1
|
Dong YW. Roles of multi-level temperature-adaptive responses and microhabitat variation in establishing distributions of intertidal species. J Exp Biol 2023; 226:jeb245745. [PMID: 37909420 DOI: 10.1242/jeb.245745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
How intertidal species survive their harsh environment and how best to evaluate and forecast range shifts in species distribution are two important and closely related questions for intertidal ecologists and global change biologists. Adaptive variation in responses of organisms to environmental change across all levels of biological organization - from behavior to molecular systems - is of key importance in setting distribution patterns, yet studies often neglect the interactions of diverse types of biological variation (e.g. differences in thermal optima owing to genetic and acclimation-induced effects) with environmental variation, notably at the scale of microhabitats. Intertidal species have to cope with extreme and frequently changing thermal stress, and have shown high variation in thermal sensitivities and adaptive responses at different levels of biological organization. Here, I review the physiological and biochemical adaptations of intertidal species to environmental temperature on multiple spatial and temporal scales. With fine-scale datasets for the thermal limits of individuals and for environmental temperature variation at the microhabitat scale, we can map the thermal sensitivity for each individual in different microhabitats, and then scale up the thermal sensitivity analysis to the population level and, finally, to the species level by incorporating physiological traits into species distribution models. These more refined mechanistic models that include consideration of physiological variations have higher predictive power than models that neglect these variations, and they will be crucial to answering the questions posed above concerning adaptive mechanisms and the roles they play in governing distribution patterns in a rapidly changing world.
Collapse
Affiliation(s)
- Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao 266001, China
| |
Collapse
|
2
|
Anderson RO, Goulet CT, Chapple DG. Acclimation of thermal physiology to new basking regimes in a widespread Australian skink. J Therm Biol 2023; 113:103530. [PMID: 37055133 DOI: 10.1016/j.jtherbio.2023.103530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Changes in thermal environments are a challenge for many ectotherms, as they would have to acclimate their physiology to new thermal environments to maintain high-levels of performance. Time spent basking is key for many ectothermic animals to keep their body temperature within optimal thermal ranges. However, little is known about the impact of changes in basking time on the thermal physiology of ectothermic animals. We investigated how different basking regimes (low intensity vs high intensity) affected key thermal physiological traits of a widespread Australian skink (Lampropholis delicata). We quantified thermal performance curves and thermal preferences of skinks subjected to low and high intensity basking regimes over a 12-week period. We found that skinks acclimated their thermal performance breadth in both basking regimes, with the skinks from the low-intensity basking regime showing narrower performance breadths. Although maximum velocity and optimum temperatures increased after the acclimation period, these traits did not differ between basking regimes. Similarly, no variation was detected for thermal preference. These results provide insight into mechanisms that allow these skinks to successfully overcome environmental constraints in the field. Acclimation of thermal performance curves seems to be key for widespread species to colonise new environments, and can buffer ectothermic animals in novel climatic scenarios.
Collapse
|
3
|
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner. GLOBAL CHANGE BIOLOGY 2022; 28:5695-5707. [PMID: 35876025 PMCID: PMC9542040 DOI: 10.1111/gcb.16319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Wilco C. E. P. Verberk
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Jeroen F. Sandker
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Iris L. E. van de Pol
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Mauricio A. Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto Milenio de Oceanografía (IMO)Universidad de ConcepciónConcepciónChile
| | | | - David J. McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRDMontpellierFrance
| | - Félix P. Leiva
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
4
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
5
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
6
|
Kuyucu AC, Chown SL. Time course of acclimation of critical thermal limits in two springtail species (Collembola). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104209. [PMID: 33609519 DOI: 10.1016/j.jinsphys.2021.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Critical thermal limits are one of the most important sources of information on the possible impacts of climate change on soil microarthropods. The extent of plasticity of tolerance limits can provide valuable insights about the likely responses of ectotherms to environmental change. Although many studies have investigated various aspects of the acclimatory response of thermal limits to temperature changes in arthropods, the number of studies focusing on the temporal dynamics of this plastic response is relatively small. Collembola, one of the key microarthropods groups in almost all soil ecosystems around the world, have been the focus of several thermal acclimation studies. Yet the time course of acclimation and its reversal have not been widely studied in this group. Here we investigated the time course of acclimation of critical thermal maxima (CTmax) and minima (CTmin) of two springtail species. We exposed a Cryptopygus species from temperate southern Australia to high and low temperature conditions and Mucrosomia caeca from Sub-Antarctic Macquarie Island to high temperature conditions. Upper thermal limits in both species were found to be highly constrained, as CTmax did not show substantial response to high and low temperature acclimation both in the Cryptopygus species and M. caeca, whereas CTmin showed significant responses to high and low temperature conditions. The acclimation begins to stabilize in approximately seven days in all treatments except for the acclimation of CTmin under high temperature conditions, where the pattern of change suggests that this acclimation might take longer to be completed. Although reversal of this acclimation also begins to stabilize under 7 days, re-acclimation was relatively slow as we did not observe a very clear settling point in 2 of the 3 re-acclimation treatments. The observed limits on the plasticity of CTmax indicate that both of these species may be very limited in their ability to respond plastically to short-term rapid changes in temperature (i.e temperature extremes).
