova N, Vasconcelos J, Kay T, Rodrigues AJ, Bettencourt B, Bruges-Armas J, Geschwind D, Coppola G, Lima M. Novel candidate blood-based transcriptional biomarkers of Machado-Joseph disease. Mov Disord 2015; 30:968-75. [PMID: 25914309 DOI: 10.1002/mds.26238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Machado-Joseph disease (or spinocerebellar ataxia type 3) is a late-onset polyglutamine neurodegenerative disorder caused by a mutation in the ATXN3 gene, which encodes for the ubiquitously expressed protein ataxin-3. Previous studies on cell and animal models have suggested that mutated ataxin-3 is involved in transcriptional dysregulation. Starting with a whole-transcriptome profiling of peripheral blood samples from patients and controls, we aimed to confirm abnormal expression profiles in Machado-Joseph disease and to identify promising up-regulated genes as potential candidate biomarkers of disease status. METHODS The Illumina Human V4-HT12 array was used to measure transcriptome-wide gene expression in peripheral blood samples from 12 patients and 12 controls. Technical validation and validation in an independent set of samples were performed by quantitative real-time polymerase chain reaction (PCR). RESULTS Based on the results from the microarray, twenty six genes, found to be up-regulated in patients, were selected for technical validation by quantitative real-time PCR (validation rate of 81% for the up-regulation trend). Fourteen of these were further tested in an independent set of 42 patients and 35 controls; 10 genes maintained the up-regulation trend (FCGR3B, CSR2RA, CLC, TNFSF14, SLA, P2RY13, FPR2, SELPLG, YIPF6, and GPR96); FCGR3B, P2RY13, and SELPLG were significantly up-regulated in patients when compared with controls. CONCLUSIONS Our findings support the hypothesis that mutated ataxin-3 is associated with transcription dysregulation, detectable in peripheral blood cells. Furthermore, this is the first report suggesting a pool of up-regulated genes in Machado-Joseph disease that may have the potential to be used for fine phenotyping of this disease. © 2015 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mafalda Raposo
- Centre of Research in Natural Resources (CIRN), University of the Azores, Ponta Delgada, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | | | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fuying Gao
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Amanda Ramos
- Centre of Research in Natural Resources (CIRN), University of the Azores, Ponta Delgada, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Nadiya Kazachkova
- Centre of Research in Natural Resources (CIRN), University of the Azores, Ponta Delgada, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João Vasconcelos
- Department of Neurology, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Teresa Kay
- Department of Clinical Genetics, Hospital of D. Estefania, Lisbon, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Bettencourt
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.,Hospital de Santo Espírito da Ilha Terceira, SEEBMO, Angra do Heroísmo, Portugal
| | - Jácome Bruges-Armas
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.,Hospital de Santo Espírito da Ilha Terceira, SEEBMO, Angra do Heroísmo, Portugal
| | - Daniel Geschwind
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Manuela Lima
- Centre of Research in Natural Resources (CIRN), University of the Azores, Ponta Delgada, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| |
Collapse
|
17
|
ERVK polyprotein processing and reverse transcriptase expression in human cell line models of neurological disease. Viruses 2015; 7:320-32. [PMID: 25609305 PMCID: PMC4306841 DOI: 10.3390/v7010320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 12/03/2022] Open
Abstract
Enhanced expression of the reverse transcriptase (RT) protein encoded by human endogenous retrovirus-K (ERVK) is a promising biomarker for several inflammatory and neurological diseases. However, unlike RT enzymes encoded by exogenous retroviruses, little work has been done to identify ERVK RT isoforms, their expression patterns, and cellular localization. Using Western blot, we showcase the ERVK gag-pro-pol polyprotein processing leading to the production of several ERVK RT isoforms in human neuronal (ReNcell CX) and astrocytic (SVGA) models of neuroinflammatory disease. Since the pro-inflammatory cytokine IFNγ plays a key role in the pathology of several ERVK-associated neurological diseases, we sought to determine if IFNγ can drive ERVK RT expression. IFNγ signalling markedly enhanced ERVK polyprotein and RT expression in both human astrocytes and neurons. RT isoforms were expressed in a cell-type specific pattern and the RT-RNase H form was significantly increased with IFNγ treatment. Fluorescent imaging revealed distinct cytoplasmic, perinuclear and nuclear ERVK RT staining patterns upon IFNγ stimulation of astrocytes and neurons. These findings indicate that ERVK expression is inducible under inflammatory conditions such as IFNγ exposure—and thus, these newly established in vitro models may be useful in exploring ERVK biology in the context of neuroinflammatory disease.
