1
|
De Schoenmacker I, Costa Marques D, Scheuren PS, Lütolf R, Gorrell LM, Mehli SC, Curt A, Rosner J, Hubli M. Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions. Clin Neurophysiol 2024; 166:31-42. [PMID: 39094528 DOI: 10.1016/j.clinph.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - David Costa Marques
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay M Gorrell
- Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| | - Sarah C Mehli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Stephens E, Dhanasekara CS, Montalvan V, Zhang B, Bassett A, Hall R, Rodaniche A, Robohm-Leavitt C, Shen CL, Kahatuduwa CN. Utility of Repetitive Transcranial Magnetic Stimulation for Chronic Daily Headache Prophylaxis: A Systematic Review and Meta-Analysis. Curr Pain Headache Rep 2024; 28:149-167. [PMID: 38277066 DOI: 10.1007/s11916-024-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Management of chronic daily headaches (CDH) remains challenging due to the limited efficacy of standard prophylactic pharmacological measures. Several studies have reported that repetitive transcranial magnetic stimulation (rTMS) can effectively treat chronic headaches. The objective was to determine the utility of rTMS for immediate post-treatment and sustained CDH prophylaxis. RECENT FINDINGS All procedures were conducted per PRISMA guidelines. PubMed, Scopus, Web of Science, and ProQuest databases were searched for controlled clinical trials that have tested the efficacy of rTMS on populations with CDH. DerSimonian-Laird random-effects meta-analyses were performed using the 'meta' package in R to examine the post- vs. pre-rTMS changes in standardized headache intensity and frequency compared to sham-control conditions. Thirteen trials were included with a combined study population of N = 538 patients with CDH (rTMS, N = 284; Sham, N = 254). Patients exposed to rTMS had significantly reduced standardized CDH intensity and frequency in the immediate post-treatment period (Hedges' g = -1.16 [-1.89, -0.43], p = 0.002 and Δ = -5.07 [-10.05, -0.11], p = 0.045 respectively). However, these effects were sustained marginally in the follow-up period (Hedges' g = -0.43 [-0.76, -0.09], p = 0.012 and Δ = -3.33 [-5.52, -1.14], p = 0.003). Significant between-study heterogeneity was observed, at least partially driven by variations in rTMS protocols. Despite the observed clinically meaningful and statistically significant benefits in the immediate post-treatment period, the prophylactic effects of rTMS on CDH do not seem to sustain with discontinuation. Thus, the cost-effectiveness of the routine use of rTMS for CDH prophylaxis remains questionable. REGISTRATION Protocol preregistered in PROSPERO International Prospective Register of Systematic Reviews (CRD42021250100).
Collapse
Affiliation(s)
- Emily Stephens
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chathurika S Dhanasekara
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Victor Montalvan
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
- Department of Neurology, Division of Vascular Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Bassett
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rebecca Hall
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Alyssa Rodaniche
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Christina Robohm-Leavitt
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chanaka N Kahatuduwa
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
3
|
Viganò A, Sasso D’Elia T, Sava SL, Colosimo A, Di Piero V, Magis D, Schoenen J. Exploring the Therapeutic Potential of Quadripulse rTMS over the Visual Cortex: A Proof-of-Concept Study in Healthy Volunteers and Chronic Migraine Patients with Medication Overuse Headache. Biomedicines 2024; 12:288. [PMID: 38397890 PMCID: PMC10886990 DOI: 10.3390/biomedicines12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
In chronic migraine with medication overuse (CM-MOH), sensitization of visual cortices is reflected by (i) increased amplitude of stimulus-evoked responses and (ii) habituation deficit during repetitive stimulation. Both abnormalities might be mitigated by inhibitory transcranial neurostimulation. Here, we tested an inhibitory quadripulse repetitive transcranial magnetic stimulation (rTMS-QPI) protocol to decrease durably visual cortex excitability in healthy subjects (HS) and explored its therapeutic potential in CM-MOH patients. Pattern-reversal visual evoked potentials (VEP) were used as biomarkers of effect and recorded before (T1), immediately after (T2), and 3 h after stimulation (T3). In HS, rTMS-QPI durably decreased the VEP 1st block amplitude (p < 0.05) and its habituation (p < 0.05). These changes were more pronounced for the P1N2 component that was modified already at T2 up to T3, while for N1P1 they were significant only at T3. An excitatory stimulation protocol (rTMS-QPE) tended to have an opposite effect, restricted to P1N2. In 12 CM-MOH patients, during a four-week treatment (2 sessions/week), rTMS-QPI significantly reduced monthly headache days (p < 0.01). In patients reversing from CM-MOH to episodic migraine (n = 6), VEP habituation significantly improved after treatment (p = 0.005). rTMS-QPI durably decreases visual cortex responsivity in healthy subjects. In a proof-of-concept study of CM-MOH patients, rTMS-QPI also has beneficial clinical and electrophysiological effects, but sham-controlled trials are needed.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
| | - Tullia Sasso D’Elia
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- IRCCS San Raffaele Alla Pisana, 00163 Rome, Italy
| | - Simona Liliana Sava
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- Headache Clinic of Valdor—ISOSL, 4020 Liège, Belgium
| | - Alfredo Colosimo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics Sapienza, Sapienza—University of Rome, 00185 Rome, Italy
| | - Vittorio Di Piero
- Subintensive Neurology & Headache Centre, Department of Human Neurosciences, Sapienza—University of Rome, 00185 Rome, Italy
| | - Delphine Magis
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- Neurology Department and Pain Clinic (CMTD), CHR East Belgium, 4800 Verviers, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
| |
Collapse
|
4
|
Sezai T, Murphy MJ, Riddell N, Nguyen V, Crewther SG. Visual Processing During the Interictal Period Between Migraines: A Meta-Analysis. Neuropsychol Rev 2023; 33:765-782. [PMID: 36115887 PMCID: PMC10770263 DOI: 10.1007/s11065-022-09562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/20/2022] [Indexed: 10/14/2022]
Abstract
Migraine is a poorly understood neurological disorder and a leading cause of disability in young adults, particularly women. Migraines are characterized by recurring episodes of severe pulsating unilateral headache and usually visual symptoms. Currently there is some disagreement in the electrophysiological literature regarding the universality of all migraineurs exhibiting physiological visual impairments also during interictal periods (i.e., the symptom free period between migraines). Thus, this meta-analysis investigated the evidence for altered visual function as measured electrophysiologically via pattern-reversal visual evoked potential (VEP) amplitudes and habituation in adult migraineurs with or without visual aura and controls in the interictal period. Twenty-three studies were selected for random effects meta-analysis which demonstrated slightly diminished VEP amplitudes in the early fast conducting P100 component but not in N135, and substantially reduced habituation in the P100 and the N135 in migraineurs with and without visual aura symptoms compared to controls. No statistical differences were found between migraineurs with and without aura, possibly due to inadequate studies. Overall, insufficient published data and substantial heterogeneity between studies was observed for all latency components of pattern-reversal VEP, highlighting the need for further electrophysiological experimentation and more targeted temporal analysis of visual function, in episodic migraineurs.
