1
|
Ko J, Noviani M, Chellamuthu VR, Albani S, Low AHL. The Pathogenesis of Systemic Sclerosis: The Origin of Fibrosis and Interlink with Vasculopathy and Autoimmunity. Int J Mol Sci 2023; 24:14287. [PMID: 37762589 PMCID: PMC10532389 DOI: 10.3390/ijms241814287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease associated with increased mortality and poor morbidity, impairing the quality of life in patients. Whilst we know that SSc affects multiple organs via vasculopathy, inflammation, and fibrosis, its exact pathophysiology remains elusive. Microvascular injury and vasculopathy are the initial pathological features of the disease. Clinically, the vasculopathy in SSc is manifested as Raynaud's phenomenon (reversible vasospasm in reaction to the cold or emotional stress) and digital ulcers due to ischemic injury. There are several reports that medications for vasculopathy, such as bosentan and soluble guanylate cyclase (sGC) modulators, improve not only vasculopathy but also dermal fibrosis, suggesting that vasculopathy is important in SSc. Although vasculopathy is an important initial step of the pathogenesis for SSc, it is still unclear how vasculopathy is related to inflammation and fibrosis. In this review, we focused on the clinical evidence for vasculopathy, the major cellular players for the pathogenesis, including pericytes, adipocytes, endothelial cells (ECs), and myofibroblasts, and their signaling pathway to elucidate the relationship among vasculopathy, inflammation, and fibrosis in SSc.
Collapse
Affiliation(s)
- Junsuk Ko
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
| | - Maria Noviani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Vasuki Ranjani Chellamuthu
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Salvatore Albani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Andrea Hsiu Ling Low
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
2
|
Niemczyk A, Waśkiel-Burnat A, Zaremba M, Czuwara J, Rudnicka L. The profile of adipokines associated with fibrosis and impaired microcirculation in systemic sclerosis. Adv Med Sci 2023; 68:298-305. [PMID: 37696138 DOI: 10.1016/j.advms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Adipokines belong to a group of molecules mostly produced by adipose tissue. Abnormalities in the secretion of several adipokines have already implicated to play a pathogenic role in systemic sclerosis (SSc). However, the possible role of numerous molecules still needs to be clarified. The aim of the study was to determine whether the altered level of selected circulating adipokines might correlate with the intensity of fibrosis and vasculopathy in the course of SSc. MATERIALS AND METHODS Serum concentrations of chemerin, adipsin, retinol-binding protein 4, apelin, visfatin, omentin-1, and vaspin were determined with ELISA in the sera of patients with SSc (n = 55) and healthy controls (n = 25). RESULTS The serum concentration of adipsin (p = 0.03) and visfatin (p = 0.04) was significantly increased and the level of retinol-binding protein 4 (p = 0.03) was decreased in diffuse compared to limited cutaneous SSc. Moreover, serum adipsin level correlated positively with the intensity of skin fibrosis measured with the modified Rodnan skin score (r = 0.31, p = 0.02) and was significantly higher in patients with pulmonary arterial hypertension than in those without the condition (p = 0.03). The concentrations of adipsin (p = 0.01) and visfatin (p = 0.04) were significantly increased and the level of apelin (p = 0.02) was decreased in patients with active digital ulcerations compared to individuals without this complication. CONCLUSION Adipsin may be considered a pivotal protein in the development of both fibrosis and impaired microcirculation. Its abnormal concentration reflects the intensity of skin thickening and the presence of pulmonary arterial hypertension. Adipsin, visfatin, and apelin are adipose tissue-derived molecules associated with digital vasculopathy.