Collapse
Affiliation(s)
- Arda C Kuyucu
- Hacettepe University, Department of Biology, Ankara 06800, Turkey.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
7
|
Pan FTC, Applebaum SL, Manahan DT. Differing thermal sensitivities of physiological processes alter ATP allocation. ACTA ACUST UNITED AC 2021; 224:jeb.233379. [PMID: 33328288 DOI: 10.1242/jeb.233379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Changes in environmental temperature affect rate processes at all levels of biological organization. Yet the thermal sensitivity of specific physiological processes that affect allocation of the ATP pool within a species is less well understood. In this study of developmental stages of the Pacific oyster, Crassostrea gigas, thermal sensitivities were measured for growth, survivorship, protein synthesis, respiration and transport of amino acids and ions. At warmer temperatures, larvae grew faster but suffered increased mortality. An analysis of temperature sensitivity (Q 10 values) revealed that protein synthesis, the major ATP-consuming process in larvae of C. gigas, is more sensitive to temperature change (Q 10 value of 2.9±0.18) than metabolic rate (Q 10 of 2.0±0.15). Ion transport by Na+/K+-ATPase measured in vivo has a Q 10 value of 2.1±0.09. The corresponding value for glycine transport is 2.4±0.23. Differing thermal responses for protein synthesis and respiration result in a disproportional increase in the allocation of available ATP to protein synthesis with rising temperature. A bioenergetic model is presented illustrating how changes in growth and temperature affect allocation of the ATP pool. Over an environmentally relevant temperature range for this species, the proportion of the ATP pool allocated to protein synthesis increases from 35 to 65%. The greater energy demand to support protein synthesis with increasing temperature will compromise energy availability to support other essential physiological processes. Defining the trade-offs of ATP demand will provide insights into understanding the adaptive capacity of organisms to respond to various scenarios of environmental change.
Collapse
Affiliation(s)
- Francis T C Pan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Scott L Applebaum
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Donal T Manahan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
8
|
Boroda AV, Kipryushina YO, Odintsova NA. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 2020; 25:821-832. [PMID: 32297161 PMCID: PMC7591686 DOI: 10.1007/s12192-020-01109-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
Abstract
Environmental stressors induce changes in marine mussels from molecular (e.g., neurotransmitter and chaperone concentration, and expression of immune- and heat-shock protein-related genes) to physiological (e.g., filtration and heart rates, the number of circulating hemocytes) levels. Temperature directly affects the biogeographic distribution of mussels. Chaperones might form an essential part of endogenous protective mechanisms for the adaptation of these animals to low temperatures in nature. Here, we review the available studies dealing with cold stress responses of Mytilidae family members in their natural environment.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| |
Collapse
|
9
|
Yamada H, Maiga H, Bimbile-Somda NS, Carvalho DO, Mamai W, Kraupa C, Parker AG, Abrahim A, Weltin G, Wallner T, Schetelig MF, Caceres C, Bouyer J. The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water. Parasit Vectors 2020; 13:198. [PMID: 32303257 PMCID: PMC7165396 DOI: 10.1186/s13071-020-04069-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. METHODS Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40-44 h), Ae. albopictus (aged 40-44 h) and An. arabiensis (aged 20-24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. RESULTS All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. CONCLUSIONS The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.