Collapse
Affiliation(s)
- Timucin Sezai
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Melanie J Murphy
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Vinh Nguyen
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Marti-Marca A, Vilà-Balló A, Cerda-Company X, Ikumi N, Torres-Ferrus M, Caronna E, Gallardo VJ, Alpuente A, Torralba Cuello M, Soto-Faraco S, Pozo-Rosich P. Exploring sensory sensitivity, cortical excitability, and habituation in episodic migraine, as a function of age and disease severity, using the pattern-reversal task. J Headache Pain 2023; 24:104. [PMID: 37545005 PMCID: PMC10405481 DOI: 10.1186/s10194-023-01618-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Migraine is a cyclic, neurosensory disorder characterized by recurrent headaches and altered sensory processing. The latter is manifested in hypersensitivity to visual stimuli, measured with questionnaires and sensory thresholds, as well as in abnormal cortical excitability and a lack of habituation, assessed with visual evoked potentials elicited by pattern-reversal stimulation. Here, the goal was to determine whether factors such as age and/or disease severity may exert a modulatory influence on sensory sensitivity, cortical excitability, and habituation. METHODS Two similar experiments were carried out, the first comparing 24 young, episodic migraine patients and 28 healthy age- and gender-matched controls and the second 36 middle-aged, episodic migraine patients and 30 healthy age- and gender-matched controls. A neurologist confirmed the diagnoses. Migraine phases were obtained using eDiaries. Sensory sensitivity was assessed with the Sensory Perception Quotient and group comparisons were carried out. We obtained pattern-reversal visual evoked potentials and calculated the N1-P1 Peak-to-Peak amplitude. Two linear mixed-effects models were fitted to these data. The first model had Block (first block, last block) and Group (patients, controls) as fixed factors, whereas the second model had Trial (all trials) and Group as fixed factors. Participant was included as a random factor in both. N1-P1 first block amplitude was used to assess cortical excitability and habituation was defined as a decrease of N1-P1 amplitude across Blocks/Trials. Both experiments were performed interictally. RESULTS The final samples consisted of 18 patients with episodic migraine and 27 headache-free controls (first experiment) and 19 patients and 29 controls (second experiment). In both experiments, patients reported increased visual hypersensitivity on the Sensory Perception Quotient as compared to controls. Regarding N1-P1 peak-to-peak data, there was no main effect of Group, indicating no differences in cortical excitability between groups. Finally, significant main effects of both Block and Trial were found indicating habituation in both groups, regardless of age and headache frequency. CONCLUSIONS The results of this study yielded evidence for significant hypersensitivity in patients but no significant differences in either habituation or cortical excitability, as compared to headache-free controls. Although the alterations in patients may be less pronounced than originally anticipated they demonstrate the need for the definition and standardization of optimal methodological parameters.
Collapse
Affiliation(s)
- Angela Marti-Marca
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Adrià Vilà-Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Xim Cerda-Company
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Nara Ikumi
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Marta Torres-Ferrus
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Edoardo Caronna
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Victor J Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
| | - Alicia Alpuente
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Torralba Cuello
- Multisensory Research Group, Center for Brain and Cognition, Pompeu Fabra University, 08005, Barcelona, Spain
| | - Salvador Soto-Faraco
- Multisensory Research Group, Center for Brain and Cognition, Pompeu Fabra University, 08005, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research (VHIR), Department of Medicine, Universitat Autonoma Barcelona, Barcelona, Spain.
- Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
6
|
Puledda F, Viganò A, Sebastianelli G, Parisi V, Hsiao FJ, Wang SJ, Chen WT, Massimini M, Coppola G. Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms: A narrative review. Cephalalgia 2023; 43:3331024231195780. [PMID: 37622421 DOI: 10.1177/03331024231195780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory unified theory. METHODS We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials. We summarized the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnormalities underlying migraine recurrence. RESULTS All electrophysiological modalities have determined specific changes in brain dynamics across the different phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuromodulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, non-painful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal phases. CONCLUSION Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamus-cortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genetically determined dysfunctions of the synaptic short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Fu-Jung Hsiao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
7
|
Coppola G, Ambrosini A. What has neurophysiology revealed about migraine and chronic migraine? HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:117-133. [PMID: 38043957 DOI: 10.1016/b978-0-12-823356-6.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Since the first electroencephalographic recordings obtained by Golla and Winter in 1959, researchers have used a variety of neurophysiological techniques to determine the mechanisms underlying recurrent migraine attacks. Neurophysiological methods have shown that the brain during the interictal phase of an episodic migraine is characterized by a general hyperresponsiveness to sensory stimuli, a malfunction of the monoaminergic brainstem circuits, and by functional alterations of the thalamus and thalamocortical loop. All of these alterations vary plastically during the phases of the migraine cycle and interictally with the days following the attack. Both episodic migraineurs recorded during an attack and chronic migraineurs are characterized by a general increase in the cortical amplitude response to peripheral sensory stimuli; this is an electrophysiological hallmark of a central sensitization process that is further reinforced through medication overuse. Considering the large-scale functional involvement and the main roles played by the brainstem-thalamo-cortical network in selection, elaboration, and learning of relevant sensory information, future research should move from searching for one specific primary site of dysfunction at the macroscopic level, to the chronic, probably genetically determined, molecular dysfunctions at the synaptic level, responsible for short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Latina, Italy
| | | |
Collapse
|
8
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Rafique SA, Steeves JKE. Modulating intrinsic functional connectivity with visual cortex using low-frequency repetitive transcranial magnetic stimulation. Brain Behav 2022; 12:e2491. [PMID: 35049143 PMCID: PMC8865167 DOI: 10.1002/brb3.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Intrinsic network connectivity becomes altered in pathophysiology. Noninvasive brain stimulation can modulate pathological functional networks in an attempt to restore the inherent response. To determine its usefulness for visual-related disorders, we developed procedures investigating repetitive transcranial magnetic stimulation (rTMS) protocols targeting the visual cortex on modulating connectivity associated with the visual network and default mode network (DMN). METHODS We compared two low-frequency (1 Hz) rTMS protocols to the visual cortex (V1)-a single 20 min session and five successive 20 min sessions (accelerated/within-session rTMS)-using multi-echo resting-state functional magnetic resonance whole-brain imaging and resting-state functional connectivity (rsFC). We also explored the relationship between rsFC and rTMS-induced changes in key inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. GABA (GABA+) and glutamate (Glx) concentrations were measured in vivo using magnetic resonance spectroscopy. RESULTS Acute disruption with a single rTMS session caused widespread connectivity reconfiguration with nodes of interest. Changes were not evident immediately post-rTMS but were observed at 1 h post-rTMS. Accelerated sessions resulted in weak alterations in connectivity, producing a relatively homeostatic response. Changes in GABA+ and Glx concentrations with network connectivity were dependent on the rTMS protocol. CONCLUSIONS This proof-of-concept study offers new perspectives to assess stimulation-induced neural processes involved in intrinsic functional connectivity and the potential for rTMS to modulate nodes interconnected with the visual cortex. The differential effects of single-session and accelerated rTMS on physiological markers are crucial for furthering the advancement of treatment modalities in visual cortex related disorders.