Collapse
Affiliation(s)
- Anna Niemczyk
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| | | | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Li G, Peng L, Wu M, Zhao Y, Cheng Z, Li G. Appropriate level of cuproptosis may be involved in alleviating pulmonary fibrosis. Front Immunol 2022; 13:1039510. [PMID: 36601107 PMCID: PMC9806118 DOI: 10.3389/fimmu.2022.1039510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Cuproptosis is a newly discovered form of programmed cell death that has not been studied in pulmonary fibrosis. The purpose of the present study was to explore the relationship between cuproptosis and pulmonary fibrosis. Methods Single-cell sequencing (scRNA-seq) data for human and mouse pulmonary fibrosis were obtained online from Gene Expression Omnibus (GEO) database. First, fibroblast lineage was identified and extracted using the Seurat toolkit. The pathway was then evaluated via Gene Set Enrichment Analyses (GSEA), while transcription factor activity was analyzed using DoRothEA. Next, fibroblast differentiation trajectory was inferred via Monocle software and changes in gene expression patterns during fibroblast activation were explored through gene dynamics analysis. The trajectory was then divided into three cell states in pseudotime order and the expression level of genes related to cuproptosis promotion in each cell state was evaluated, in addition to genes related to copper export and buffering and key genes in cellular metabolic pathways. Results In the mouse model of pulmonary fibrosis induced by bleomycin, the genes related to cuproptosis promotion, such as Fdx1, Lias, Dld, Pdha1, Pdhb, Dlat, and Lipt1, were gradually down-regulated in the process of fibroblast differentiation from resting fibroblast to myofibroblast. Consistently, the same results were obtained via analysis of scRNA-seq data for human pulmonary fibrosis. In addition, genes related to copper ion export and buffering gradually increased with the activation of fibroblasts. Metabolism reprogramming was also observed, while fibroblast activation and tricarboxylic acid(TCA) cycle and lipid metabolism were gradually down-regulated and mitochondrial metabolism was gradually up-regulated. Conclusion The present study is the first to reveal a negative correlation between cuproptosis and fibrosis, suggesting that an appropriate cuproptosis level may be involved in inhibiting fibroblast activation. This may provide a new method for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Li
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lihua Peng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yipin Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China,*Correspondence: Gang Li,
| |
Collapse
|
4
|
Wen D, Ren X, Li H, He Y, Hong Y, Cao J, Zheng C, Dong L, Li X. Low expression of RBP4 in the vitreous humour of patients with proliferative diabetic retinopathy who underwent Conbercept intravitreal injection. Exp Eye Res 2022; 225:109197. [PMID: 35932904 DOI: 10.1016/j.exer.2022.109197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022]
Abstract
Intravitreal injection of anti-VEGF antibodies has been widely used in the treatment of proliferative diabetic retinopathy (PDR). However, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. To explore proteins closely related to fibrosis, we conducted proteomic analysis of human vitreous humour collected from PDR patients who have or have not intravitreal Conbercept (IVC) injection. Sixteen vitreous humour samples from PDR patients with preoperative IVC and 20 samples from those without preoperative IVC were examined. An immunodepletion kit was used to remove high-abundance vitreous proteins. Conbercept-induced changes were determined using a tandem mass tag-based quantitative proteomic strategy. Enzyme-linked immunosorbent assays were performed to confirm the concentrations of selected proteins and validate the proteomic results. Based on a false discovery rate between 0.05% and -0.05% and a fold-change > 1.5, 97 proteins were altered (49 higher levels and 48 lower levels) in response to IVC. Differentially expressed proteins were found in the extracellular and intracellular regions and were found to be involved in VEGF binding and VEGF-activated receptor activity. Protein-protein interactions indicated associations with fibrosis, neovascularisation and inflammatory signalling pathways. We found the low levels of RBP4 in the vitreous humour of PDR patients with IVC injection, as revealed by ELISA and proteomic profiling. Moreover, RBP4 significantly restored the mitochondrial function of HRMECs induced by AGEs and down regulated the level of glycolysis. Our study is the first to report that RBP4 decreases in the vitreous humour of PDR patients who underwent Conbercept treatment, thereby verifying the role of RBP4 in glucose metabolism. Results provide evidence for the potential mechanism underlying Conbercept-related fibrosis.
Collapse
Affiliation(s)
- Dejia Wen
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Xinjun Ren
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Ye He
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Jingjing Cao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Chuanzhen Zheng
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| | - Xiaorong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Adipose tissue is closely associated with systemic sclerosis (SSc)-pathology, both anatomically and functionally. This review focuses on local effects of adipocytes in the context of adipose to mesenchymal transdifferentiation (AMT), effects of the adipose stromal vascular fraction on SSc pathogenesis and systemic effects of adipose tissue secretome. RECENT FINDINGS Novel populations of fibroblasts evolving from adipose tissue were identified- for example COL11+ cancer-associated fibroblasts differentiated from adipose-derived stromal cells. Lipofibroblasts in human lungs were described using nonconventional markers that allow more effective population identification. These findings could make an important contribution to further clarification of adipocyte involvement in SSc.Recent studies confirmed that lipolysis contributes to fibrogenesis through AMT differentiation and release of fatty acids (FA). Unbalanced metabolism of FA has been reported in several studies in SSc. Other adipose tissue secretome molecules (e.g. lysophosphatidic acid), novel adipokines and extracellular vesicles from adipose mesenchymal stem cells make important contributions to the pro-/antifibrotic balance. SUMMARY There is a growing evidence of important contribution of adipose tissue and its secretome to SSc pathogenesis. Novel techniques such as single-cell RNA sequencing (scRNAseq) and metabolomics, albeit challenging to use in adipose tissue, will provide further evidence.