Collapse
Affiliation(s)
- Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Nanwintoum Severin Bimbile-Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Danilo O. Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Carina Kraupa
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Aiman Abrahim
- Food and Environmental Protection Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Georg Weltin
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Marc F. Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| |
Collapse
|
10
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J Comp Physiol B 2020; 190:297-315. [PMID: 32144506 DOI: 10.1007/s00360-020-01271-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
11
|
Jensen K, Michaelsen JV, Larsen MT, Kristensen TN, Holmstrup M, Overgaard J. Increased lipid accumulation but not reduced metabolism explains improved starvation tolerance in cold-acclimated arthropod predators. Naturwissenschaften 2018; 105:65. [DOI: 10.1007/s00114-018-1593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
|
12
|
Jensen K, Toft S, Sigsgaard L, Sørensen JG, Holmstrup M. Prey-specific impact of cold pre-exposure on kill rate and reproduction. J Anim Ecol 2018; 88:258-268. [PMID: 30303532 DOI: 10.1111/1365-2656.12916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
Temperature influences biological processes of ectotherms including ecological interactions, but interaction strengths may depend on species-specific traits. Furthermore, ectotherms acclimate to prevailing thermal conditions by adjusting physiological parameters, which often implies costs to other fitness-related parameters. Both predators and prey may therefore pay thermal acclimation costs following exposure to suboptimal temperatures. However, these costs may be asymmetrical between predator and prey, and between the predator and different species of concurrent prey. We investigated whether thermal pre-exposure affected subsequent kill rate and predator fitness when foraging on prey that differ in ease of capture, and whether changes were primarily caused by predator or by prey pre-exposure effects. Specifically, we were interested in whether there were interactions between predator pre-exposed temperature and specific prey. Using the mesostigmatid mite Gaeolaelaps aculeifer as a generalist predator and the collembolans Folsomia candida and Protaphorura fimata as prey, we measured the impact of present temperature, predator pre-exposure temperature, prey pre-exposure temperature (all 10 or 20°C), prey species, and all interactions on prey numbers killed, predator eggs produced, and exploitation of killed prey in a full factorial design. Mites killed P. fimata in equal numbers independent of the presence of F. candida, but killed F. candida when P. fimata was absent. Mite kill rate and reproduction were significantly affected by mite pre-exposure temperature and test temperature, but not by prey pre-exposure temperature. Significantly more of the slower prey was killed than of the quicker prey. Importantly, we found significant synergistic negative interaction effects between predator cold pre-exposure and hunting prey of higher agility on predator kill rate and reproduction. Our findings show that the negative effects of cold and cold pre-exposure on kill rate and reproduction may be more severe when predators forage on quick prey. The study implies that predator cold exposure has consequences for specific prey survival following cold due to altered predation pressures, which in nature should influence the specific prey population dynamics and apparent competition outcomes. The findings exemplify how not only current but also preceding conditions affect ecological interactions, and that effect strength depends on the species involved.
Collapse
Affiliation(s)
- Kim Jensen
- Department of Bioscience, Section for Soil Ecology and Ecotoxicology, Aarhus University, Silkeborg, Denmark
| | - Søren Toft
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Lene Sigsgaard
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - Jesper G Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Martin Holmstrup
- Department of Bioscience, Section for Soil Ecology and Ecotoxicology, Aarhus University, Silkeborg, Denmark
| |
Collapse
|
13
|
Leiva FP, Garcés C, Verberk WCEP, Care M, Paschke K, Gebauer P. Differences in the respiratory response to temperature and hypoxia across four life-stages of the intertidal porcelain crab Petrolisthes laevigatus. MARINE BIOLOGY 2018; 165:146. [PMID: 30220736 PMCID: PMC6132507 DOI: 10.1007/s00227-018-3406-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 08/14/2018] [Indexed: 05/29/2023]
Abstract
For aquatic breathers, hypoxia and warming can act synergistically causing a mismatch between oxygen supply (reduced by hypoxia) and oxygen demand (increased by warming). The vulnerability of these species to such interactive effects may differ during ontogeny due to differing gas exchange systems. This study examines respiratory responses to temperature and hypoxia across four life-stages of the intertidal porcelain crab Petrolisthes laevigatus. Eggs, megalopae, juveniles and adults were exposed to combinations of temperatures from 6 to 18 °C and oxygen tensions from 2 to 21 kPa. Metabolic rates differed strongly across life-stages which could be partly attributed to differences in body mass. However, eggs exhibited significantly lower metabolic rates than predicted for their body mass. For the other three stages, metabolic rates scaled with a mass exponent of 0.89. Mass scaling exponents were similar across all temperatures, but were significantly influenced by oxygen tension (the highest at 9 and 14 kPa, and the lowest at 2 kPa). Respiratory responses across gradients of oxygen tension were used to calculate the response to hypoxia, whereby eggs, megalopae and juveniles responded as oxyconformers and adults as oxyregulators. The thermal sensitivity of the metabolic rates (Q10) were dependent on the oxygen tension in megalopae, and also on the interaction between oxygen tension and temperature intervals in adults. Our results thus provide evidence on how the oxygen tension can modulate the mass dependence of metabolic rates and demonstrate changes in respiratory control from eggs to adults. In light of our results indicating that adults show a good capacity for maintaining metabolism independent of oxygen tension, our study highlights the importance of assessing responses to multiple stressors across different life-stages to determine how vulnerability to warming and hypoxia changes during development.