Collapse
Affiliation(s)
- Sara A Rafique
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
10
|
Impaired short-term visual paired associative plasticity in patients with migraine between attacks. Pain 2021; 162:803-810. [PMID: 33136981 DOI: 10.1097/j.pain.0000000000002085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023]
Abstract
ABSTRACT A common experimental neurophysiological method to study synaptic plasticity is pairing activity of somatosensory afferents and motor cortical circuits, so-called paired associative stimulation (PAS). Dysfunctional inhibitory and excitatory PAS mechanisms within the sensorimotor system were described in patients with migraine without aura (MO) between attacks. We have recently observed that the same bidirectional PAS rules also apply to the visual system. Here, we have tested whether dysfunctioning associative plasticity might characterize the visual system of patients with MO. In 14 patients with MO between attacks and in 15 healthy volunteers, we performed a previously validated visual PAS (vPAS) protocol by coupling 90 black-and-white checkerboard reversals with low-frequency transcranial magnetic stimulation pulses over the occipital cortex at 2 interstimulus intervals of -25/+25 ms around the visual-evoked potential (VEP) P1 latency. We recorded VEPs (600 sweeps) before, immediately after, and 10 min after each vPAS session. We analysed VEP N1-P1 amplitude and delayed habituation. Although vPAS-25 significantly enhanced and vPAS + 25 reduced VEP amplitude habituation in healthy volunteers, the same protocols did not significantly change VEP amplitude habituation in MO between attacks. We provide evidence for lack of habituation enhancing and habituation suppressing visual PAS mechanisms within the visual system in interictal migraine. This finding, in combination with those previously obtained studying the sensorimotor system, leads us to argue that migraine disease-related dysrhythmic thalamocortical activity prevents the occurrence of physiological bidirectional synaptic plasticity induced by vPAS.
Collapse
|
11
|
Rafique SA, Steeves JKE. Assessing differential effects of single and accelerated low-frequency rTMS to the visual cortex on GABA and glutamate concentrations. Brain Behav 2020; 10:e01845. [PMID: 32964685 PMCID: PMC7749615 DOI: 10.1002/brb3.1845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The application of repetitive transcranial magnetic stimulation (rTMS) for therapeutic use in visual-related disorders and its underlying mechanisms in the visual cortex is under-investigated. Additionally, there is little examination of rTMS adverse effects particularly with regards to visual and cognitive function. Neural plasticity is key in rehabilitation and recovery of function; thus, effective therapeutic strategies must be capable of modulating plasticity. Glutamate and γ-aminobutyric acid (GABA)-mediated changes in the balance between excitation and inhibition are prominent features in visual cortical plasticity. OBJECTIVES AND METHOD We investigated the effects of low-frequency (1 Hz) rTMS to the visual cortex on levels of neurotransmitters GABA and glutamate to determine the therapeutic potential of 1 Hz rTMS for visual-related disorders. Two rTMS regimes commonly used in clinical applications were investigated: participants received rTMS to the visual cortex either in a single 20-min session or five accelerated 20-min sessions (not previously investigated at the visual cortex). Proton (1H) magnetic resonance spectroscopy for in vivo quantification of GABA (assessed via GABA+) and glutamate (assessed via Glx) concentrations was performed pre- and post-rTMS. RESULTS GABA+ and Glx concentrations were unaltered following a single session of rTMS to the visual cortex. One day of accelerated rTMS significantly reduced GABA+ concentration for up to 24 hr, with levels returning to baseline by 1-week post-rTMS. Basic visual and cognitive function remained largely unchanged. CONCLUSION Accelerated 1 Hz rTMS to the visual cortex has greater potential for approaches targeting plasticity or in cases with altered GABAergic responses in visual disorders. Notably, these results provide preliminary insight into a critical window of plasticity with accelerated rTMS (e.g., 24 hr) in which adjunct therapies may offer better functional outcome. We describe detailed procedures to enable further exploration of these protocols.
Collapse
Affiliation(s)
- Sara A. Rafique
- Department of Psychology and Centre for Vision ResearchYork UniversityTorontoONCanada
| | | |
Collapse
|
12
|
Lei K, Kunnel A, Metzger-Smith V, Golshan S, Javors J, Wei J, Lee R, Vaninetti M, Rutledge T, Leung A. Diminished corticomotor excitability in Gulf War Illness related chronic pain symptoms; evidence from TMS study. Sci Rep 2020; 10:18520. [PMID: 33116195 PMCID: PMC7595115 DOI: 10.1038/s41598-020-75006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Chronic diffuse body pain is unequivocally highly prevalent in Veterans who served in the 1990-91 Persian Gulf War and diagnosed with Gulf War Illness (GWI). Diminished motor cortical excitability, as a measurement of increased resting motor threshold (RMT) with transcranial magnetic stimulation (TMS), is known to be associated with chronic pain conditions. This study compared RMT in Veterans with GWI related diffuse body pain including headache, muscle and joint pain with their military counterparts without GWI related diffuse body pain. Single pulse TMS was administered over the left motor cortex, using anatomical scans of each subject to guide the TMS coil, starting at 25% of maximum stimulator output (MSO) and increasing in steps of 2% until a motor response with a 50 µV peak to peak amplitude, defined as the RMT, was evoked at the contralateral flexor pollicis brevis muscle. RMT was then analyzed using Repeated Measures Analysis of Variance (RM-ANOVA). Veterans with GWI related chronic headaches and body pain (N = 20, all males) had a significantly (P < 0.001) higher average RMT (% ± SD) of 77.2% ± 16.7% compared to age and gender matched military controls (N = 20, all males), whose average was 55.6% ± 8.8%. Veterans with GWI related diffuse body pain demonstrated a state of diminished corticomotor excitability, suggesting a maladaptive supraspinal pain modulatory state. The impact of this observed supraspinal functional impairment on other GWI related symptoms and the potential use of TMS in rectifying this abnormality and providing relief for pain and co-morbid symptoms requires further investigation.Trial registration: This study was registered on January 25, 2017, on ClinicalTrials.gov with the identifier: NCT03030794. Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT03030794 .