Collapse
|
6
|
The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med 2020; 9:jcm9092687. [PMID: 32825112 PMCID: PMC7565034 DOI: 10.3390/jcm9092687] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune and vascular disease resulting in fibrosis of various organs with unknown etiology. Accumulating evidence suggests that a common pathologic cascade across multiple organs and additional organ-specific pathologies underpin SSc development. The common pathologic cascade starts with vascular injury due to autoimmune attacks and unknown environmental factors. After that, dysregulated angiogenesis and defective vasculogenesis promote vascular structural abnormalities, such as capillary loss and arteriolar stenosis, while aberrantly activated endothelial cells facilitate the infiltration of circulating immune cells into perivascular areas of various organs. Arteriolar stenosis directly causes pulmonary arterial hypertension, scleroderma renal crisis and digital ulcers. Chronic inflammation persistently activates interstitial fibroblasts, leading to the irreversible fibrosis of multiple organs. The common pathologic cascade interacts with a variety of modifying factors in each organ, such as keratinocytes and adipocytes in the skin, esophageal stratified squamous epithelia and myenteric nerve system in gastrointestinal tract, vasospasm of arterioles in the heart and kidney, and microaspiration of gastric content in the lung. To better understand SSc pathogenesis and develop new disease-modifying therapies, it is quite important to understand the complex pathogenesis of SSc from the two distinct perspectives, namely the common pathologic cascade and additional organ-specific pathologies.
Collapse
|
7
|
Visfatin and chemerin levels correspond with inflammation and might reflect the bridge between metabolism, inflammation and fibrosis in patients with systemic sclerosis. Postepy Dermatol Alergol 2019; 36:551-565. [PMID: 31839772 PMCID: PMC6906965 DOI: 10.5114/ada.2018.79104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Adipokines are regulatory molecules which act as mediators of the inflammatory, fibrotic and metabolic processes by interacting with the immune system. Aim We hypothesized that chemerin and visfatin by pro-inflammatory properties play a significant role in inflammation in systemic sclerosis. To address this hypothesis, we determined serum chemerin and visfatin levels in SSc patients, compared with the control group and defined the correlations with clinical and laboratory parameters in SSc patients. Material and methods The study included 48 Caucasian female patients with SSc and 38 healthy subjects of the control group. Serum concentrations of selected adipokines were measured using commercially available ELISA Kits. Results Patients with SSc had higher chemerin levels (209.38 ±55.35 ng/ml) than the control group (182.71 ±33.94 ng/ml) and the difference was statistically significant (Z = 2.14, p = 0.032). The highest chemerin levels were found in dcSSc patients (242.46 ±95.82 ng/ml). We indicated a positive correlation of chemerin and visfatin with levels of inflammatory markers: CRP (r = 0.35, p = 0.013 for chemerin; r = 0.41, p = 0.003 for visfatin) and ESR (r = 0.31, p = 0.03 for chemerin; r = 0.30, p = 0.03 for visfatin). What is more, chemerin manifested a statistically significant positive correlation with the concentration of complement component C3 (r = 0.47, p = 0.001) and C4 (r = 0.29, p = 0.049), whereas visfatin correlated with C4 levels (r = 0.32, p = 0.029). Conclusions The results of our study indicate that chemerin and visfatin as pro-inflammatory cytokines might represent new markers corresponding with inflammation in systemic sclerosis and might reflect the bridge between metabolism, inflammation and potentially, chemerin may also link inflammation with skin and lung fibrosis.