Collapse
Affiliation(s)
- Félix P. Leiva
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Cristóbal Garcés
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Wilco C. E. P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Macarena Care
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Paulina Gebauer
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| |
Collapse
|
14
|
Bowler K. Heat death in poikilotherms: Is there a common cause? J Therm Biol 2018; 76:77-79. [DOI: 10.1016/j.jtherbio.2018.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
|
15
|
Jessop TS, Lane M, Wilson RS, Narayan EJ. Testing for Short- and Long-Term Thermal Plasticity in Corticosterone Responses of an Ectothermic Vertebrate. Physiol Biochem Zool 2018; 91:967-975. [PMID: 29863953 DOI: 10.1086/698664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic plasticity, broadly defined as the capacity of one genotype to produce more than one phenotype, is a key mechanism for how animals adapt to environmental (including thermal) variation. Vertebrate glucocorticoid hormones exert broad-scale regulation of physiological, behavioral, and morphological traits that influence fitness under many life-history or environmental contexts. Yet the capacity for vertebrates to demonstrate different types of thermal plasticity, including rapid compensation or longer acclimation in glucocorticoid hormone function, when subject to different environmental temperature regimes remains poorly addressed. Here, we explore whether patterns of urinary corticosterone metabolites respond (i.e., evidence of acclimation) to repeated short-term and sustained long-term temperature exposures in an amphibian, the cane toad (Rhinella marina). In response to three repeated short (30-min) high-temperature (37°C) exposures (at 10-d intervals), toads produced urinary corticosterone metabolite responses of sequentially greater magnitude, relative to controls. However, toads subjected to 4 wk of acclimation to either cool (18°C)- or warm (30°C)-temperature environments did not differ significantly in their urinary corticosterone metabolite responses during exposure to a thermal ramp (18°-36°C). Together, these results indicate that adult toads had different, including limited, capacities for their glucocorticoid responses to demonstrate plasticity to different regimes of environmental temperature variation. We advocate further research as necessary to identify plasticity, or lack thereof, in glucocorticoid physiology, to better understand how vertebrates can regulate organismal responses to environmental variation.
Collapse
Affiliation(s)
- Tim S Jessop
- 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3220, Australia
| | - Meagan Lane
- 2 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robbie S Wilson
- 3 School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Edward J Narayan
- 4 School of Science and Health, Hawkesbury campus, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
16
|
|
17
|
Nilsson GE, Lefevre S. Physiological Challenges to Fishes in a Warmer and Acidified Future. Physiology (Bethesda) 2016; 31:409-417. [DOI: 10.1152/physiol.00055.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With the projected levels of global warming and ocean acidification, fishes have to face warmer waters with CO2 levels that are the highest in over 30 million years. The resultant rise in body temperature means that metabolic rates of fish will increase, and some may become energetically compromised. No less worrying, and maybe more surprising, is that rising CO2 concentrations appear to trigger pH regulatory mechanisms that disrupts neural ion gradients, leading to altered neurotransmitter function and maladaptive behavioral changes. We point out the many outstanding questions, including the ultimate one: Will fish be able to adapt to these challenges?
Collapse
|
18
|
Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C, Killen SS, McKenzie DJ, Metcalfe JD, Peck MA, Vu M, Cooke SJ. Understanding the individual to implement the ecosystem approach to fisheries management. CONSERVATION PHYSIOLOGY 2016; 4:cow005. [PMID: 27293757 PMCID: PMC4825417 DOI: 10.1093/conphys/cow005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/25/2016] [Accepted: 02/08/2016] [Indexed: 05/20/2023]
Abstract
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.
