1
|
Harris L, L'Italien G, O'Connell T, Hasan Z, Hutchinson S, Lucas S. A Framework for Estimating the Eligible Patient Population for New Migraine Acute Therapies in the United States. Adv Ther 2021; 38:5087-5097. [PMID: 34057676 PMCID: PMC8478730 DOI: 10.1007/s12325-021-01781-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023]
Abstract
Introduction Migraine is associated with considerable disability for patients not adequately managed with current standards of care. New acute therapies may offer relief for this population of patients; however, population size and associated potential costs of new therapies are unclear. In this study, a conceptual framework was developed to estimate anticipated use of new acute therapies. Methods Targeted literature review (TLR) was conducted to identify factors affecting access to migraine-specific acute therapies, and characteristics of individuals who would be eligible for new acute therapies. Findings from the TLR were combined to create a framework for estimating the size of the eligible patient population. This framework was used to calculate two estimates of the eligible patient population by applying parameters (i) identified in the TLR and (ii) from a recent budget-impact analysis (BIA). Results The primary factors affecting access to migraine-specific acute therapies identified in the TLR were consulting a healthcare professional for headache, receiving a migraine diagnosis, and receiving a prescription for migraine-specific treatment. Characteristics of individuals likely to use new acute therapies reflected in the TLR were contraindication to triptans, or failure to respond to/tolerate at least two oral triptans. Application of the framework suggested that 15–25% of individuals with migraine would be eligible for new acute therapies. Conclusion A limited number of patients currently use migraine-specific acute therapies. Among such patients, a significant proportion do not have adequate symptom control. Accordingly, a minority of individuals with migraine may be expected to use new acute therapies. The framework developed in this study is intended to facilitate estimating the eligible patient population in assessments of costs of new acute therapies. Such assessments should also consider recommendations that patients have access to multiple types of acute therapies, which may yield savings from reduced medication-overuse headache (MOH), progression to chronic migraine, and urgent-care costs. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-01781-z.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvia Lucas
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
2
|
Abstract
Over the past three decades, calcitonin gene-related peptide (CGRP) has emerged as a key molecule. Provocation experiments have demonstrated that intravenous CGRP infusion induces migraine-like attacks in migraine with and without aura patients. In addition, these studies have revealed a heterogeneous CGRP response, i.e., some migraine patients develop migraine-like attacks after CGRP infusion, while others do not. The role of CGRP in human migraine models has pointed to three potential sites of CGRP-induced migraine: (1) vasodilation via cyclic adenosine monophosphate (cAMP) and possibly cyclic guanosine monophosphate (cGMP); (2) activation of trigeminal sensory afferents, and (3) modulation of deep brain structures. In the future, refined human experimental studies will continue to unveil the role of CGRP in migraine pathogenesis.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab 2019; 39:595-609. [PMID: 28857642 PMCID: PMC6446414 DOI: 10.1177/0271678x17729783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
Headache is one of the most common ailments; migraine is one of the most prevalent and disabling neurological disorders and cluster headache presents as one of the most excruciating pain disorders. Both are complex disorder characterized by recurrent episodes of headache. A key feature is that various triggers can set off an attack providing the opportunity to explore disease mechanisms by experimentally inducing attacks. This review summarizes neuroimaging and hemodynamic studies in human in provoked and spontaneous attacks of migraine and cluster headache. Cerebral hemodynamics during different phases of the migraine attack demonstrate alterations in cerebral blood flow and perfusion, vessel caliber, cortical and sub-cortical function, underscoring that migraine pathophysiology is highly complex. Migraine attacks might begin in diencephalic and brainstem areas, whereas migraine aura is a cortical phenomenon. In cluster headache pathophysiology, the hypothalamus might also play a pivotal role, whereas the pattern of cerebral blood flood differs from migraine. For both disorders, alterations of arterial blood vessel diameter might be more an epiphenomenon of the attack than a causative trigger. Studying cerebral hemodynamics in provocation models are important in the search for specific biomarkers in the hope to discover future targets for more specific and effective mechanism-based anti-headache treatment.
Collapse
Affiliation(s)
- Jakob M Hansen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Abstract
Migraine is a complex disorder characterized by recurrent episodes of headache, and is one of the most prevalent and disabling neurological disorders. A key feature of migraine is that various factors can trigger an attack, and this phenomenon provides a unique opportunity to investigate disease mechanisms by experimentally inducing migraine attacks. In this Review, we summarize the existing experimental models of migraine in humans, including those that exploit nitric oxide, histamine, neuropeptide and prostaglandin signalling. We describe the development and use of these models in the discovery of molecular pathways that are responsible for initiation of migraine attacks. Combining experimental human models with advanced imaging techniques might help to identify biomarkers of migraine, and in the ongoing search for new and better migraine treatments, human models will have a key role in the discovery of future targets for more-specific and more-effective mechanism-based antimigraine drugs.