Collapse
|
8
|
Asano Y, Masui Y, Toyama T, Sato S. Unique correlation profile of adiponectin and retinol-binding protein 4 in patients with systemic sclerosis. J Dermatol 2019; 46:819-820. [PMID: 31245857 DOI: 10.1111/1346-8138.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/02/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuri Masui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Yamashita T, Lakota K, Taniguchi T, Yoshizaki A, Sato S, Hong W, Zhou X, Sodin-Semrl S, Fang F, Asano Y, Varga J. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep 2018; 8:11843. [PMID: 30087356 PMCID: PMC6081386 DOI: 10.1038/s41598-018-29901-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
The hallmarks of systemic sclerosis (SSc) are autoimmunity, microangiopathy and fibrosis. Skin fibrosis is accompanied by attrition of the dermal white adipose tissue layer, and alterations in the levels and function of adiponectin. Since these findings potentially implicate adiponectin in the pathogenesis of SSc, we employed a novel pharmacological approach to augment adiponectin signaling using AdipoRon, an orally active adiponectin receptor agonist. Chronic treatment with AdipoRon significantly ameliorated bleomycin-induced dermal fibrosis in mice. AdipoRon attenuated fibroblast activation, adipocyte-to-myofibroblast transdifferentiation, Th2/Th17-skewed polarization of the immune response, vascular injury and endothelial-to-mesenchymal transition within the lesional skin. In vitro, AdipoRon abrogated profibrotic responses elicited by TGF-β in normal fibroblasts, and reversed the inherently-activated profibrotic phenotype of SSc fibroblasts. In view of these broadly beneficial effects on all three cardinal pathomechanisms underlying the clinical manifestations of SSc, pharmacological augmentation of adiponectin signaling might represent a novel strategy for the treatment of SSc.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Wen Hong
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Xingchun Zhou
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Snezn Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Feng Fang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, Vandecasteele E, De Keyser F, Distler O, Gutermuth J, Smith V. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 2017; 16:774-786. [PMID: 28572048 DOI: 10.1016/j.autrev.2017.05.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by fibroproliferative vasculopathy, immunological abnormalities and progressive fibrosis of multiple organs including the skin. In this study, all English speaking articles concerning the role of endothelial cells (ECs) in SSc vasculopathy and representing biomarkers are systematically reviewed and categorized according to endothelial cell (EC) (dys)function in SSc. METHODS A sensitive search on behalf of the EULAR study group on microcirculation in Rheumatic Diseases was developed in Pubmed, The Cochrane Library and Web of Science to identify articles on SSc vasculopathy and the role of ECs using the following Mesh terms: (systemic sclerosis OR scleroderma) AND pathogenesis AND (endothelial cells OR marker). All selected papers were read and discussed by two independent reviewers. The selection process was based on title, abstract and full text level. Additionally, both reviewers further searched the reference lists of the articles selected for reading on full text level for supplementary papers. These additional articles went through the same selection process. RESULTS In total 193 resulting articles were selected and the identified biomarkers were categorized according to description of EC (dys)function in SSc. The most representing and reliable biomarkers described by the selected articles were adhesion molecules for EC activation, anti-endothelial cell antibodies for EC apoptosis, vascular endothelial growth factor (VEGF), its receptor VEGFR-2 and endostatin for disturbed angiogenesis, endothelial progenitors cells for defective vasculogenesis, endothelin-1 for disturbed vascular tone control, Von Willebrand factor for coagulopathy and interleukin (IL)-33 for EC-immune system communication. Emerging, relatively new discovered biomarkers described in the selected articles, are VEGF165b, IL-17A and the adipocytokines. Finally, myofibroblasts involved in tissue fibrosis in SSc can derive from ECs or epithelial cells through a process known as endothelial-to-mesenchymal transition. CONCLUSION This systematic review emphasizes the growing evidence that SSc is primarily a vascular disease where EC dysfunction is present and prominent in different aspects of cell survival (activation and apoptosis), angiogenesis and vasculogenesis and where disturbed interactions between ECs and various other cells contribute to SSc vasculopathy.