Collapse
|
18
|
Šedý J, Bekiaris V, Ware CF. Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2014; 7:a016279. [PMID: 25524549 DOI: 10.1101/cshperspect.a016279] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor-ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease.
Collapse
Affiliation(s)
- John Šedý
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Vasileios Bekiaris
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
19
|
Malaspina A, Puentes F, Amor S. Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. Int Immunol 2014; 27:117-29. [DOI: 10.1093/intimm/dxu099] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Manghera M, Ferguson J, Douville R. Endogenous Retrovirus-K and Nervous System Diseases. Curr Neurol Neurosci Rep 2014; 14:488. [DOI: 10.1007/s11910-014-0488-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Cerebrospinal fluid-targeted delivery of neutralizing anti-IFNγ antibody delays motor decline in an ALS mouse model. Neuroreport 2014; 25:49-54. [PMID: 24145774 DOI: 10.1097/wnr.0000000000000043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the selective and gradual loss of motoneurons in the brain and spinal cord. A persistent inflammation, typified by the activation of astrocytes and microglia, accompanies the progressive degeneration of motoneurons. Interferon gamma (IFNγ), a potent proinflammatory cytokine that is aberrantly present in the spinal cord of ALS mice and patients, has been proposed to contribute to motoneuron death by eliciting the activation of the lymphotoxin-β receptor (LT-βR) through its ligand LIGHT. However, the implication of IFNγ in the pathogenic process remains elusive. Here, we show that an antagonistic anti-IFNγ antibody efficiently rescues motoneurons from IFNγ-induced death. When transiently delivered in the cerebrospinal fluid through a subcutaneously implanted osmotic minipump, the neutralizing anti-IFNγ antibody significantly retarded motor function decline in a mouse model of ALS. However, this transient infusion of anti-IFNγ antibody did not increase the life expectancy of ALS mice. Our results suggest that IFNγ contributes to ALS pathogenesis and represents a potential therapeutic target for ALS.
Collapse
|
22
|
Otsmane B, Moumen A, Aebischer J, Coque E, Sar C, Sunyach C, Salsac C, Valmier J, Salinas S, Bowerman M, Raoul C. Somatic and axonal LIGHT signaling elicit degenerative and regenerative responses in motoneurons, respectively. EMBO Rep 2014; 15:540-7. [PMID: 24668263 DOI: 10.1002/embr.201337948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A receptor-ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.
Collapse
Affiliation(s)
- Belkacem Otsmane
- The Mediterranean Institute of Neurobiology, Inmed, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci 2013; 7:214. [PMID: 24312006 PMCID: PMC3833095 DOI: 10.3389/fncel.2013.00214] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder characterized by the progressive and selective loss of both upper and lower motoneurons. The neurodegenerative process is accompanied by a sustained inflammation in the brain and spinal cord. The neuron-immune interaction, implicating resident microglia of the central nervous system and blood-derived immune cells, is highly dynamic over the course of the disease. Here, we discuss the timely controlled neuroprotective and neurotoxic cues that are provided by the immune environment of motoneurons and their potential therapeutic applications for ALS.
Collapse
Affiliation(s)
- Melissa Bowerman
- The Neuroscience Institute of Montpellier, INM, INSERM UMR1051, Saint Eloi Hospital Montpellier, France
| | | | | | | | | | | |
Collapse
|
25
|
Death Receptors in the Selective Degeneration of Motoneurons in Amyotrophic Lateral Sclerosis. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:746845. [PMID: 26316997 PMCID: PMC4437334 DOI: 10.1155/2013/746845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/28/2013] [Indexed: 12/13/2022]
Abstract
While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-βR, and p75NTR signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.
Collapse
|
26
|
Milošević M, Stenovec M, Kreft M, Petrušić V, Stević Z, Trkov S, Andjus PR, Zorec R. Immunoglobulins G from patients with sporadic amyotrophic lateral sclerosis affects cytosolic Ca2+ homeostasis in cultured rat astrocytes. Cell Calcium 2013; 54:17-25. [PMID: 23623373 DOI: 10.1016/j.ceca.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/23/2022]
Abstract
Astrocytes are considered essential in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). We have demonstrated previously that immunoglobulins G (IgG) isolated from patients with ALS enhance the mobility of acidic vesicles in cultured astrocytes in a Ca(2+)-dependent manner. Here we directly examined the impact of purified sporadic ALS IgG on cytosolic [Ca(2+)] ([Ca(2+)]i) in astrocytes. Confocal time-lapse images were acquired and fluorescence of a non-ratiometric Ca(2+) indicator was recorded before and after the application of IgG. ALS IgG (0.1 mg/ml) from 7 patients evoked transient increases in [Ca(2+)]i in ~50% of tested astrocytes. The probability of observing a response was independent of extracellular Ca(2+). The peak increase in [Ca(2+)]i developed ~3 times faster and the time integral of evoked transients was ~2-fold larger; the peak amplitude itself was not affected by extracellular Ca(2+). Application of pharmacological inhibitors revealed that activation of inositol-1,4,5-triphosphate receptors is necessary and sufficient to initiate transients in [Ca(2+)]i; the Ca(2+) influx through store-operated calcium entry prolongs the transient increase in [Ca(2+)]i. Thus, ALS IgG acutely affect [Ca(2+)]i by mobilizing both, intra- and extracellular Ca(2+) into the cytosol of cultured astrocytes.