Collapse
Affiliation(s)
- Taylor D. Ward
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
| | - Dirk A. Algera
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| | - Austin J. Gallagher
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| | - Emily Hawkins
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON, CanadaK1N 9B4
| | - Andrij Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, PO Box 7803, Bergen 5020, Norway
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health, and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J. McKenzie
- Equipe Diversité et Ecologie des Poissons, UMR5119 Ecologie des Systèmes Marins Côtiers, Université Montpellier, Place Eugène Bataillon, Montpellier cedex 5 34095, France
| | - Julian D. Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| | - Myron A. Peck
- Institute of Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability, Olbersweg 24, Hamburg 22767, Germany
| | - Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON, CanadaK1N 9B4
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
19
|
Affiliation(s)
- Steven L. Chown
- School of Biological Sciences Monash University Melbourne Vic.3800 Australia
| | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn Cornwall TR10 9FE UK
| |
Collapse
|
20
|
Cooke SJ, Donaldson MR, Hinch SG, Crossin GT, Patterson DA, Hanson KC, English KK, Shrimpton JM, Farrell AP. Is fishing selective for physiological and energetic characteristics in migratory adult sockeye salmon? Evol Appl 2015; 2:299-311. [PMID: 25567882 PMCID: PMC3352493 DOI: 10.1111/j.1752-4571.2009.00076.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 04/01/2009] [Indexed: 11/29/2022] Open
Abstract
There is extensive evidence that fishing is often selective for specific phenotypic characteristics, and that selective harvest can thus result in genotypic change. To date, however, there are no studies that evaluate whether fishing is selective for certain physiological or energetic characteristics that may influence fish behaviour and thus vulnerability to capture. Here, adult sockeye salmon (Oncorhynchus nerka) were used as a model to test the null hypothesis that fishing is not selective for specific physiological or energetic traits. Fish were intercepted during their spawning migrations, implanted with a gastric radio transmitter, and biopsied (i.e., non-lethally sampled for blood, gill tissue and quantification of energetic status). In both 2003 and 2006, we tagged and biopsied 301 and 770 sockeye salmon, respectively, in the marine environment en route to their natal river system to spawn. In 2006 an additional 378 individuals were tagged and biopsied in freshwater. We found that 23 (7.6%) of the marine fish tagged in 2003, 78 (10.1%) of the marine fish tagged in 2006 and 57 (15.1%) of the freshwater fish tagged in 2006 were harvested by one of three fisheries sectors that operate in the coastal marine environment and the Fraser River (i.e. commercial, recreational or First Nations fisheries between the site of release and Hell's Gate in the Fraser River, approximately 250 km upriver and 465 km from the ocean tagging site). However, fisheries were not open continually or consistently in different locations and for different fisheries sectors necessitating a paired analytical approach. As such, for statistical analyses we paired individual fish that were harvested with another fish of the same genetic stock that was released on the same date and exhibited similar migration behaviour, except that they successfully evaded capture and reached natal spawning grounds. Using two-tailed Wilcoxon matched pairs signed-rank tests, we revealed that the physiological and energetic characteristics of harvested fish did not differ from those of the successful migrants despite evaluating a number of biochemical (e.g. plasma metabolites, cortisol, plasma ions, gill Na+/K+-ATPase) and energetic (e.g. gross somatic energy density) variables (P's all >0.10). However, for some analyses we suffered low statistical power and the study design had several shortcomings that could have made detection of differences difficult. We suggest that additional research explore the concept of fishing-induced selection for physiological characteristics because physiology is closely linked to three traits where fisheries-induced selection does occur (i.e. life-history, behaviour and morphology).