Collapse
Affiliation(s)
- Y Mostmans
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Immunology and Allergology (CIA) Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles (ULB), Van Gehuchtenplein 4, 1020 Brussels, Belgium.
| | - M Cutolo
- Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - C Giddelo
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - S Decuman
- Ghent University, Department of Internal Medicine, Ghent, Belgium
| | - K Melsens
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - H Declercq
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, Ghent, Belgium
| | - E Vandecasteele
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - F De Keyser
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - O Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - J Gutermuth
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - V Smith
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| |
Collapse
|
11
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
12
|
Takahashi T, Asano Y, Noda S, Aozasa N, Akamata K, Taniguchi T, Ichimura Y, Toyama T, Sumida H, Kuwano Y, Tada Y, Sugaya M, Kadono T, Sato S. A possible contribution of lipocalin-2 to the development of dermal fibrosis, pulmonary vascular involvement and renal dysfunction in systemic sclerosis. Br J Dermatol 2015; 173:681-9. [PMID: 25781362 DOI: 10.1111/bjd.13779] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lipocalin-2 is an adipocytokine implicated in apoptosis, innate immunity, angiogenesis, and the development of chronic kidney disease. OBJECTIVES To investigate the role of lipocalin-2 in systemic sclerosis (SSc). MATERIALS AND METHODS Serum lipocalin-2 levels were determined by enzyme-linked immunosorbent assay in 50 patients with SSc and 19 healthy subjects. Lipocalin-2 expression was evaluated in the skin of patients with SSc and bleomycin (BLM)-treated mice and in Fli1-deficient endothelial cells by reverse transcriptase-real time polymerase chain reaction, immunoblotting and/or immunohistochemistry. RESULTS Although serum lipocalin-2 levels were comparable between patients with SSc and healthy controls, the prevalence of scleroderma renal crisis was significantly higher in patients with SSc with elevated serum lipocalin-2 levels than in those with normal levels. Furthermore, serum lipocalin-2 levels inversely correlated with estimated glomerular filtration rate in patients with SSc with renal dysfunction. Among patients with SSc with normal renal function, serum lipocalin-2 levels positively correlated with skin score in patients with diffuse cutaneous SSc with disease duration of < 3 years and inversely correlated with estimated right ventricular systolic pressure in total patients with SSc. Importantly, in SSc lesional skin, lipocalin-2 expression was increased in dermal fibroblasts and endothelial cells. In BLM-treated mice, lipocalin-2 was highly expressed in dermal fibroblasts, but not in endothelial cells. On the other hand, the deficiency of transcription factor Fli1, which is implicated in SSc vasculopathy, induced lipocalin-2 expression in cultivated endothelial cells. CONCLUSIONS Lipocalin-2 may be involved in renal dysfunction and dermal fibrosis of SSc. Dysregulated matrix metalloproteinase-9/lipocalin-2-dependent angiogenesis due to Fli1 deficiency may contribute to the development of pulmonary arterial hypertension associated with SSc.
Collapse
Affiliation(s)
- T Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Y Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - S Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - N Aozasa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - K Akamata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - T Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Y Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - T Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - H Sumida
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Y Kuwano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Y Tada
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - M Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - T Kadono
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - S Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Miura S, Asano Y, Saigusa R, Yamashita T, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Tamaki Z, Tada Y, Sugaya M, Sato S, Kadono T. Serum omentin levels: A possible contribution to vascular involvement in patients with systemic sclerosis. J Dermatol 2015; 42:461-6. [PMID: 25766303 DOI: 10.1111/1346-8138.12824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/16/2015] [Indexed: 12/16/2022]
Abstract
Adipokines have been shown to be potentially involved in various pathological processes of systemic sclerosis (SSc), including inflammation, vasculopathy and fibrosis, through their pleiotropic effects. Omentin is a member of the adipokines, and has a protective effect against vascular inflammation and pathological remodeling leading to atherosclerosis as well as a vasodilatory effect. To assess the potential role of omentin in the development of SSc, we determined serum omentin levels by enzyme-linked immunosorbent assay in 66 SSc and 21 control subjects and evaluated their clinical correlation. Serum omentin levels were significantly decreased in diffuse cutaneous SSc patients compared with limited cutaneous SSc patients, while comparable between total SSc patients and healthy controls. In diffuse cutaneous (dc)SSc, patients with a disease duration of 5 years or less had serum omentin levels significantly lower than those with a disease duration of more than 5 years. In total SSc, serum omentin levels were significantly higher in patients with elevated right ventricular systolic pressure than in the others, while serum omentin levels did not correlate with fibrotic and systemic inflammatory parameters. These results suggest that a loss of omentin-dependent protection against vascular inflammation and remodeling may be related to pathological vascular events of early dcSSc. The elevation of serum omentin levels may serve as a marker of vascular involvement leading to pulmonary arterial hypertension in SSc, which is possibly due to the compensatory induction of omentin against the increased pulmonary vascular tone.