Collapse
Affiliation(s)
- Karen Lei
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA.,College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA, 95757, USA
| | - Alphonsa Kunnel
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Valerie Metzger-Smith
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Shahrokh Golshan
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA
| | - Jennifer Javors
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Jennie Wei
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Roland Lee
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Michael Vaninetti
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Thomas Rutledge
- Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Albert Leung
- Veterans Medical Research Foundation, 3350 La Jolla Village Dr (151A), Building 13, San Diego, CA, 92161, USA. .,Center for Pain and Headache Research, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA. .,School of Medicine, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
The visual system as target of non-invasive brain stimulation for migraine treatment: Current insights and future challenges. PROGRESS IN BRAIN RESEARCH 2020. [PMID: 33008507 DOI: 10.1016/bs.pbr.2020.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. Photophobia, a clinical hallmark of migraine, is linked to an abnormal sensory processing of the thalamus which is converged with the non-image forming visual pathway. Finally, visual snow is an increasingly recognized persistent visual phenomenon in migraine, possibly caused by increased perception of subthreshold visual stimuli. Emerging research in non-invasive brain stimulation (NIBS) has vastly developed into a diversity of areas with promising potential. One of its clinical applications is the single-pulse transcranial magnetic stimulation (sTMS) applied over the occipital cortex which has been approved for treating migraine with aura, albeit limited evidence. Studies have also investigated other NIBS techniques, such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), for migraine prophylaxis but with conflicting results. As a dynamic brain disorder with widespread pathophysiology, targeting migraine with NIBS is challenging. Furthermore, unlike the motor cortex, evidence suggests that the visual cortex may be less plastic. Controversy exists as to whether the same fundamental principles of NIBS, based mainly on findings in the motor cortex, can be applied to the visual cortex. This review aims to explore existing literature surrounding NIBS studies on the visual system of migraine. We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
Collapse
|
14
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
15
|
Ranieri F, Coppola G, Musumeci G, Capone F, Di Pino G, Parisi V, Di Lazzaro V. Evidence for associative plasticity in the human visual cortex. Brain Stimul 2019; 12:705-713. [DOI: 10.1016/j.brs.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022] Open
|
16
|
Affiliation(s)
- Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | |
Collapse
|
17
|
Vollesen AL, Benemei S, Cortese F, Labastida-Ramírez A, Marchese F, Pellesi L, Romoli M, Ashina M, Lampl C. Migraine and cluster headache - the common link. J Headache Pain 2018; 19:89. [PMID: 30242519 PMCID: PMC6755613 DOI: 10.1186/s10194-018-0909-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023] Open
Abstract
Although clinically distinguishable, migraine and cluster headache share prominent features such as unilateral pain, common pharmacological triggers such glyceryl trinitrate, histamine, calcitonin gene-related peptide (CGRP) and response to triptans and neuromodulation. Recent data also suggest efficacy of anti CGRP monoclonal antibodies in both migraine and cluster headache. While exact mechanisms behind both disorders remain to be fully understood, the trigeminovascular system represents one possible common pathophysiological pathway and network of both disorders. Here, we review past and current literature shedding light on similarities and differences in phenotype, heritability, pathophysiology, imaging findings and treatment options of migraine and cluster headache. A continued focus on their shared pathophysiological pathways may be important in paving future treatment avenues that could benefit both migraine and cluster headache patients.
Collapse
Affiliation(s)
- Anne Luise Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Benemei
- Health Sciences Department, University of Florence and Headache Centre, Careggi University Hospital, Florence, Italy
| | - Francesca Cortese
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Polo Pontino, Latina, Italy
| | - Alejandro Labastida-Ramírez
- Dep Internal Medicine, Division of Vascular Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Lanfranco Pellesi
- Medical Toxicology, Headache and Drug Abuse Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Romoli
- Neurology Clinic, University of Perugia - S.M. Misericordiae Hospital, Perugia, Italy
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Lampl
- Department of Neurogeriatric Medicine, Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Seilerstaette 4, 4010 Linz, Austria
| | - on behalf of the School of Advanced Studies of the European Headache Federation (EHF-SAS)
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Health Sciences Department, University of Florence and Headache Centre, Careggi University Hospital, Florence, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Polo Pontino, Latina, Italy
- Dep Internal Medicine, Division of Vascular Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
- Child Neuropsichiatry Unit, University of Palermo, Palermo, Italy
- Medical Toxicology, Headache and Drug Abuse Center, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Clinic, University of Perugia - S.M. Misericordiae Hospital, Perugia, Italy
- Department of Neurogeriatric Medicine, Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Seilerstaette 4, 4010 Linz, Austria
| |
Collapse
|
18
|
Lisicki M, D'Ostilio K, Erpicum M, Schoenen J, Magis D. Sunlight irradiance and habituation of visual evoked potentials in migraine: The environment makes its mark. Cephalalgia 2017; 38:1351-1360. [PMID: 28856911 DOI: 10.1177/0333102417730128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Migraine is a complex multifactorial disease that arises from the interaction between a genetic predisposition and an enabling environment. Habituation is considered as a fundamental adaptive behaviour of the nervous system that is often impaired in migraine populations. Given that migraineurs are hypersensitive to light, and that light deprivation is able to induce functional changes in the visual cortex recognizable through visual evoked potentials habituation testing, we hypothesized that regional sunlight irradiance levels could influence the results of visual evoked potentials habituation studies performed in different locations worldwide. Methods We searched the literature for visual evoked potentials habituation studies comparing healthy volunteers and episodic migraine patients and correlated their results with levels of local solar radiation. Results After reviewing the literature, 26 studies involving 1291 participants matched our inclusion criteria. Deficient visual evoked potentials habituation in episodic migraine patients was reported in 19 studies. Mean yearly sunlight irradiance was significantly higher in locations of studies reporting deficient habituation. Correlation analyses suggested that visual evoked potentials habituation decreases with increasing sunlight irradiance in migraine without aura patients. Conclusion Results from this hypothesis generating analysis suggest that variations in sunlight irradiance may induce adaptive modifications in visual processing systems that could be reflected in visual evoked potentials habituation, and thus partially account for the difference in results between studies performed in geographically distant centers. Other causal factors such as genetic differences could also play a role, and therefore well-designed prospective trials are warranted.
Collapse
Affiliation(s)
- Marco Lisicki
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Kevin D'Ostilio
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Michel Erpicum
- 2 Climatology and Topoclimatology Laboratory, Faculty of Sciences, Liège University, Liège, Belgium
| | - Jean Schoenen
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| | - Delphine Magis
- 1 Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital, Liege, Belgium
| |
Collapse
|
19
|
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80:286-305. [PMID: 28579490 DOI: 10.1016/j.neubiorev.2017.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Abnormalities in the simplest form of learning, habituation, have been reported in a variety of neuropsychiatric disorders as etiologically diverse as Autism Spectrum Disorder, Fragile X syndrome, Schizophrenia, Parkinson's Disease, Huntington's Disease, Attention Deficit Hyperactivity Disorder, Tourette's Syndrome, and Migraine. Here we provide the first comprehensive review of what is known about alterations in this form of non-associative learning in each disorder. Across several disorders, abnormal habituation is predictive of symptom severity, highlighting the clinical significance of habituation and its importance to normal cognitive function. Abnormal habituation is discussed within the greater framework of learning theory and how it may relate to disease phenotype either as a cause, symptom, or therapy. Important considerations for the design and interpretation of habituation experiments are outlined with the hope that these will aid both clinicians and basic researchers investigating how this simple form of learning is altered in disease.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Aram C Bernardos