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Science, Carleton University Ottawa, ON, Canada ; Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia Vancouver, BC, Canada
| | - Michael R Donaldson
- Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia Vancouver, BC, Canada
| | - Scott G Hinch
- Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia Vancouver, BC, Canada ; Institute for Resources, Environment and Sustainability, University of British Columbia Vancouver, BC, Canada
| | - Glenn T Crossin
- Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia Vancouver, BC, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University Burnaby, BC, Canada
| | - Kyle C Hanson
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute of Biology and Institute of Environmental Science, Carleton University Ottawa, ON, Canada
| | | | - J Mark Shrimpton
- Ecosystem Science & Management Program, University of Northern British Columbia Prince George, BC, Canada
| | - Anthony P Farrell
- Faculty of Agricultural Sciences and Department of Zoology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
21
|
Evolution of Marine Organisms under Climate Change at Different Levels of Biological Organisation. WATER 2014. [DOI: 10.3390/w6113545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Hill RW, Muhich TE, Humphries MM. City-scale expansion of human thermoregulatory costs. PLoS One 2013; 8:e76238. [PMID: 24143181 PMCID: PMC3797062 DOI: 10.1371/journal.pone.0076238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
The physiological maintenance of a stable internal temperature by mammals and birds – the phenomenon termed homeothermy – is well known to be energetically expensive. The annual energy requirements of free-living mammals and birds are estimated to be 15–30 times higher than those of similar-size ectothermic vertebrates like lizards. Contemporary humans also use energy to accomplish thermoregulation. They are unique, however, in having shifted thermoregulatory control from the body to the occupied environment, with most people living in cities in dwellings that are temperature-regulated by furnaces and air conditioners powered by exogenous energy sources. The energetic implications of this strategy remain poorly defined. Here we comparatively quantify energy costs in cities, dwellings, and individual human bodies. Thermoregulation persists as a major driver of energy expenditure across these three scales, resulting in energy-versus-ambient-temperature relationships remarkably similar in shape. Incredibly, despite the many and diversified uses of network-delivered energy in modern societies, the energy requirements of six North American cities are as temperature-dependent as the energy requirements of isolated, individual homeotherms. However, the annual per-person energy cost of exogenously powered thermoregulation in cities and dwellings is 9–28 times higher than the cost of endogenous, metabolic thermoregulation of the human body. Shifting the locus of thermoregulatory control from the body to the dwelling achieves climate-independent thermal comfort. However, in an era of amplifying climate change driven by the carbon footprint of humanity, we must acknowledge the energetic extravagance of contemporary, city-scale thermoregulation, which prioritizes heat production over heat conservation.
Collapse
Affiliation(s)
- Richard W. Hill
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Timothy E. Muhich
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - Murray M. Humphries
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
23
|
Wohlschlag DE. Respiratory Metabolism and Ecological Characteristics of Some Fishes in McMurdo Sound, Antarctica. BIOLOGY OF THE ANTARCTIC SEAS 2013. [DOI: 10.1029/ar001p0033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Lurman GJ, Walter J, Hoppeler H. Seasonal changes in the behaviour and respiration physiology of the freshwater duck mussel Anodonta anatina. J Exp Biol 2013; 217:235-43. [DOI: 10.1242/jeb.093450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary
For low-energy organisms like bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation and acclimatization) may be higher than the benefits. In the first experiment, we examined the effects of seasonal temperature changes on the bivalve Anodonta anatina, making measurements each month for a year at the corresponding temperature for that time of year. Only burrowing rate was partially compensated. There was no evidence for compensation of valve closure duration, frequency or locomotory speed. In a second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C respectively) and found no evidence for compensation of the burrowing rate, valve closure duration, frequency, or oxygen consumption rates during burrowing, immediately after valve closure and at rest. Within the experimental error of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.
Collapse
|
25
|
Temperature-salinity tolerance of two latitudinally separated populations of the longwrist hermit crab Pagurus longicarpus say (crustacea, decapoda, paguridae). ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00785326.1991.10429704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
|
27
|
Hanson KC, Hasler CT, Donaldson MR, Cooke SJ. Stability of swimming performance and activity hierarchies among wild largemouth bass at multiple temporal scales: evidence for context-dependent shuffling between seasons. CAN J ZOOL 2010. [DOI: 10.1139/z10-006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laboratory-based studies of locomotory performance in many taxa have noted that individuals form stable hierarchies of organismal performance. Though laboratory studies of teleost fishes have consistently demonstrated individual repeatability of swimming performance, this phenomenon has rarely been studied in the field and never across multiple years. Using a whole-lake acoustic telemetry array with submetre accuracy, we assessed the individual repeatability of two metrics of swimming performance (daily distance traveled and mean daily swimming speed) within four seasons during a year (fall, winter, spring, and summer), among these seasons, and between winters of 2 years. Largemouth bass ( Micropterus salmoides (Lacepède, 1802)) formed stable performance hierarchies within seasons except spring and no sex-specific differences in rankings were noted. Individual swimming performance was not repeatable among seasons during 1 year or across multiple winters. Seasonal changes in environmental and intrinsic biological conditions appear to result in a reshuffling of performance hierarchies, perhaps reflecting individual differences in organismal physiology.