Collapse
|
5
|
Abstract
Context The classification of headache disorders has improved over the years, but further work is needed to develop and improve headache diagnosis within headache subtypes. The present review is a call for action to implement laboratory tests in the classification and management of primary and some secondary headaches. Background In this narrative review we present and discuss published tests that might be useful in phenotyping and/or diagnosis of long-lasting headache disorders such as migraine, tension-type headache, trigeminal autonomic cephalalgias, trigeminal neuralgia and persisting secondary headaches. Aim The palpometer test, quantitative sensory testing, nociceptive blink reflex and autonomic tests may be valuable to phenotype and/or diagnose subforms of migraine, tension-type headache, cluster headache, trigeminal neuralgia and medication-overuse headache. Provocation tests with glyceryl trinitrate (GTN) and calcitonin gene-related peptide (CGRP) may be valuable in subclassification of migraine and cluster headache. Lumbar pressure monitoring and optical coherence tomography may valuable tools to diagnose and follow patients with chronic headache and raised intracranial pressure. Finding A number of laboratory tests in headache research are presently available, but have primarily been performed in single research studies or a few studies that differ in methods and patient groups. At present, there is no evidence-based strategy for implementing diagnostic tests, but this could be achieved if well-reputed tertiary headache centers commence developing and implementing laboratory tests in order to improve the classification and treatment of headache patients.
Collapse
Affiliation(s)
- Henrik Winther Schytz
- University of Copenhagen, Danish Headache Centre, Department of Neurology at Glostrup Hospital, Denmark
| | - Jes Olesen
- University of Copenhagen, Danish Headache Centre, Department of Neurology at Glostrup Hospital, Denmark
| |
Collapse
|
6
|
Lundblad C, Haanes KA, Grände G, Edvinsson L. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. J Headache Pain 2015; 16:91. [PMID: 26512021 PMCID: PMC4627622 DOI: 10.1186/s10194-015-0575-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Background Migraine is a paroxysmal, disabling primary headache that affects 16 % of the adult population. In spite of decades of intense research, the origin and the pathophysiology mechanisms involved are still not fully known. Although triptans and gepants provide effective relief from acute migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation, following dural application of complete Freund’s adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. Methods In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface. Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [51Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. Results We observed that [51Cr]-EDTA did not pass into the central nervous system (CNS) in a major way. However, [51Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. Conclusions With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG is readily exposed to circulating molecules. The TG could provide a site of anti-migraine drug interaction with effect on the trigeminal system. Electronic supplementary material The online version of this article (doi:10.1186/s10194-015-0575-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelia Lundblad
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark
| | - Gustaf Grände
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden. .,Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark.
| |
Collapse
|
7
|
Olesen J, Ashina M. Can nitric oxide induce migraine in normal individuals? Cephalalgia 2015; 35:1125-9. [DOI: 10.1177/0333102414566201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022]
Abstract
Introduction For many years, scientists have debated the possibility that an individual “migraine threshold” determines the likelihood with which individuals may express migraine attacks. Discussion Recent discoveries provided evidence for both genetic and environmental influences on individual migraine expression. The question is whether any person may express a migraine attack given a sufficiently strong stimulus or provocation. Here, we reviewed and discussed the ability of nitric oxide to induce migraine-like attacks in normal individuals. Conclusion Experimental data show that normal individuals may develop a migraine-like attack and that the human data point to different ways of further developing existing animal and human models.
Collapse
Affiliation(s)
- Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, Denmark
| |
Collapse
|
8
|
Hansen JM, Ashina M. Calcitonin gene-related peptide and migraine with aura: A systematic review. Cephalalgia 2014; 34:695-707. [DOI: 10.1177/0333102413520084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathophysiology. Most studies have focused on CGRP in relation to migraine without aura (MO). About one-third of migraine patients have attacks with aura (MA), and this is a systematic review of the current literature on CGRP and MA. Methods We performed a systematic literature search on MEDLINE for reports of CGRP and MA, covering basic science, animal and human studies as well as randomized clinical trials. Results The literature search identified 594 citations, of which 38 contained relevant, original data. Plasma levels of CGRP in MA patients are comparable to MO, but CGRP levels varied among studies. A number of animal studies, including knock-ins of familial hemiplegic migraine (FHM) genes, have examined the relationship between CGRP and cortical spreading depression. In patients, CGRP does not trigger migraine in FHM, but is a robust trigger of migraine-like headache both in MA and MO patients. The treatment effect of CGRP antagonists are well proven in the treatment of migraine, but no studies have studied the effect specifically in MA patients. Conclusion This systematic review indicates that the role of CGRP in MA is less studied than in MO. Further studies of the importance of CGRP for auras and migraine are needed.