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Miura S, Asano Y, Saigusa R, Yamashita T, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Tamaki Z, Tada Y, Sugaya M, Sato S, Kadono T. Serum vaspin levels: A possible correlation with digital ulcers in patients with systemic sclerosis. J Dermatol 2015; 42:528-31. [PMID: 25708680 DOI: 10.1111/1346-8138.12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022]
Abstract
Vaspin is an adipokine implicated in vascular inflammation and remodeling. We herein evaluated the clinical correlation of serum vaspin levels in systemic sclerosis (SSc). Consistent with previous reports, 12% of subjects exhibited serum vaspin levels over 10 ng/mL, likely due to genetic effects. Excluding these subjects, despite no difference between SSc and control subjects, serum vaspin levels were significantly decreased in SSc patients with digital ulcers compared with those without, suggesting the potential contribution of vaspin to digital ulcers of this disease.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akamata K, Asano Y, Taniguchi T, Yamashita T, Saigusa R, Nakamura K, Noda S, Aozasa N, Toyama T, Takahashi T, Ichimura Y, Sumida H, Tada Y, Sugaya M, Kadono T, Sato S. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology (Oxford) 2014; 54:1308-16. [PMID: 25539827 DOI: 10.1093/rheumatology/keu479] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Chemerin is a member of adipocytokines with a chemoattractant effect on plasmacytoid dendritic cells and macrophages and pro-angiogenic properties. We investigated the potential role of chemerin in the development of SSc. METHODS Chemerin expression was evaluated by immunostaining and/or real-time quantitative RT-PCR in human and murine skin. The mechanisms regulating chemerin expression in dermal fibroblasts and endothelial cells were examined using the gene silencing technique and chromatin immunoprecipitation. Serum chemerin levels were determined by ELISA in 64 SSc patients and 19 healthy subjects. RESULTS In SSc lesional skin, chemerin was up-regulated in small blood vessels, while it was down-regulated in fibroblasts surrounded with thickened collagen bundles. The decreased expression of chemerin was significantly reversed by TGF-β1 antisense oligonucleotide in cultured SSc dermal fibroblasts and chemerin expression was markedly decreased in dermal fibroblasts of bleomycin-treated mice. Gene silencing of transcription factor Fli1, which binds to the chemerin promoter, induced chemerin expression in human dermal microvascular endothelial cells and Fli1(+/-) mice exhibited elevated chemerin expression in dermal blood vessels. Serum chemerin levels inversely correlated with estimated glomerular filtration rate in SSc patients with renal dysfunction. In SSc patients with normal renal function, patients with digital ulcers had higher serum chemerin levels than those without. CONCLUSION Chemerin is down-regulated in SSc dermal fibroblasts by autocrine TGF-β, while it is up-regulated in SSc dermal blood vessels through endothelial Fli1 deficiency. Increased chemerin expression in dermal blood vessels may be associated with the development of digital ulcers in SSc.
Collapse
Affiliation(s)
- Kaname Akamata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naohiko Aozasa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Kadono
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Vascular biomarkers and correlation with peripheral vasculopathy in systemic sclerosis. Autoimmun Rev 2014; 14:314-22. [PMID: 25485941 DOI: 10.1016/j.autrev.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023]
Abstract
Vascular disease is a hallmark of systemic sclerosis (SSc). It is present in every patient, being responsible both for the earliest clinical manifestations and the major life-threatening complications of the disease, and thus determining important morbidity and mortality. In SSc, progressive vascular injury leads to vascular tone dysfunction and reduced capillary blood flow, with consequent tissue ischemia and chronic hypoxia. These phenomena are often accompanied by abnormal levels of vascular factors. Microangiopathy in SSc may be easily assessed by nailfold videocapillaroscopy. The variety of derangements detected in the nailfold capillaries is accompanied by abnormal levels of different vascular mediators and appears to be the best evaluable predictor of the development of peripheral vascular complications, such as digital ulcers. The purpose of this review is to summarize in SSc the most relevant vascular biomarkers and the main associations between vascular biomarkers and capillaroscopic parameters and/or the presence of digital ulcers. Vascular biomarkers could become useful predictive factors of vascular damage in SSc, allowing an earlier management of vascular complications.
Collapse
|