Collapse
Affiliation(s)
- K. C. Hanson
- Fish Ecology and Conservation Physiology Laboratory, Ottawa–Carleton Institute of Biology, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - C. T. Hasler
- Fish Ecology and Conservation Physiology Laboratory, Ottawa–Carleton Institute of Biology, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - M. R. Donaldson
- Fish Ecology and Conservation Physiology Laboratory, Ottawa–Carleton Institute of Biology, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S. J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Ottawa–Carleton Institute of Biology, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
28
|
Manjunatha HB, Rajesh RK, Aparna HS. Silkworm thermal biology: a review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:204. [PMID: 21265618 PMCID: PMC3029153 DOI: 10.1673/031.010.20401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/09/2010] [Indexed: 05/30/2023]
Abstract
Heat shock proteins (HSPs) are known to play ecological and evolutionary roles in this postgenomic era. Recent research suggests that HSPs are implicated in cardiovascular biology and disease development, proliferation and regulation of cancer cells, cell death via apoptosis, and several other key cellular functions. These activities have generated great interest amongst cell and molecular biologists, and these biologists are keen to unravel other hitherto unknown potential functions of this group of proteins. Consequently, the biological significance of HSPs has led to cloning and characterization of genes encoding HSPs in many organisms including the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). However, most of the past investigations in B. mori were confined to expression of HSPs in tissues and cell lines, whereas information on their specific functional roles in biological, physiological, and molecular processes is scarce. Naturally occurring or domesticated polyvoltines (known to be the tropical race) are more resistant to high temperatures and diseases than bi- or univoltines (temperate races). The mechanism of ecological or evolutionary modification of HSPs during the course of domestication of B. mori - particularly in relation to thermotolerance in geographically distinct races/strains - is still unclear. In addition, the heat shock response, thermal acclimation, and hardening have not been studied extensively in B. mori compared to other organisms. Towards this, recent investigations on differential expression of HSPs at various stages of development, considering the concept of the whole organism, open ample scope to evaluate their biological and commercial importance in B. mori which has not been addressed in any of the representative organisms studied so far. Comparatively, heat shock response among different silkworm races/strains of poly-, bi-, and univoltines varies significantly and thermotolerance increases as the larval development proceeds. Hence, this being the first review in this area, an attempt has been made to collate all available information on the heat shock response, HSPs expression, associated genes, amino acid sequences, and acquired/unacquired thermotolerance. The aim is to present this as a valuable resource for addressing the gap in knowledge and understanding evolutionary significance of HSPs between domesticated (B. mori) and non-domesticated insects. It is believed that the information presented here will also help researchers/breeders to design appropriate strategies for developing novel strains for the tropics.
Collapse
Affiliation(s)
- H B Manjunatha
- Department of Sericulture University of Mysore, Mysore, Karnataka, India.
| | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Adaptation as a manifestation of informational connections in living systems. J EVOL BIOCHEM PHYS+ 2000. [DOI: 10.1007/bf02736999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
|
33
|
Fanjul-Moles ML, Bosques-Tistler T, Prieto-Sagredo J, Castañón-Cervantes O, Fernández-Rivera-Río L. Effect of variation in photoperiod and light intensity on oxygen consumption, lactate concentration and behavior in crayfish Procambarus clarkii and Procambarus digueti. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:263-9. [PMID: 11253792 DOI: 10.1016/s1095-6433(97)00413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of light intensity and duration on metabolic and behavioral parameters of two species of crayfish, Procambarus clarkii and Procambarus digueti, were studied. Sixty animals of each species were submitted to high irradiance conditions of two different photoperiod lengths, one normal light/dark (LD) 12:12 and one extreme LD 20:4 for 2 weeks. Hemolymph, lactate and oxygen consumption were determined throughout the experimental period. Simultaneously in 18 additional animals of each species, motor activity was individually recorded under the same control and experimental conditions. Both species showed a decrease in oxygen uptake and an increase in hemolymph lactate concentration. The statistical significance of this finding was higher for LD 20:4. This extreme condition evoked a significant decrease of motor activity in P. clarkii and a high mortality rate in P. digueti. P. digueti did not survive after the experiment, whereas P. clarkii survived and adapted to the laboratory conditions. Changes in metabolic and behavioral parameters could indicate different adaptation abilities in these species.
