1
|
Makanya A, Djonov V. Anatomical and Functional Study of the Ostrich ( Struthio camelus) Lung through Macroscopic Analysis in Combination with Optical and Electron Microscopy Techniques. Animals (Basel) 2024; 14:316. [PMID: 38275776 PMCID: PMC10812698 DOI: 10.3390/ani14020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The Ostrich occupies a unique position as the largest bird on the planet. Like other ratites, it has been reputed to have a phylogenetically primitive lung. We used macroscopy, light microscopy, transmission and scanning electron microscopy as well as silicon rubber casting to elucidate the functional design of its lung and compare it with what is already documented for the avian species. The neopulmonic region was very small and poorly developed. The categories of the secondary bronchi (SB) present and their respective numbers included laterodorsal (8-10), lateroventral (4-5), medioventral (4-6) and posterior (16-24). The lateral aspects of the laterodorsals were covered with a transparent collapsible membrane internally lined with a squamous to cuboidal epithelium. The bulk of these SB were in close proximity to intercostal spaces and the intercostal muscles and were thought to be important in the propulsion of gases. The lung parenchyma was rigid, with the atria well supported by septa containing smooth muscles, connective tissue interparabronchial septa were absent, and blood capillaries were supported by epithelial bridges. There were two categories of epithelia bridges: the homogenous squamous type comprising two leaflets of type I cells and the heterogeneous type consisting of a type I pneumocyte and type II cell. Additional type two cells were found at the atrial openings as well as the walls of the infundibulae and the air capillaries. The atria were shallow and opened either directly into several air capillaries or into a few infundibulae. The presence of numerous type II cells and the absence of interparabronchial connective tissue septa may imply that the ostrich lung could be capable of some degree of compliance.
Collapse
Affiliation(s)
- Andrew Makanya
- Department of Veterinary Anatomy and Physiology, Riverside Drive, Chiromo Campus, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Berne, Switzerland;
| |
Collapse
|
2
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
3
|
Liu J, Wu X, Xu C, Ma M, Zhao J, Li M, Yu Q, Hao X, Wang G, Wei B, Xia N, Dong Q. A Novel Method for Observing Tumor Margin in Hepatoblastoma Based on Microstructure 3D Reconstruction. Fetal Pediatr Pathol 2022; 41:371-380. [PMID: 32969743 DOI: 10.1080/15513815.2020.1822965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: We investigated three-dimensional (3 D) reconstruction for the assessment of the tumor margin microstructure of hepatoblastoma (HB). Methods: Eleven surgical resections of childhood hepatoblastomas obtained between September 2018 and December 2019 were formalin-fixed, paraffin-embedded, serially sectioned at 4 μm, stained with hematoxylin and eosin (every 19th and 20th section stained with alpha-fetoprotein and glypican 3), and the digital images of all sections were acquired at 100× followed by image registration using the B-spline based method with modified residual complexity. Reconstruction was performed using 3 D Slicer software. Results: The reconstructed orthogonal 3 D images clearly presented the internal microstructure of the tumor margin. The rendered 3 D image could be rotated at any angle. Conclusions: Microstructure 3 D reconstruction is feasible for observing the pathological structure of the HB tumor margin.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.,Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu 246400, China
| | - XiongWei Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Chongzhi Xu
- College of Computer Science and Technology, Qingdao University, Qingdao 266000, China
| | - Mingdi Ma
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Min Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - QiYue Yu
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - XiWei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - GuoDong Wang
- College of Computer Science and Technology, Qingdao University, Qingdao 266000, China
| | - Bin Wei
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Nan Xia
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
4
|