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|
20
|
Guerrero Solano JL, Pacheco EM, Roldan GF, Prieto Montalvo JI, Gongora Rivera JF. Potential beneficial effects of high frequency rTMS to enhance visual function in bilateral visual cortex stroke: Case report. Brain Stimul 2017; 10:326-327. [DOI: 10.1016/j.brs.2016.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022] Open
|
21
|
Kalita J, Bhoi SK, Misra UK. Effect of high rate rTMS on somatosensory evoked potential in migraine. Cephalalgia 2016; 37:1222-1230. [DOI: 10.1177/0333102416675619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Sensitization and impaired habituation of cortical neurons have been reported in migraineurs. Repetitive transcranial magnetic stimulation (rTMS) may change these phenomena and be the basis of therapeutic response. We report the effect of 10 Hz rTMS on sensitization and habituation of median somatosensory evoked potential (SEP) in migraineurs, and correlate these changes with clinical response. Methods Migraineurs having four or more episodes of headache per month were included and their clinical details were noted. Three sessions of 10 Hz rTMS, 600 pulses in 412.4 seconds were delivered on the left frontal cortex corresponding to the hot spot of right abductor digiti minimi, on alternate days. Median SEP was done before and 30 minutes after the third rTMS session. Sensitization (block I N20 amplitude) and impaired habituation (if N20 amplitude of block 2 or 3 were not suppressed compared to block I) were noted. The reduction in frequency and severity of headache in the next month were noted and correlated with SEP changes. Results Ninety-four migraineurs were included; 56 received true rTMS and 38 sham stimulation. Following stimulation, reduction in N20 amplitude of block 1 correlated with a reduction in frequency and severity of headache at one month. The impaired habituation significantly improved in the true rTMS group compared to sham stimulation, and correlated with a reduction in the severity of headache but not with frequency. Conclusion In migraineurs, 10 Hz rTMS improves habituation and may be the biological basis of headache relief.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sanjeev K Bhoi
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Usha K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
22
|
Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache. J Neurol 2016; 263:2238-2246. [DOI: 10.1007/s00415-016-8257-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 01/03/2023]
|
23
|
Coppola G, Di Lorenzo C, Serrao M, Parisi V, Schoenen J, Pierelli F. Pathophysiological targets for non-pharmacological treatment of migraine. Cephalalgia 2016; 36:1103-1111. [PMID: 26637237 DOI: 10.1177/0333102415620908] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Migraine is the most prevalent neurological disorder worldwide and ranked sixth among all diseases in years lived with disability. Overall preventive anti-migraine therapies have an effect in one patient out of two at the most, many of them being endowed with disabling adverse effects. No new disease-modifying drugs have come into clinical practice since the application to migraine of topiramate and botulinum toxin, the latter for its chronic form. There is thus clearly a need for more effective treatments that are devoid of, or have acceptable side effects. In recent years, scientific progress in migraine research has led to substantial changes in our understanding of the pathophysiology of migraine and paved the way for novel non-drug pathophysiological-targeted treatment strategies. Overview Several such non-drug therapies have been tested in migraine, such as oxidative phosphorylation enhancers, diets and non-invasive central or peripheral neurostimulation. All of them are promising for preventive migraine treatment and are quasi-devoid of side effects. Their advantage is that they can in theory be selected for individual patients according to their pathophysiological profile and they can (and probably should) be combined with the classical pharmacological armamentarium. Conclusion We will review here how knowledge of the functional anatomy and physiology of migraine mechanisms holds the key for more specific and effective non-pharmacological treatments.
Collapse
Affiliation(s)
- Gianluca Coppola
- 1 G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Italy
| | | | - Mariano Serrao
- 3 "Sapienza" University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Italy
| | - Vincenzo Parisi
- 1 G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Italy
| | - Jean Schoenen
- 4 Liège University, Headache Research Unit. University Department of Neurology, Belgium
| | - Francesco Pierelli
- 3 "Sapienza" University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Italy.,5 IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
24
|
Affiliation(s)
- A Stankewitz
- Department of Systems Neuroscience, University of Hamburg, Germany
| | - A May
- Department of Systems Neuroscience, University of Hamburg, Germany
| |
Collapse
|
25
|
Omland PM, Uglem M, Hagen K, Linde M, Tronvik E, Sand T. Visual evoked potentials in migraine: Is the “neurophysiological hallmark” concept still valid? Clin Neurophysiol 2016; 127:810-816. [DOI: 10.1016/j.clinph.2014.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 01/03/2023]
|
26
|
Mickleborough MJS, Ekstrand C, Gould L, Lorentz EJ, Ellchuk T, Babyn P, Borowsky R. Attentional Network Differences Between Migraineurs and Non-migraine Controls: fMRI Evidence. Brain Topogr 2015; 29:419-28. [PMID: 26526045 DOI: 10.1007/s10548-015-0459-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/25/2015] [Indexed: 11/25/2022]
Abstract
Migraine is a headache disorder characterized by sensitivity to light and sound. Recent research has revealed abnormal visual-spatial attention in migraineurs in between headache attacks. Here, we ask whether these attentional abnormalities can be attributed to specific regions of the known attentional network to help characterize the abnormalities in migraine. Specifically, the ventral frontoparietal network of attention is involved with assessing the behavioural relevance of unattended stimuli. Given the decreased suppression of unattended stimuli reported in migraineurs, we hypothesized that migraineurs would have abnormal processing in the ventral portion of the frontoparietal network of attention. To address this, we used functional magnetic resonance imaging to assess the attentional control networks during visual spatial-orienting tasks in migraineurs (N = 16) as compared to non-migraine controls (N = 16). We employed two visual orienting paradigms with target discrimination tasks: (1) voluntary orienting to central arrow cues, and (2) reflexive orienting to peripheral flash cues. While both groups showed activation in the key areas of attentional processing networks, migraineurs showed less activation than non-migraine controls in a key area of the ventral frontoparietal network of attention, the right temporal parietal junction (rTPJ), during both voluntary and reflexive visual spatial orienting. Given the role of rTPJ is to assess the visual environment for behaviorally relevant sensory stimuli outside the focus of attention and signal other attentional areas to reorient attention to behaviorally salient stimuli, our findings fit with previous research showing that migraineurs lack suppression of unattended events and have heightened orienting to sudden onset stimuli in peripheral locations.
Collapse
Affiliation(s)
- Marla J S Mickleborough
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada. .,Department of Medical Imaging, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada.
| | - Chelsea Ekstrand
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - Layla Gould
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - Eric J Lorentz
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - Tasha Ellchuk
- Department of Medical Imaging, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| |
Collapse
|
27
|
Diagnosis, pathophysiology and management of chronic migraine: a proposal of the Belgian Headache Society. Acta Neurol Belg 2015; 115:1-17. [PMID: 24968722 DOI: 10.1007/s13760-014-0313-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022]
Abstract
Chronic migraine (CM) is a disabling neurological condition affecting 0.5-2 % of the population. In the current third edition of the International Classification of Headache Disorders, medication overuse is no longer an exclusion criterion and CM is diagnosed in patients suffering from at least 15 headache days per month of which at least eight are related to migraine. CM is difficult to treat, and preventive treatment options are limited. We provide a pathogenetic model for CM, integrating the latest findings from neurophysiological and neuroimaging studies. On behalf of the Belgian Headache Society, we present a management algorithm for CM based on the international literature and adapted to the Belgian situation. Pharmacological treatment options are discussed, and recent data on transcranial and invasive neuromodulation studies in CM are reviewed. An integrated multimodal treatment programme may be beneficial to refractory patients, but at present, this approach is only supported by a limited number of observational studies and quite variable between centres.
