1
|
Ruby HA, Sayed RH, Khattab MA, Sallam NA, Kenway SA. Fenofibrate ameliorates nitroglycerin-induced migraine in rats: Role of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. Eur J Pharmacol 2024; 976:176667. [PMID: 38795754 DOI: 10.1016/j.ejphar.2024.176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.
Collapse
Affiliation(s)
- Hassan A Ruby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Sanaa A Kenway
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| |
Collapse
|
2
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
3
|
Førland-Schill A, Berring-Uldum A, Debes NM. Migraine Pathophysiology in Children and Adolescents: A Review of the Literature. J Child Neurol 2022; 37:642-651. [PMID: 35607281 DOI: 10.1177/08830738221100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although migraine in adult and pediatric patients are overall very similar to each other, differences in prevalence, presentation, and treatment efficacy may reflect slight differences in the pathophysiological processes underlying migraine in these patient groups, perhaps because of ongoing development of the nervous system during childhood and adolescence. Although major gains have been made in understanding the pathophysiology of migraine in adults in recent years, equivalent research on migraine in pediatric patients continues to lag behind. In this review, we will describe the current state of migraine research in pediatric patients with regard to presentation and frequency of prodromal and postdromal symptoms, ictal and interictal calcitonin gene-related peptide elevation, and evidence for cortical spreading depression, thus covering all phases of migraine, and discuss how the findings seen here may relate to possible underlying pathophysiological mechanisms of migraine. We aim to elucidate possible differences between migraine in children and adults, and the need for further research specific to pediatric patients with migraine in order to improve treatment in this patient group.
Collapse
|
4
|
Laborc KF, Spekker E, Bohár Z, Szűcs M, Nagy-Grócz G, Fejes-Szabó A, Vécsei L, Párdutz Á. Trigeminal activation patterns evoked by chemical stimulation of the dura mater in rats. J Headache Pain 2020; 21:101. [PMID: 32799798 PMCID: PMC7429748 DOI: 10.1186/s10194-020-01169-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.
Collapse
Affiliation(s)
- Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
- Interdisciplinary Excellence Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
5
|
Fan PC, Kuo PH, Lee MT, Chang SH, Chiou LC. Plasma Calcitonin Gene-Related Peptide: A Potential Biomarker for Diagnosis and Therapeutic Responses in Pediatric Migraine. Front Neurol 2019; 10:10. [PMID: 30733702 PMCID: PMC6353836 DOI: 10.3389/fneur.2019.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Plasma calcitonin gene-related peptide (CGRP) plays a key role in the migraine pathophysiology. This study aimed to investigate its role in predicting diagnosis and outcome of pharmacotherapy in pediatric migraine. Methods: We prospectively recruited 120 subjects, who never took migraine-preventive agents in a pediatric clinic, including 68 patients with migraine, 30 with non-migraine headache (NM), and 22 non-headache (NH) age-matched controls. Short-term therapeutic response was measured for at least 2 weeks after the start of therapy. Responders were defined with >50% headache reduction. Plasma CGRP concentrations were measured by ELISA. Results: In the migraine group, more patients required acute therapy, as compared to the NM group (62/68, 91% vs. 5/30, 15%, p = 0.001). The mean plasma CGRP level in migraineurs either during (291 ± 60 pg/ml) or between (240 ± 48) attacks was higher than in NM patients (51 ± 5 pg/ml, p = 0.006 and 0.018, respectively) and NH controls (53 ± 6 pg/ml, p = 0.016 and 0.045, respectively). Forty-seven patients (69%) needed preventive treatments and had higher plasma CGRP levels (364 ± 62 pg/ml, n = 47) than those not (183 ± 54 pg/ml, n = 21) (p = 0.031). Topiramate responders had higher plasma CGRP levels than non-responders (437 ± 131 pg/ml, n = 14 vs. 67 ± 19 pg/ml, n = 6, p = 0.021). Survival curves of plasma CGRP levels also showed those with higher CGRP levels responded better to topiramate. Differences were not found in the other preventives. Conclusion: The plasma CGRP level can differentiate migraine from non-migraine headache. It may also serve as a reference for the therapeutic strategy since it is higher in patients requiring migraine prevention and responsive to short-term topiramate treatment. These results are clinically significant, especially for the young children who cannot clearly describe their headache symptoms and may provide new insights into the clinical practice for the diagnosis and treatment of pediatric migraine.