Maina JN. Perspectives on the Structure and Function of the Avian Respiratory System: Functional Efficiency Built on Structural Complexity. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.851574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the air-breathing vertebrates, regarding respiratory efficiency, the avian respiratory system rests at the evolutionary zenith. Structurally, it is separated into a lung that serves as a gas exchanger and air sacs that mechanically ventilate the lung continuously and unidirectionally in a caudocranial direction. Largely avascular, the air sacs are delicate, transparent, compliant and capacious air-filled spaces that are not meaningfully involved in gas exchange. The avian lungs are deeply and firmly attached to the vertebrae and the ribs on the dorsolateral aspects, rendering them practically rigid and inflexible. The attachment of the lung to the body wall allowed extreme subdivision of the exchange tissue into minuscule and stable terminal respiratory units, the air capillaries. The process generated a large respiratory surface area in small lungs with low volume density of gas exchange tissue. For the respiratory structures, invariably, thin blood-gas barrier, large respiratory surface area and large pulmonary capillary blood volume are the foremost adaptive structural features that confer large total pulmonary morphometric diffusing capacities of O2. At parabronchial level, the construction and the arrangement of the airway- and the vascular components of the avian lung determine the delivery, the presentation and the exposure of inspired air to capillary blood across the blood-gas barrier. In the avian lung, crosscurrent-, countercurrent- and multicapillary serial arterialization systems that stem from the organization of the structural parts of the lung promote gas exchange. The exceptional respiratory efficiency of the avian respiratory system stems from synergy of morphological properties and physiological processes, means by which O2 uptake is optimized and high metabolic states and capacities supported. Given that among the extant animal taxa insects, birds and bats (which accomplished volancy chronologically in that order) possess structurally much different respiratory systems, the avian respiratory system was by no means a prerequisite for evolution of powered flight but was but one of the adaptive solutions to realization of an exceptionally efficient mode of locomotion.
Collapse
|
5
|
Kandyel RM, El Basyouny HA, El Nahas EE, Madkour F, Haddad S, Massoud D, Morsy K, Madkour N, Abumandour M. A histological and immunohistochemical study on the parabronchial epithelium of the domestic fowl's (Gallus gallus domesticus) lung with special reference to its scanning and transmission electron microscopic characteristics. Microsc Res Tech 2021; 85:1108-1119. [PMID: 34761477 DOI: 10.1002/jemt.23980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 11/07/2022]
Abstract
The current study was designed to give complete histo-and immunohistochemical features of the parabronchial epithelium of domestic fowl's (Gallus gallus domesticus) lung with special reference to Scanning electron microscope (SEM) and mean transmission electron microscope (TEM) features. The lung exhibited variable-sized atrial openings encircled by exchange tissue zones. The parabronchial atrial chambers appeared as ovoid and polygonal-shaped that separated by the well-developed interatrial septum. The deep atrial lumens had blood vessels pierced by openings that represent the infundibula. The parabronchial blood capillaries meshwork was branched and exhibited ovoid-shaped air capillaries with numerous extravasated blood vessels. By TEM, there were several air capillaries and groups of squamous and endothelial respiratory cells and the squamous cells had oval nucleus with evenly distributed chromatin. The endothelial respiratory cells had few microvilli on their free surfaces. The parabronchial tubes opened into a group of widened atria that had smooth muscle bundles at the interatrial septa. The atrial chambers led to narrow infundibula. Moreover, the lining epithelium of parabronchi, atria, infundibula, and air capillaries was formed by simple squamous epithelium. Air capillary walls were lined by two types of respiratory cells (Types-I and II). Collagen fibers were concentrated within the tunica externa layers of the parabronchial blood vessels as well as, they were observed in CT interparabronchial septa. Immunohistochemically, the elastin immunoreactivity was detected around the parabronchial blood vessels, at the base of each parabronchial atria, and in the area encircling the alveolar-capillary walls. Our work concluded that there are a relation between the fowl's lifestyle and the surrounding environmental conditions.