Collapse
|
28
|
Kam JWY, Mickleborough MJS, Eades C, Handy TC. Migraine and attention to visual events during mind wandering. Exp Brain Res 2015; 233:1503-10. [PMID: 25700669 DOI: 10.1007/s00221-015-4224-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
Abstract
Although migraine is traditionally categorized as a primary headache disorder, the condition is also associated with abnormalities in visual attentional function in between headache events. Namely, relative to controls, migraineurs show both a heightened sensitivity to nominally unattended visual events, as well as decreased habituation responses at sensory and post-sensory (cognitive) levels. Here we used event-related potentials (ERPs) to examine whether cortical hypersensitivities in migraineurs extend to mind wandering, or periods of time wherein we transiently attenuate the processing of external stimulus inputs as our thoughts drift away from the on-going task at hand. Participants performed a sustained attention to response task while they were occasionally queried as to their attentional state-either "on-task" or "mind wandering." We then analyzed the ERP responses to task-relevant stimuli as a function of whether they immediately preceded an on-task versus mind wandering report. We found that despite the commonly reported heightened visual sensitivities in our migraine group, they nevertheless manifest a reduced cognitive response during periods of mind wandering relative to on-task attentional states, as measured via amplitude changes in the P3 ERP component. This suggests that our capacity to attenuate the processing of external stimulus inputs during mind wandering is not necessarily impaired by the class of cortical hypersensitivities characteristic of the interictal migraine brain.
Collapse
Affiliation(s)
- Julia W Y Kam
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada,
| | | | | | | |
Collapse
|
29
|
Abstract
Migraine is a highly prevalent and disabling disease. The drugs prescribed for migraine prophylaxis can have intolerable side effects or can be ineffective. Neuromodulation techniques are increasingly used in neurology. Transcutaneous supraorbital nerve stimulation is effective in episodic migraine prevention, whereas vagus nerve stimulation provides interesting results in acute migraine therapy. Transcranial stimulation techniques gave variable, and sometimes contradictory, results. The visual cortex is the target of choice in migraine: studies in migraine prevention and aura acute treatment are encouraging. These noninvasive therapies appear safe with a low rate of side effects. Available studies of invasive occipital nerve stimulation in chronic migraine gave modest results; but invasive occipital nerve stimulation offers a new hope to highly disabled patients who failed to respond to any other treatment. In the future, neuromodulation will probably take an increasing place in migraine treatment, as add-on therapy or alternative to medications, especially because of its attractive safety profile.
Collapse
Affiliation(s)
- Delphine Magis
- Headache Research Unit, University Department of Neurology CHR Citadelle, Boulevard du 12ème de Ligne 1, 4000 Liège, Belgium
| |
Collapse
|
30
|
|
31
|
Chervyakov AV, Poydasheva AG, Korzhova JE, Suponeva NA, Chernikova LA, Piradov MA. Repetitive transcranial magnetic stimulation in neurology and psychiatry. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:7-18. [DOI: 10.17116/jnevro20151151127-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Cosentino G, Fierro B, Brighina F. From different neurophysiological methods to conflicting pathophysiological views in migraine: A critical review of literature. Clin Neurophysiol 2014; 125:1721-30. [DOI: 10.1016/j.clinph.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 01/15/2023]
|
33
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1287] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
34
|
Silberstein SD. Is the migraine brain super-active? Pain 2014; 155:1049-1050. [DOI: 10.1016/j.pain.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
35
|
Lack of visual evoked potentials amplitude decrement during prolonged reversal and motion stimulation in migraineurs. Clin Neurophysiol 2014; 125:1223-30. [DOI: 10.1016/j.clinph.2013.10.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
|
36
|
Abstract
Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application.
Collapse
|
37
|
de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014; 10:144-55. [PMID: 24535465 DOI: 10.1038/nrneurol.2014.14] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes.
Collapse
Affiliation(s)
| | - Anna Ambrosini
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | - Armando Perrotta
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Francesco Pierelli
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Omland PM, Uglem M, Engstrøm M, Linde M, Hagen K, Sand T. Modulation of visual evoked potentials by high-frequency repetitive transcranial magnetic stimulation in migraineurs. Clin Neurophysiol 2014; 125:2090-9. [PMID: 24589349 DOI: 10.1016/j.clinph.2014.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/14/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability. We investigated its effect on visual evoked potentials (VEPs) in migraine. METHODS Thirty-two headache-free controls (CO), 25 interictal (MINT) and 7 preictal migraineurs (MPRE) remained after exclusions. VEPs to 8' and 65' checks were averaged in six blocks of 100 single responses. VEPs were recorded before, directly after and 25min after 10Hz rTMS. The study was blinded for diagnosis during recording and for diagnosis and block number during analysis. First block amplitudes and habituation (linear amplitude change over blocks) were analysed with repeated measures ANOVA. RESULTS With 65' checks, N70-P100 habituation was reduced in MINT compared to CO after rTMS (p=0.013). With 8' checks, habituation was reduced in MPRE compared to MINT and CO after rTMS (p<0.016). No effects of rTMS on first block amplitudes were found. CONCLUSION RTMS reduced habituation only in migraineurs, indicating increased responsivity to rTMS. The magnocellular visual subsystem may be affected interictally, while the parvocellular system may only be affected preictally. SIGNIFICANCE Migraineurs may have increased responsiveness to rTMS because of a cortical dysfunction that changes before a migraine attack.
Collapse
Affiliation(s)
- Petter M Omland
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway.
| | - Martin Uglem
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway
| | - Morten Engstrøm
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway; St. Olavs Hospital, Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Mattias Linde
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway; St. Olavs Hospital, Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Knut Hagen
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway; St. Olavs Hospital, Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Trond Sand
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway; St. Olavs Hospital, Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| |
Collapse
|
39
|
Magis D, Vigano A, Sava S, d'Elia TS, Schoenen J, Coppola G. Pearls and pitfalls: electrophysiology for primary headaches. Cephalalgia 2014; 33:526-39. [PMID: 23671250 DOI: 10.1177/0333102413477739] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Primary headaches are functional neurological diseases characterized by a dynamic cyclic pattern over time (ictal/pre-/interictal). Electrophysiological recordings can non-invasively assess the activity of an underlying nervous structure or measure its response to various stimuli, and are therefore particularly appropriate for the study of primary headaches. Their interest, however, is chiefly pathophysiological, as interindividual, and to some extent intraindividual, variations preclude their use as diagnostic tools. AIM OF THE WORK This article will review the most important findings of electrophysiological studies in primary headache pathophysiology, especially migraine on which numerous studies have been published. RESULTS In migraine, the most reproducible hallmark is the interictal lack of neuronal habituation to the repetition of various types of sensory stimulations. The mechanism subtending this phenomenon remains uncertain, but it could be the consequence of a thalamocortical dysrythmia that results in a reduced cortical preactivation level. In tension-type headache as well as in cluster headache, there seems to be an impairment of central pain-controlling mechanisms but the studies are scarce and their outcomes are contradictory. The discrepancies between studies might be as a result of methodological differences as well as patients' dissimilarities, which are also discussed. CONCLUSIONS AND PERSPECTIVES Electrophysiology is complementary to functional neuroimaging and will undoubtedly remain an important tool in headache research. One of its upcoming applications is to help select neurostimulation techniques and protocols that correct best the functional abnormalities detectable in certain headache disorders.