Collapse
Affiliation(s)
- Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Shu-Hui Chang
- Department of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Acupuncture Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Yao G, Huang Q, Wang M, Yang CL, Liu CF, Yu TM. Behavioral study of a rat model of migraine induced by CGRP. Neurosci Lett 2017; 651:134-139. [PMID: 28479104 DOI: 10.1016/j.neulet.2017.04.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
Abstract
Migraine is a debilitating disorder characterized by recurrent headache arising from neurovascular dysfunction. Despite recent progress in migraine research, the exact mechanisms underpinning migraine are poorly understood. Furthermore, it is difficult to develop an animal model of migraine that resembles all symptoms of patients. In this study, we established a novel animal model of migraine induced by epidural injection of calcitonin gene-related peptide (CGRP), and examined climbing hutch behavior, facial-grooming behavior, body-grooming behavior, freezing behavior, resting behavior, and ipsilateral hindpaw facial grooming behavior of rats following CGRP injection. CGRP significantly reduced climbing hutch behavior, and face-grooming behavior, and increased immobile behavior. We also found that the P15 and P85 percentile range of behavioral data exhibited a high positive rate (83.3%) for establishing the model with less false positive rate. Our results verified that the rat model of migraine induced by CGRP featured many behaviors of migraine patients demonstrated during migraine attacks. Our findings suggest that this new model can be a useful tool for understanding the pathophysiology of migraine and studying novel therapeutic strategies for the treatment of migraine.
Collapse
Affiliation(s)
- Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Huang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chun-Li Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Cai-Fen Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ting-Min Yu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Silberstein SD. Topiramate in Migraine Prevention: A 2016 Perspective. Headache 2016; 57:165-178. [PMID: 27902848 DOI: 10.1111/head.12997] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND In evidence-based guidelines published in 2000, topiramate was a third-tier migraine preventive with no scientific evidence of efficacy; recommendation for its use reflected consensus opinion and clinical experience. Its neurostabilizing activity, coupled with its favorable weight profile, made topiramate an attractive alternative to other migraine preventives that caused weight gain. When guidelines for migraine prevention in episodic migraine were published in 2012, topiramate was included as a first-line option based on double-blind, randomized controlled trials involving nearly 3000 patients. The scientific and clinical interest in topiramate has generated a large body of data from randomized controlled trials, meta-analyses, patient registries, cohort studies, and claims data analyses that have more fully characterized its role as a migraine preventive. AIM This article will review the profile of topiramate that has emerged out of the past decade of research and clinical use in migraine prophylaxis. It will also address the rationale for extended-release (XR) formulations in optimizing topiramate therapy in migraine. SUMMARY Topiramate has activity at multiple molecular targets, which may account for why it is effective in migraine and most other, more specific, anticonvulsants are not. Based on randomized controlled trials, topiramate reduces migraine frequency and acute medication use, improves quality of life, and reduces disability in patients with episodic migraine and in those with chronic migraine with or without medication overuse headache. Its efficacy in chronic migraine is not improved by the addition of propranolol. Topiramate's ability to prevent progression from high-frequency episodic migraine to chronic migraine remains unclear. Consistent with clinicians' perceptions, migraineurs are more sensitive to topiramate-associated side effects than patients with epilepsy. Paresthesia is a common occurrence early in treatment but is rarely cause for terminating topiramate treatment. Cognitive problems occur much less frequently than paresthesia but are more troublesome in terms of treatment discontinuation. Cognitive complaints can often be managed by slowly increasing the topiramate dose in small increments to allow habituation. As with other carbonic anhydrase inhibitors, topiramate has metabolic effects that favor the development of metabolic acidosis and possibly renal stones. Because migraineurs have an increased risk of renal stones independent of topiramate exposure, clinicians should counsel all migraine patients to maintain hydration. Abrupt onset of blurring, other visual disturbances, and/or ocular pain following topiramate's initiation should be evaluated promptly since this may indicate rare but potentially sight-threatening idiosyncratic events. Postmarketing evidence has shown that first-trimester exposure to topiramate monotherapy is associated with increased occurrence of cleft lip with or without cleft palate (Pregnancy Category D). Even