Collapse
Affiliation(s)
- Ramadan M Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Eman E El Nahas
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma Madkour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Seham Haddad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, Saudi Arabia.,Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Naglaa Madkour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Haberthür D, Yao E, Barré SF, Cremona TP, Tschanz SA, Schittny JC. Pulmonary acini exhibit complex changes during postnatal rat lung development. PLoS One 2021; 16:e0257349. [PMID: 34748555 PMCID: PMC8575188 DOI: 10.1371/journal.pone.0257349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Pulmonary acini represent the functional gas-exchanging units of the lung. Due to technical limitations, individual acini cannot be identified on microscopic lung sections. To overcome these limitations, we imaged the right lower lobes of instillation-fixed rat lungs from postnatal days P4, P10, P21, and P60 at the TOMCAT beamline of the Swiss Light Source synchrotron facility at a voxel size of 1.48 μm. Individual acini were segmented from the three-dimensional data by closing the airways at the transition from conducting to gas exchanging airways. For a subset of acini (N = 268), we followed the acinar development by stereologically assessing their volume and their number of alveoli. We found that the mean volume of the acini increases 23 times during the observed time-frame. The coefficients of variation dropped from 1.26 to 0.49 and the difference between the mean volumes of the fraction of the 20% smallest to the 20% largest acini decreased from a factor of 27.26 (day 4) to a factor of 4.07 (day 60), i.e. shows a smaller dispersion at later time points. The acinar volumes show a large variation early in lung development and homogenize during maturation of the lung by reducing their size distribution by a factor of 7 until adulthood. The homogenization of the acinar sizes hints at an optimization of the gas-exchange region in the lungs of adult animals and that acini of different size are not evenly distributed in the lungs. This likely leads to more homogeneous ventilation at later stages in lung development.
Collapse
Affiliation(s)
| | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Maina JN. Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight. Biol Rev Camb Philos Soc 2016; 92:1475-1504. [DOI: 10.1111/brv.12292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; P.O. Box, 524, Auckland Park, Kingsway Johannesburg 2006 South Africa
| |
Collapse
|
8
|
Lewallen MA, Burggren WW. Chronic hypoxia and hyperoxia modifies morphology and VEGF concentration of the lungs of the developing chicken (Gallus gallus variant domesticus). Respir Physiol Neurobiol 2015; 219:85-94. [DOI: 10.1016/j.resp.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023]
|
9
|
Maina JN. Structural and Biomechanical Properties of the Exchange Tissue of the Avian Lung. Anat Rec (Hoboken) 2015; 298:1673-88. [DOI: 10.1002/ar.23162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; Kingsway, Johannesburg South Africa
| |
Collapse
|
10
|
Wang Y, Xu R, Luo G, Wu J. Three-dimensional reconstruction of light microscopy image sections: present and future. Front Med 2014; 9:30-45. [DOI: 10.1007/s11684-014-0337-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
|
11
|
Abstract
Two selective pressures have shaped the evolution of the pulmonary circulation. First, as animals evolved from heterothermic ectotherms to homeothermic endoderms with their corresponding increase in the ability to sustain high oxygen consumptions, the blood-gas barrier had to become successively thinner, and also provide an increasingly large area for diffusive gas exchange. Second, the barrier had to find a way to maintain its mechanical integrity in the face of extreme thinness, and this was assisted by the increasing separation of the pulmonary from the systemic circulation. A remarkable feature throughout the evolution of air-breathing vertebrates has been the tight conservation of the tripartite structure of the blood-gas barrier with its three layers: capillary endothelium, extracellular matrix, and alveolar epithelium. The strength of the barrier can be ascribed to the very thin layer of type IV collagen in the extracellular matrix. In the phylogenic progression from amphibia and reptiles to mammals and birds, the blood-gas barrier became successively thinner. Also, the area increased greatly reflecting the greater oxygen demands of the organism. The gradual separation of the pulmonary from the systemic circulation continued from amphibia through reptiles to mammals and birds. Only in the last two classes are the circulations completely separate with the result that the pulmonary capillary pressures can be maintained low enough to avoid stress failure of the blood-gas barrier. Remarkably, the barrier is generally much thinner in birds than mammals, and it is also much more uniform in thickness. These advantages for gas exchange can be explained by the support of avian pulmonary capillaries by the surrounding air capillaries. This arrangement was made possible by the adoption of the flow-through system of ventilation in birds as opposed to the reciprocating pattern in mammals.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