Collapse
Affiliation(s)
- Delphine Magis
- Headache Research Unit, University Department of Neurology, CHR Citadelle, Liege 4000, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Neuromodulation of chronic headaches: position statement from the European Headache Federation. J Headache Pain 2013; 14:86. [PMID: 24144382 PMCID: PMC4231359 DOI: 10.1186/1129-2377-14-86] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 01/19/2023] Open
Abstract
The medical treatment of patients with chronic primary headache syndromes (chronic migraine, chronic tension-type headache, chronic cluster headache, hemicrania continua) is challenging as serious side effects frequently complicate the course of medical treatment and some patients may be even medically intractable. When a definitive lack of responsiveness to conservative treatments is ascertained and medication overuse headache is excluded, neuromodulation options can be considered in selected cases. Here, the various invasive and non-invasive approaches, such as hypothalamic deep brain stimulation, occipital nerve stimulation, stimulation of sphenopalatine ganglion, cervical spinal cord stimulation, vagus nerve stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, and transcutaneous electrical nerve stimulation are extensively published although proper RCT-based evidence is limited. The European Headache Federation herewith provides a consensus statement on the clinical use of neuromodulation in headache, based on theoretical background, clinical data, and side effect of each method. This international consensus further gives recommendations for future studies on these new approaches. In spite of a growing field of stimulation devices in headaches treatment, further controlled studies to validate, strengthen and disseminate the use of neurostimulation are clearly warranted. Consequently, until these data are available any neurostimulation device should only be used in patients with medically intractable syndromes from tertiary headache centers either as part of a valid study or have shown to be effective in such controlled studies with an acceptable side effect profile.
Collapse
|
41
|
Coppola G, Di Lorenzo C, Schoenen J, Pierelli F. Habituation and sensitization in primary headaches. J Headache Pain 2013; 14:65. [PMID: 23899115 PMCID: PMC3733593 DOI: 10.1186/1129-2377-14-65] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022] Open
Abstract
The phenomena of habituation and sensitization are considered most useful for studying the neuronal substrates of information processing in the CNS. Both were studied in primary headaches, that are functional disorders of the brain characterized by an abnormal responsivity to any kind of incoming innocuous or painful stimuli and it's cycling pattern over time (interictal, pre-ictal, ictal). The present review summarizes available data on stimulus responsivity in primary headaches obtained with clinical neurophysiology. In migraine, the majority of electrophysiological studies between attacks have shown that, for a number of different sensory modalities, the brain is characterised by a lack of habituation of evoked responses to repeated stimuli. This abnormal processing of the incoming information reaches its maximum a few days before the beginning of an attack, and normalizes during the attack, at a time when sensitization may also manifest itself. An abnormal rhythmic activity between thalamus and cortex, namely thalamocortical dysrhythmia, may be the pathophysiological mechanism subtending abnormal information processing in migraine. In tension-type headache (TTH), only few signs of deficient habituation were observed only in subgroups of patients. By contrast, using grand-average responses indirect evidence for sensitization has been found in chronic TTH with increased nociceptive specific reflexes and evoked potentials. Generalized increased sensitivity to pain (lower thresholds and increased pain rating) and a dysfunction in supraspinal descending pain control systems may contribute to the development and/or maintenance of central sensitization in chronic TTH. Cluster headache patients are characterized during the bout and on the headache side by a pronounced lack of habituation of the brainstem blink reflex and a general sensitization of pain processing. A better insight into the nature of these ictal/interictal electrophysiological dysfunctions in primary headaches paves the way for novel therapeutic targets and may allow a better understanding of the mode of action of available therapies.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation IRCCS, Via Livenza 3, 00198, Rome, Italy
| | | | - Jean Schoenen
- Headache Research Unit, University Department of Neurology & GIGA-Neurosciences, Liège University, Liège, Belgium
| | | |
Collapse
|
42
|
Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex. Brain Stimul 2013; 6:860-7. [PMID: 23664756 DOI: 10.1016/j.brs.2013.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/29/2013] [Accepted: 04/06/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been reported that a single session of 1 Hz or 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in adults with amblyopia. More recently, continuous theta burst stimulation (cTBS) of the visual cortex has been found to improve contrast sensitivity in observers with normal vision. OBJECTIVE/HYPOTHESIS The aims of this study were to assess whether cTBS of the visual cortex could improve contrast sensitivity in adults with amblyopia and whether repeated sessions of cTBS would lead to more pronounced and/or longer lasting effects. METHODS cTBS was delivered to the visual cortex while patients viewed a high contrast stimulus with their non-amblyopic eye. This manipulation was designed to bias the effects of cTBS toward inputs from the amblyopic eye. Contrast sensitivity was measured before and after stimulation. The effects of one cTBS session were measured in five patients and the effects of five consecutive daily sessions were measured in four patients. Three patients were available for follow-up at varying intervals after the final session. RESULTS cTBS improved amblyopic eye contrast sensitivity to high spatial frequencies (P < 0.05) and there was a cumulative improvement across sessions with asymptotic improvement occurring after 2 daily sessions of stimulation. The contrast sensitivity improvements were stable over a period of up to 78 days. CONCLUSIONS These initial results in a small number of patients indicate the cTBS may allow for enduring visual function improvements in adults with amblyopia.
Collapse
|
43
|
Viganò A, D'Elia TS, Sava SL, Auvé M, De Pasqua V, Colosimo A, Di Piero V, Schoenen J, Magis D. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain 2013; 14:23. [PMID: 23566101 PMCID: PMC3620516 DOI: 10.1186/1129-2377-14-23] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/02/2013] [Indexed: 11/14/2022] Open
Abstract
Background Preventive pharmacotherapy for migraine is not satisfactory because of the low efficacy/tolerability ratio of many available drugs. Novel and more efficient preventive strategies are therefore warranted. Abnormal excitability of cortical areas appears to play a pivotal role in migraine pathophysiology. Transcranial direct current stimulation (tDCS) is a non-invasive and safe technique that is able to durably modulate the activity of the underlying cerebral cortex, and is being tested in various medical indications. The results of small open studies using tDCS in migraine prophylaxis are conflicting, possibly because the optimal stimulation settings and the brain targets were not well chosen. We have previously shown that the cerebral cortex, especially the visual cortex, is hyperresponsive in migraine patients between attacks and provided evidence from evoked potential studies that this is due to a decreased cortical preactivation level. If one accepts this concept, anodal tDCS over the visual cortex may have therapeutic potentials in migraine prevention, as it is able to increase neuronal firing. Objective To study the effects of anodal tDCS on visual cortex activity in healthy volunteers (HV) and episodic migraine without aura patients (MoA), and its potentials for migraine prevention. Methods We recorded pattern-reversal visual evoked potentials (VEP) before and after a 15-min session of anodal tDCS over the visual cortex in 11 HV and 13 MoA interictally. Then 10 MoA patients reporting at least 4 attacks/month subsequently participated in a therapeutic study, and received 2 similar sessions of tDCS per week for 8 weeks as migraine preventive therapy. Results In HV as well as in MoA, anodal tDCS transiently increased habituation of the VEP N1P1 component. VEP amplitudes were not modified by tDCS. Preventive treatment with anodal tDCS turned out to be beneficial in MoA: migraine attack frequency, migraine days, attack duration and acute medication intake significantly decreased during the treatment period compared to pre-treatment baseline (all p < 0.05), and this benefit persisted on average 4.8 weeks after the end of tDCS. Conclusions Anodal tDCS over the visual cortex is thus able to increase habituation to repetitive visual stimuli in healthy volunteers and in episodic migraineurs, who on average lack habituation interictally. Moreover, 2 weekly sessions of anodal tDCS had a significant preventive anti- migraine effect, proofing the concept that the low preactivation level of the visual cortex in migraine patients can be corrected by an activating neurostimulation. The therapeutic results indicate that a larger sham-controlled trial using the same tDCS protocol is worthwhile.