Collapse
Affiliation(s)
- Jakob M Hansen
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Ashina M, Hansen JM, Olesen J. Pearls and pitfalls in human pharmacological models of migraine: 30 years' experience. Cephalalgia 2013; 33:540-53. [DOI: 10.1177/0333102412475234] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro studies have contributed to the characterization of receptors in cranial blood vessels and the identification of new possible anti-migraine agents. In vivo animal models enable the study of vascular responses, neurogenic inflammation, peptide release and genetic predisposition and thus have provided leads in the search for migraine mechanisms. All animal-based results must, however, be validated in human studies because so far no animal models can predict the efficacy of new therapies for migraine. Given the nature of migraine attacks, fully reversible and treatable, the headache- or migraine-provoking property of naturally occurring signaling molecules can be tested in a human model. If such an endogenous substance can provoke migraine in human patients, then it is likely, although not certain, that blocking its effect will be effective in the treatment of acute migraine attacks. To this end, a human in vivo model of experimental headache and migraine in humans has been developed. Human models of migraine offer unique possibilities to study mechanisms responsible for migraine and to explore the mechanisms of action of existing and future anti-migraine drugs. The human model has played an important role in translational migraine research leading to the identification of three new principally different targets in the treatment of acute migraine attacks and has been used to examine other endogenous signaling molecules as well as genetic susceptibility factors. New additions to the model, such as advanced neuroimaging, may lead to a better understanding of the complex events that constitute a migraine attack, and better and more targeted ways of intervention.
Collapse
Affiliation(s)
- Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Abstract
Acute migraine treatment is given to abolish ongoing attacks, while prophylactic migraine treatment is given on a daily basis to prevent the occurrence of migraine attacks as far as possible. The majority of migraine patients do not use the specific acute anti-migraine drugs, the triptans. Thus, only 10% (Denmark) to 35% (France) of migraine patients use triptans. This is most likely due to relatively low efficacy. Thus, in randomized controlled trials (RCTs) pain freedom after 2 hours ranges from 12% (frovatriptan 2.5 mg) to 40% (rizatriptan 10 mg). For prophylactic treatment (propranolol, valproate, topiramate) a response (at least a 50% reduction in migraine frequency) is observed in 40-50%. In addition, prophylactic treatment is hampered by adverse events and withdrawals. There is a need for new acute anti-migraine drugs and targets are already available and there are more to come. It has been estimated that approximately 2% of the adult population need prophylactic treatment because of frequent migraine attacks. For prophylactic migraine drugs there is an even greater need for new drugs than for acute drug treatment.
Collapse
Affiliation(s)
- Peer Tfelt-Hansen
- Danish Headache Center, Health Science Faculty, University of Copenhagen, Department of Neurology, Glostrup Hospital, Glostrup, Denmark.
| | | |
Collapse
|
11
|
Schankin CJ, Straube A. Secondary headaches: secondary or still primary? J Headache Pain 2012; 13:263-70. [PMID: 22466226 PMCID: PMC3356467 DOI: 10.1007/s10194-012-0443-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/16/2012] [Indexed: 11/26/2022] Open
Abstract
The second edition of the International Classification of Headache Disorders makes a distinction between primary and secondary headaches. The diagnosis of a secondary headache is made if the underlying disease is thought to cause headache or if a close temporal relationship is present together with the occurrence of the headache. At first glance, this may allow clearly secondary headaches to be distinguished from primary headaches. However, by reviewing the available literature concerning several selected secondary headaches, we will discuss the hypothesis that some secondary headaches can also be understood as a variation of primary headaches in the sense that the underlying cause (e.g. infusion of glyceryl trinitrate [ICHD-II 8.1.1], epilepsy [7.6.2], brain tumours [7.4], craniotomy [5.7], etc.) triggers the same neurophysiologic mechanisms that are responsible for the pain in primary headache attacks.
Collapse
Affiliation(s)
- Christoph J Schankin
- Department of Neurology, University of Munich Hospital-Großhadern, Marchioninistrasse 15, Munich, Germany.
| | | |
Collapse
|
12
|
Olesen J, Ashina M. Emerging migraine treatments and drug targets. Trends Pharmacol Sci 2011; 32:352-9. [PMID: 21459461 DOI: 10.1016/j.tips.2011.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022]
Abstract
Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine. Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development. The greatest need is for new prophylactic drugs, and it seems likely that such compounds will be developed in the coming decade.
Collapse
Affiliation(s)
- Jes Olesen
- Danish Headache Center & Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Ndr. Ringvej 57, DK-2600 Glostrup, Denmark.
| | | |
Collapse
|
13
|
Shevel E. The Extracranial Vascular Theory of Migraine-A Great Story Confirmed by the Facts. Headache 2011; 51:409-417. [DOI: 10.1111/j.1526-4610.2011.01844.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
The extracranial vascular theory of migraine: an artificial controversy. J Neural Transm (Vienna) 2011; 118:525-30. [DOI: 10.1007/s00702-010-0517-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|
15
|
Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 2010; 7:191-6. [PMID: 20430318 PMCID: PMC5084100 DOI: 10.1016/j.nurt.2010.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022] Open
Abstract
The origin of migraine pain has not yet been clarified, but accumulating data point to neuropeptides present in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in sensory trigeminal neurons and may modulate nociception at different levels of the nervous system. Human experimental studies have shown that PACAP-38 infusion induces marked dilatation of extracerebral vessels and delayed migraine-like attacks in migraine patients. PACAP selectively activates the PAC(1) receptor, which suggests a possible signaling pathway implicated in migraine pain. This review summarizes the current evidence supporting the involvement of PACAP in migraine pathophysiology and the PAC(1) receptor as a possible novel target for migraine treatment.
Collapse
Affiliation(s)
- Henrik W. Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| |
Collapse
|