12
|
Maina JN, Jimoh SA. Study of Stress Induced Failure of the Blood-gas Barrier and the Epithelial-epithelial Cells Connections of the Lung of the Domestic Fowl, Gallus gallus Variant Domesticus after Vascular Perfusion. Biomed Eng Comput Biol 2013; 5:77-88. [PMID: 25288905 PMCID: PMC4147765 DOI: 10.4137/becb.s12988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Complete blood-gas barrier breaks (BGBBs) and epithelial-epithelial cells connections breaks (E-ECCBs) were enumerated in the lungs of free range chickens, Gallus gallus variant domesticus after vascular perfusion at different pressures. The E-ECCBs surpassed the BGBBs by a factor of ~2. This showed that the former parts of the gas exchange tissue were structurally weaker or more vulnerable to failure than the latter. The differences in the numbers of BGBBs and E-ECCBs in the different regions of the lung supplied with blood by the 4 main branches of the pulmonary artery (PA) corresponded with the diameters of the blood vessels, the angles at which they bifurcated from the PA, and the positions along the PA where they branched off. Most of the BGBBs and the E-ECCBs occurred in the regions supplied by the accessory- and the caudomedial branches: the former is the narrowest branch and the first blood vessel to separate from the PA while the latter is the most direct extension of the PA and is the widest. The E-ECCBs appeared to separate and fail from tensing of the blood capillary walls, as the perfusion- and intramural pressures increased. Compared to the mammalian lungs on which data are available, i.e., those of the rabbit, the dog, and the horse, the blood-gas barrier of the lung of free range chickens appears to be substantially stronger for its thinness.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Sikiru A Jimoh
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Haberthür D, Barré SF, Tschanz SA, Yao E, Stampanoni M, Schittny JC. Visualization and stereological characterization of individual rat lung acini by high-resolution X-ray tomographic microscopy. J Appl Physiol (1985) 2013; 115:1379-87. [DOI: 10.1152/japplphysiol.00642.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small trees of gas-exchanging pulmonary airways, which are fed by the most distal purely conducting airways, are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty in identifying individual acini on microscopic lung sections, the knowledge about the number of acini and their biological parameters, like volume, surface area, and number of alveoli per acinus, are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation-based X-ray tomographic microscopy and estimated their volume, surface area, and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148 mm3, a mean acinar surface area of 73.9 mm2, and a mean of 8,470 alveoli/acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5,470 ± 833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species, including humans.
Collapse
Affiliation(s)
- David Haberthür
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland; and
| | | | | | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland; and
- Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
14
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
15
|
Makanya AN, El-Darawish Y, Kavoi BM, Djonov V. Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens. Microsc Res Tech 2011; 74:159-69. [DOI: 10.1002/jemt.20887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L, Lehmann A, Brandenberger C, Rothen-Rutishauser B. Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiol Biochem Zool 2010; 83:792-807. [PMID: 20687843 DOI: 10.1086/652244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Collapse
Affiliation(s)
- J N Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