though topiramate's long half-life would seemingly support q.d. dosing, randomized controlled migraine trials used b.i.d. administration of immediate-release (IR) topiramate, which has more favorable plasma concentration-time profile (ie, lower peak concentrations and higher trough concentrations) than q.d. IR dosing. Given the sensitivity of migraineurs to topiramate-related adverse events, particularly cognitive effects, pharmacokinetic profiles should be considered when optimizing migraine outcomes. The extended-release (XR) formulations Qudexy® XR (Upsher-Smith Laboratories) and Trokendi XR® (Supernus Pharmaceuticals) were specifically designed to achieve the adherence benefits of q.d. dosing but with more favorable (ie, more constant) steady-state plasma concentrations over the 24-hour dosing interval vs IR topiramate b.i.d. Intriguing results from a study in healthy volunteers showed consistently less impairment in neuropsychometric tests of verbal fluency and mental processing speed with an XR topiramate formulation (Trokendi XR) vs IR topiramate b.i.d. These findings suggest a pharmacodynamic effect associated with significantly reducing plasma concentration fluctuation when topiramate absorption is slowed. Results of retrospective studies in migraineurs treated with XR topiramate appear to support a clinically meaningful benefit of XR topiramate vs IR topiramate in terms of significantly fewer cognitive effects, improved adherence, and overall better outcomes of migraine prophylaxis with topiramate.
Collapse
Affiliation(s)
- Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
8
|
|
9
|
Meents JE, Hoffmann J, Chaplan SR, Neeb L, Schuh-Hofer S, Wickenden A, Reuter U. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. J Headache Pain 2015; 16:57. [PMID: 26109436 PMCID: PMC4491068 DOI: 10.1186/s10194-015-0539-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022] Open
Abstract
Background The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine. Methods Male Sprague–Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was determined following injection of capsaicin into the carotid artery. Results Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777 only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and dose-dependent manner. Conclusion Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.
Collapse
Affiliation(s)
- Jannis E Meents
- Department of Physiology, Uniklinik RWTH Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany,
| | | | | | | | | | | | | |
Collapse
|
10
|
Erdener SE, Dalkara T. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014; 171:4575-94. [PMID: 24611635 DOI: 10.1111/bph.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022] Open
Abstract
Similarities between laboratory animals and humans in anatomy and physiology of the cephalic nociceptive pathways have allowed scientists to create successful models that have significantly contributed to our understanding of headache. They have also been instrumental in the development of novel anti-migraine drugs different from classical pain killers. Nevertheless, modelling the mechanisms underlying primary headache disorders like migraine has been challenging due to limitations in testing the postulated hypotheses in humans. Recent developments in imaging techniques have begun to fill this translational gap. The unambiguous demonstration of cortical spreading depolarization (CSD) during migraine aura in patients has reawakened interest in studying CSD in animals as a noxious brain event that can activate the trigeminovascular system. CSD-based models, including transgenics and optogenetics, may more realistically simulate pain generation in migraine, which is thought to originate within the brain. The realization that behavioural correlates of headache and migrainous symptoms like photophobia can be assessed quantitatively in laboratory animals, has created an opportunity to directly study the headache in intact animals without the confounding effects of anaesthetics. Headache and migraine-like episodes induced by administration of glyceryltrinitrate and CGRP to humans and parallel behavioural and biological changes observed in rodents create interesting possibilities for translational research. Not unexpectedly, species differences and model-specific observations have also led to controversies as well as disappointments in clinical trials, which, in return, has helped us improve the models and advance our understanding of headache. Here, we review commonly used headache and migraine models with an emphasis on recent developments.
Collapse
Affiliation(s)
- S E Erdener
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
11
|
Hoffmann J, Wecker S, Neeb L, Dirnagl U, Reuter U. Primary trigeminal afferents are the main source for stimulus-induced CGRP release into jugular vein blood and CSF. Cephalalgia 2012; 32:659-67. [DOI: 10.1177/0333102412447701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jan Hoffmann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology, University of California San Francisco, USA
| | - Sascha Wecker
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Lars Neeb
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Uwe Reuter
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|