Collapse
Affiliation(s)
- M L Fanjul-Moles
- L. Neurofisiología Comparada, Depto. Biología, Fac. Ciencias, UNAM, Coyoacán, DF, Mexico.
| | | | | | | | | |
Collapse
|
34
|
Effects of temperature change on ectotherm metabolism and evolution: Metabolic and physiological interrelations underlying the superiority of multi-locus heterozygotes in heterogeneous environments. J Therm Biol 1995. [DOI: 10.1016/0306-4565(94)00023-c] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Steffensen JF. Some errors in respirometry of aquatic breathers: How to avoid and correct for them. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 6:49-59. [PMID: 24226899 DOI: 10.1007/bf02995809] [Citation(s) in RCA: 324] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Respirometry in closed and flow-through systems is described with the objective of pointing out problems and sources of errors involved and how to correct for them.Both closed respirometry applied to resting and active animals and intermillent-flow respirometry is described. In addition, flow-through or open respirometry is discussed, in particular when the system is in non-steady state.Simulations are used to show how improper analysis can lead to improper conclusions.
Collapse
Affiliation(s)
- J F Steffensen
- Department of Zoology, The University of British Columbia, B.C. V6T 2A9, Vancouver, Canada
| |
Collapse
|
36
|
Sisak MM, Sander F. Respiratory behaviour of the western atlantic holothuroidian (echinodermata) Holothuria glaberrima (selenka) at various salinities, temperatures and oxygen tensions. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0300-9629(85)90672-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Ivleva IV. The Dependence of Crustacean Respiration Rate on Body Mass and Habitat Temperature. ACTA ACUST UNITED AC 1980. [DOI: 10.1002/iroh.19800650102] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Danks SM, Tribe MA. Biochemical changes in blowfly flight muscle mitochondria following temperature acclimation. J Therm Biol 1979. [DOI: 10.1016/0306-4565(79)90035-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
|
40
|
Al-Habbib O, Grainger J. The effect of constant and changing temperatures on the thermal resistance of Lymnaea peregra (Müller). J Therm Biol 1977. [DOI: 10.1016/0306-4565(77)90030-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
EVANS D. Some aspects of acclimation to low temperatures in the grain weevils Sitophilus oryzae (L.) and S. granarius (L.). AUSTRAL ECOL 1977. [DOI: 10.1111/j.1442-9993.1977.tb01147.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Gerst JW, Thorson TB. Effects of saline acclimation on plasma electrolytes, urea excretion, and hepatic urea biosynthesis in a freshwater stingray, Potamotrygon sp. Garman, 1877. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1977; 56:87-93. [PMID: 11067 DOI: 10.1016/0300-9629(77)90446-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
|
44
|
Burky AJ, Burky KA. Seasonal respiratory variation and acclimation in the pea clam, Pisidium walkeri Sterki. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1976; 55:109-14. [PMID: 7405 DOI: 10.1016/0300-9629(76)90076-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Fitzpatrick LC, Brown AV. Metabolic compensation to temperature in the salamander Desmognathus ochrophaeus from a high elevation population. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1975; 50:733-7. [PMID: 236132 DOI: 10.1016/0300-9629(75)90137-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
|
47
|
|
48
|
Dorgelo J. Comparative ecophysiology of gammarids (crustacea: amphipoda) from marine, brackish and fresh-water habitats exposed to the influence of salinity-temperature combinations. III. Oxygen uptake. ACTA ACUST UNITED AC 1973. [DOI: 10.1016/0077-7579(73)90049-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Sastry A, McCarthy J. Diversity in metabolic adaptation of pelagic larval stages of two sympatric species of brachyuran crabs. ACTA ACUST UNITED AC 1973. [DOI: 10.1016/0077-7579(73)90064-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Gaudy R. Les variations saisonniéres de la respiration chez quatre espèces de copépodes pélagiques du golfe de marseille. ACTA ACUST UNITED AC 1973. [DOI: 10.1016/0077-7579(73)90050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|