West JB, Fu Z, Deerinck TJ, Mackey MR, Obayashi JT, Ellisman MH. Structure-function studies of blood and air capillaries in chicken lung using 3D electron microscopy. Respir Physiol Neurobiol 2009; 170:202-9. [PMID: 20038456 DOI: 10.1016/j.resp.2009.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Avian pulmonary capillaries differ from those of mammals in three important ways. The blood-gas barrier is much thinner, it is more uniform in thickness, and the capillaries are far more rigid when their transmural pressure is altered. The thinness of the barrier is surprising because it predisposes the capillaries to stress failure. A possible mechanism for these differences is that avian pulmonary capillaries, unlike mammalian, are supported from the outside by air capillaries, but the details of the support are poorly understood. To clarify this we studied the blood and air capillaries in chicken lung using transmission electron microscopy (EM) and two relatively new techniques that allow 3D visualization: electron tomography and serial block-face scanning EM. These studies show that the pulmonary capillaries are flanked by epithelial bridges composed of two extremely thin epithelial cells with large surface areas. The junctions of the bridges with the capillary walls show thickening of the epithelial cells and an accumulation of extracellular matrix. Collapse of the pulmonary capillaries when the pressure outside them is increased is apparently prevented by the guy wire-like action of the epithelial bridges. The enlarged junctions between the bridges and the walls could provide a mechanism that limits the hoop stress in the capillary walls when the pressure inside them is increased. The support of the pulmonary capillaries may also be explained by an interdependence mechanism whereby the capillaries are linked to a rigid assemblage of air capillaries. These EM studies show the supporting structures in greater detail than has previously been possible, particularly in 3D, and they allow a more complete analysis of the mechanical forces affecting avian pulmonary capillaries.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093-0623, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Maina JN, Woodward JD. Three-Dimensional Serial Section Computer Reconstruction of the Arrangement of the Structural Components of the Parabronchus of the Ostrich,Struthio CamelusLung. Anat Rec (Hoboken) 2009; 292:1685-98. [DOI: 10.1002/ar.21002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Development and spatial organization of the air conduits in the lung of the domestic fowl,Gallus gallusvariantdomesticus. Microsc Res Tech 2008; 71:689-702. [DOI: 10.1002/jemt.20608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Kiama SG, Adekunle JS, Maina JN. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat. J Anat 2008; 213:452-63. [PMID: 18643797 DOI: 10.1111/j.1469-7580.2008.00951.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammals, surface macrophages (SMs) play a foremost role in protecting the respiratory system by engulfing and destroying inhaled pathogens and harmful particulates. However, in birds, the direct defense role(s) that SMs perform remains ambiguous. Paucity and even lack of SMs have been reported in the avian respiratory system. It has been speculated that the pulmonary defenses in birds are inadequate and that birds are exceptionally susceptible to pulmonary diseases. In an endeavour to resolve the existing controversy, the phagocytic capacities of the respiratory SMs of the domestic fowl and the rat were compared under similar experimental conditions by exposure to polystyrene particles. In cells of equivalent diameters (8.5 microm in the chicken and 9.0 microm in the rat) and hence volumes, with the volume density of the engulfed polystyrene particles, i.e. the volume of the particles per unit volume of the cell (SM) of 23% in the chicken and 5% in the rat cells, the avian cells engulfed substantially more particles. Furthermore, the avian SMs phagocytized the particles more efficiently, i.e. at a faster rate. The chicken erythrocytes and the epithelial cells of the airways showed noteworthy phagocytic activity. In contrast to the rat cells that did not, 22% of the chicken erythrocytes phagocytized one to six particles. In birds, the phagocytic efficiencies of the SMs, erythrocytes, and epithelial cells may consolidate pulmonary defense. The assorted cellular defenses may explain how and why scarcity of SMs may not directly lead to a weak pulmonary defense. The perceived susceptibility of birds to respiratory diseases may stem from the human interventions that have included extreme genetic manipulation and intensive management for maximum productivity. The stress involved and the structural-functional disequilibria that have occurred from a 'directed evolutionary process', rather than weak immunological and cellular immunity, may explain the alleged vulnerability of the avian gas exchanger to diseases.