Collapse
Affiliation(s)
- Milena Milošević
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Laboratory of Neuroendocrinology-Molecular Cell Physiology, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013; 16:571-9. [PMID: 23542689 PMCID: PMC3637847 DOI: 10.1038/nn.3357] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of ALS mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2+ cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. Here we report that there is extensive degeneration of gray matter oligodendrocytes in the spinal cord of ALS mice before disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction also is prevalent in human ALS, as gray matter demyelination and reactive changes in NG2+ cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes.
Collapse
|
28
|
Neuroinflammation as the proximate cause of signature pathogenic pattern progression in amyotrophic lateral sclerosis, AIDS, and multiple sclerosis. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:169270. [PMID: 23304639 PMCID: PMC3529499 DOI: 10.1155/2012/169270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022]
Abstract
The realization of injury to large motor neurons is embedded within contextual reference to the parallel pathways of apoptosis and necrosis of system-patterned evolution. A widespread loss of cell components occurs intracellularly and involves a reactive participation to a neuroinflammation that potentially is immunologically definable. In such terms, sporadic and hereditary forms of amyotrophic sclerosis are paralleled by the components of a reactive nature that involve the aggregation of proteins and conformational misfolding on the one hand and a powerful oxidative degradation that overwhelms the proteasome clearance mechanisms. In such terms, global participation is only one aspect of a disorder realization that induces the development of the defining systems of modulation and of injury that involves the systems of consequence as demonstrated by the overwhelming immaturity of the molecular variants of mutated superoxide dismutase. It is further to such processes of neuroinflammatory consequence that the immune system is integral to the reactive involvement of neurons as patterns of disease recognition and as the system biology of prevalent voluntarily motor character. It is highly significant to recognize various inflammatory states in the nervous system as prototype variability in phenotype expression and as incremental progression in pathogenesis. In fact a determining definition of amyotrophic lateral sclerosis is an incremental phenotype modulation within the pathways of the consequential loss and depletion of motor cell components in the first instance. Neuroinflammation proves a pattern of the contextual spread of such pathogenic progression in the realization of end-stage injury states involving neurons and neuronal networks.
Collapse
|
29
|
Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology 2012; 62:2346-52. [PMID: 22369784 DOI: 10.1016/j.neuropharm.2012.02.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The pathology is mimicked to a striking degree in transgenic mice carrying familial ALS-linked SOD1 gene mutations. Olesoxime (TRO19622), a novel neuroprotective and reparative compound identified in a high-throughput screen based on motoneuron (MN) survival, delays disease onset and improves survival in mutant SOD1(G93A) mice, a model for ALS. The present study further analyses the cellular basis for the protection provided by olesoxime at the neuromuscular junctions (NMJ) and the spinal cord. Studies were carried out at two disease stages, 60 days, presymptomatic and 104 days, symptomatic. Cohorts of wild type and SOD1(G93A) mice were randomized to receive olesoxime-charged food pellets or normal diet from day 21 onward. Analysis showed that olesoxime initially reduced denervation from 60 to 30% compared to SOD1(G93A) mice fed with control food pellets while at the symptomatic stage only a few NMJs were still preserved. Immunostaining of cryostat sections of the lumbar spinal cord with VAChT to visualize MNs, GFAP for astrocytes and Iba1 for microglial cells showed that olesoxime strongly reduced astrogliosis and microglial activation and prevented MN loss. These studies suggest that olesoxime exerts its protective effect on multiple cell types implicated in the disease process in SOD1(G93A) mice, slowing down muscle denervation, astrogliosis, microglial activation and MN death. A Phase 3 clinical study in ALS patients will determine whether olesoxime could be beneficial for the treatment of ALS.
Collapse
|