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Unit, Dept of Neurology, University of Liège, Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Coppola G, Parisi V, Di Lorenzo C, Serrao M, Magis D, Schoenen J, Pierelli F. Lateral inhibition in visual cortex of migraine patients between attacks. J Headache Pain 2013; 14:20. [PMID: 23565983 PMCID: PMC3620512 DOI: 10.1186/1129-2377-14-20] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background The interictal deficit of habituation to repetitive visual stimuli in migraine patients could be due to deficient intracortical inhibition and/or to low cortical pre-activation levels. Which of these abnormalities contributes more to the habituation deficit cannot be determined with the common methods used to record transient visual responses. We investigated lateral inhibition in the visual cortex during the migraine cycle and in healthy subjects by using differential temporal modulations of radial windmill-dartboard (WD) or partial-windmill (PW) visual patterns. Methods Transient (TR-VEP) and steady-state visual-evoked potentials (SS-VEP) were recorded in 65 migraine patients (21 without and 22 with aura between attacks; 22 patients during an attack) and in 21 healthy volunteers (HV). Three stimulations were used in each subject: classic checkerboard pattern (contrast-reversion 3.1Hz), WD and PW (contrast-reversion ~4Hz). For each randomly presented stimulation protocol, 600 sweeps were acquired and off-line partitioned in 6 blocks of 100. Fourier analysis allowed data to extract in SS-VEP the fundamental (1H) and the second harmonic (2H) components that reflect respectively short-(WD) and long- range lateral inhibition (attenuation of 2H in WD compared to PW). Results Compared to HV, migraineurs recorded interictally had significantly less habituation of the N1-P1 TR-VEP component over subsequent blocks and they tended to have a smaller 1st block amplitude. 1H amplitude in the 1st block of WD SS-VEP was significantly greater than in HV and habituated in successive blocks, contrasting with an amplitude increase in HV. Both the interictal TR-VEP and SS-VEP abnormalities normalized during an attack. There was no significant between group difference in the PW 2H amplitude and its attenuation. When data of HV and migraine patients were combined, the habituation slope of WD-VEP 1H was negatively correlated with that of TR-VEP N1-P1 and with number of days since the last migraine attack. Conclusion These results are in favour of a migraine cycle-dependent imbalance between excitation and inhibition in the visual cortex. We hypothesize that an interictal hypoactivity of monaminergic pathways may cause a functional disconnection of the thalamus in migraine leading to an abnormal intracortical short-range lateral inhibition that could contribute to the habituation deficit observed during stimulus repetition.
Collapse
Affiliation(s)
- Gianluca Coppola
- Departmen of Neurophysiology of Vision and Neuroophtalmology, G,B, Bietti Foundation IRCCS, Via Livenza 3-00198, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Viganò A, Bogdanov VB, Schoenen J. A multidisciplinary approach to the functional abnormalities of the migrainous brain and non-invasive interventions to treat them. J Headache Pain 2013. [PMCID: PMC3619995 DOI: 10.1186/1129-2377-14-s1-i5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Viganò A, Bogdanov VB, Schoenen J. A multidisciplinary approach to the functional abnormalities of the migrainous brain and non-invasive interventions to treat them. J Headache Pain 2013. [DOI: 10.1186/1129-2377-1-s1-i5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Abstract
Many people who suffer from primary headache (ie, headache without an identifiable cause) are resistant or intolerant to available drugs. During the past decade, central and peripheral neurostimulation procedures have been investigated in such individuals--up to now, about 1200 worldwide. Techniques used range from invasive methods such as deep brain stimulation of the posterior hypothalamus, to minimally invasive percutaneous electrode implantation used in occipital nerve stimulation, or non-invasive methods such as transcranial magnetic stimulation. Although some of these procedures have been studied extensively, sham-controlled trials are sparse and the precise mode of action of such stimulation remains largely unknown. Nonetheless, occipital nerve stimulation and deep brain stimulation of the posterior hypothalamus seem to be effective in people with chronic cluster headache, and occipital nerve stimulation is promising in chronic migraine. Trial data for other techniques are scarce, but external and minimally invasive approaches should be privileged in future studies.
Collapse
Affiliation(s)
- Delphine Magis
- Headache Research Unit, Department of Neurology, University of Liège, Belgium
| | | |
Collapse
|
48
|
Afifi L, Jarrett Rushmore R, Valero-Cabré A. Benefit of multiple sessions of perilesional repetitive transcranial magnetic stimulation for an effective rehabilitation of visuospatial function. Eur J Neurosci 2012; 37:441-54. [PMID: 23167832 DOI: 10.1111/ejn.12055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/28/2022]
Abstract
Noninvasive neurostimulation techniques have been used alone or in conjunction with rehabilitation therapy to treat the neurological sequelae of brain damage with rather variable therapeutic outcomes. One potential factor limiting a consistent success for such techniques may be the limited number of sessions carried out in patients, despite reports that their accrual may play a key role in alleviating neurological deficits long-term. In this study, we tested the effects of seventy consecutive sessions of perilesional high-frequency (10 Hz) repetitive transcranial magnetic stimulation (rTMS) in the treatment of chronic neglect deficits in a well-established feline model of visuospatial neglect. Under identical rTMS parameters and visuospatial testing regimes, half of the subjects improved in visuospatial orienting performance. The other half experienced either none or extremely moderate ameliorations in the neglected hemispace and displayed transient patterns of maladaptive visuospatial behavior. Detailed analyses suggest that lesion location and extent did not account for the behavioral differences observed between these two groups of animals. We conclude that multi-session perilesional rTMS regimes have the potential to induce functional ameliorations following focal chronic brain injury, and that behavioral performance prior to the onset of the rTMS treatment is the factor that best predicts positive outcomes for noninvasive neurostimulation treatments in visuospatial neglect.
Collapse
Affiliation(s)
- Linda Afifi
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | | | | |
Collapse
|
49
|
Coppola G, De Pasqua V, Pierelli F, Schoenen J. Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia 2012; 32:700-9. [DOI: 10.1177/0333102412446313] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gianluca Coppola
- Department of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation IRCCS, Italy
| | - Victor De Pasqua
- Headache Research Unit, Department of Neurology and GIGA- Neurosciences, Liège University, Belgium
| | | | - Jean Schoenen
- Headache Research Unit, Department of Neurology and GIGA- Neurosciences, Liège University, Belgium
| |
Collapse
|
50
|
Martín H, del Río MS, de Silanes CL, Álvarez-Linera J, Hernández JA, Pareja JA. Photoreactivity of the Occipital Cortex Measured by Functional Magnetic Resonance Imaging-Blood Oxygenation Level Dependent in Migraine Patients and Healthy Volunteers: Pathophysiological Implications. Headache 2011; 51:1520-8. [DOI: 10.1111/j.1526-4610.2011.02013.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|