Collapse
Affiliation(s)
- S G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | | | | |
Collapse
|
21
|
WOODWARD JD, MAINA JN. Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction. J Microsc 2008; 230:84-93. [DOI: 10.1111/j.1365-2818.2008.01958.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Maina JN. Minutialization at its extreme best! Respir Physiol Neurobiol 2007; 159:141-5; author reply 146. [PMID: 17900998 DOI: 10.1016/j.resp.2007.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/22/2007] [Indexed: 11/22/2022]
|
23
|
Bernhard W, Schmiedl A, Koster G, Orgeig S, Acevedo C, Poets CF, Postle AD. Developmental changes in rat surfactant lipidomics in the context of species variability. Pediatr Pulmonol 2007; 42:794-804. [PMID: 17659602 DOI: 10.1002/ppul.20657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lung surfactant comprises mainly phosphatidylcholine (PC) species together with phosphatidylglycerols and surfactant proteins (SP) SP-A to -D. Changes in the concentrations of its principal components dipalmitoyl-PC, palmitoylmyristoyl-PC, palmitoylpalmitoleoyl-PC relative to developmental, structural and physiological differences are only partially understood. Particularly, their attribution to differences in air-liquid interface curvature, compared with dynamic parameters, such as respiratory rate, are controversial. We postulated that during alveolarization the changes in these principal PC components of surfactant differ from those in other phospholipid parameters, and that across endothermic vertebrates their concentrations are related to lung physiology rather than structure. We therefore investigated in rats from postnatal day (d)1 to d42 the pattern of surfactant phospholipids relative to alveolarization (d4-d14), and we discuss these changes in terms of molecular adaptation to pulmonary structure or physiology. Contrary to mammals with advanced alveolarization and increased respiratory rate (RR) at term, concentrations of dipalmitoyl-PC (49-52%) and palmitoylmyristoyl-PC (7-9%) in lung lavage fluid were identical at d1 and d42. At d7-d14, when in rats RR is increased, palmitoyl-myristoyl-PC transiently increased by 2.5- to 3.9-fold at the expense of dipalmitoyl-PC (-32% to 34%) and palmitoyl-palmitoleoyl-PC (-16%). Other lipidomic changes followed essentially different patterns of increase or decrease. Palmitoyl-myristoyl-PC was increased in large aggregates suggesting that it is an integral component of active surfactant. In the overall context of vertebrates, irrespective of age and lung structure, fractions of palmitoyl-myristoyl-PC, dipalmitoyl-PC and palmitoyl-palmitoleoyl-PC correlate with differences in RR rather than alveolar curvature. In adult mammals, however, only concentrations of palmitoyl-palmitoleoyl-PC correlate with RR.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Maina JN. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00218.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Maina JN. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung. Respir Physiol Neurobiol 2006; 155:1-10. [PMID: 16815758 DOI: 10.1016/j.resp.2006.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 11/27/2022]
Abstract
Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.
Collapse
Affiliation(s)
- J N Maina
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.
| |
Collapse
|
26
|
Reese S, Dalamani G, Kaspers B. The avian lung-associated immune system: a review. Vet Res 2006; 37:311-24. [PMID: 16611550 DOI: 10.1051/vetres:2006003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/21/2005] [Indexed: 01/24/2023] Open
Abstract
The lung is a major target organ for numerous viral and bacterial diseases of poultry. To control this constant threat birds have developed a highly organized lung-associated immune system. In this review the basic features of this system are described and their functional properties discussed. Most prominent in the avian lung is the bronchus-associated lymphoid tissue (BALT) which is located at the junctions between the primary bronchus and the caudal secondary bronchi. BALT nodules are absent in newly hatched birds, but gradually developed into the mature structures found from 6-8 weeks onwards. They are organized into distinct B and T cell areas, frequently comprise germinal centres and are covered by a characteristic follicle-associated epithelium. The interstitial tissue of the parabronchial walls harbours large numbers of tissue macrophages and lymphocytes which are scattered throughout tissue. A striking feature of the avian lung is the low number of macrophages on the respiratory surface under non-inflammatory conditions. Stimulation of the lung by live bacteria but not by a variety of bacterial products elicits a significant efflux of activated macrophages and, depending on the pathogen, of heterophils. In addition to the cellular components humoral defence mechanisms are found on the lung surface including secretory IgA. The compartmentalisation of the immune system in the avian lung into BALT and non BALT-regions should be taken into account in studies on the host-pathogen interaction since these structures may have distinct functional properties during an immune response.
Collapse
Affiliation(s)
- Sven Reese
- Institute for Animal Anatomy, Faculty of Veterinary Medicine, University of Munich, Germany
| | | | | |
Collapse
|