1
|
Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord 2021; 50:4022-4038. [PMID: 32200468 DOI: 10.1007/s10803-020-04461-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormalities in executive function (EF) are clinical markers for autism spectrum disorder (ASD). However, the neural mechanisms underlying abnormal EF in ASD remain unclear. This meta-analysis investigated the construct, abnormalities, and age-related changes of EF in ASD. Thirty-three fMRI studies of inhibition, updating, and switching in individuals with high-functioning ASD were included (n = 1114; age range 7-57 years). The results revealed that the EF construct in ASD could be unitary (i.e., common EF) in children/adolescents, but unitary and diverse (i.e., common EF and inhibition) in adults. Abnormalities in this EF construct were found across development in individuals with ASD in comparison with typically developing individuals. Implications and recommendations are discussed for EF theory and for practice in ASD.
Collapse
|
2
|
Abstract
While learning from mistakes is a lifelong process, the rate at which an individual makes errors on any given task decreases through late adolescence. Previous fMRI adult work indicates that several control brain networks are reliably active when participants make errors across multiple tasks. Less is known about the consistency and localization of error processing in the child brain because previous research has used single tasks. The current analysis pooled data across three studies to examine error-related task activation (two tasks per study, three tasks in total) for a group of 232 children aged 8-17 years. We found that, consistent with the adult literature, the majority of applied cingulo-opercular brain regions, including medial superior frontal cortex, dorsal anterior cingulate, and bilateral anterior insula, showed consistent error processing engagement in children across multiple tasks. Error-related activity in many of these cingulo-opercular regions correlated with task performance. However, unlike in the adult literature, we found a lack of error-related activation across tasks in dorsolateral frontal areas, and we also did not find any task-consistent relations with age in these regions. Our findings suggest that the task-general error processing signal in the developing brain is fairly robust and similar to adults, with the exception of lateral frontal cortex.
Collapse
|
3
|
Goshen I, Huss E, Koch SC. Creating an Embodied Phenomenological Typology for Describing the Qualitative Experience of Traumatic Space from Continued Bombings. JOURNAL OF LOSS & TRAUMA 2019. [DOI: 10.1080/15325024.2018.1507471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ilai Goshen
- Shaar Hanegev Psychological Services, Hadarom, Israel
| | - Ephrat Huss
- Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
4
|
Bodmer B, Mückschel M, Roessner V, Beste C. Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Struct Funct 2017; 223:1797-1810. [PMID: 29230561 DOI: 10.1007/s00429-017-1589-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 12/01/2022]
Abstract
Executive functions are well-known to undergo developmental changes from childhood to adulthood. Considerable efforts have been made to elucidate the affected system neurophysiological mechanisms. But while it is well-known that developmental changes affect intra-individual variability, this potential bias has largely been neglected when investigating the neurophysiology underlying developmental differences between children and adults. We hypothesize that due to differences in intra-individual variability of neural processes between children and adults, reliable group differences will only be evident after accounting for intra-individual variability in neurophysiological processes. We, therefore, investigate response-inhibition processes as an important instance of executive control in children (between 10 and 14 years) and adults (between 20 and 29 years) and decompose EEG data on the basis of the latency and temporal variability. This was combined with source localization. Children showed more impulsive behavior than adults. Importantly, a reliable match between the neurophysiological and behavioral data could only be found when accounting for intra-individual variability in the EEG data. These decomposed data showed that children and adults use similar neurophysiological mechanisms at the response selection level to accomplish inhibitory control, but seem to engage different neuroanatomical structures to do so according to source localization results: In adults, these processes were related to the medial frontal cortex. In children, the same processes were reflected in a shift of the scalp topography and related to the superior parietal cortex. These shifts in neural networks were associated with lower effectiveness in exerting inhibitory control. However, these differences in the functional neuroanatomical architecture can only be seen when intra-individual variability is taken into account.
Collapse
Affiliation(s)
- Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,Department of Neurology, Faculty of Medicine, MS Centre Dresden, Centre of Clinical Neuroscience, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany. .,Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
5
|
McKenna R, Rushe T, Woodcock KA. Informing the Structure of Executive Function in Children: A Meta-Analysis of Functional Neuroimaging Data. Front Hum Neurosci 2017; 11:154. [PMID: 28439231 PMCID: PMC5383671 DOI: 10.3389/fnhum.2017.00154] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/15/2017] [Indexed: 11/27/2022] Open
Abstract
The structure of executive function (EF) has been the focus of much debate for decades. What is more, the complexity and diversity provided by the developmental period only adds to this contention. The development of executive function plays an integral part in the expression of children's behavioral, cognitive, social, and emotional capabilities. Understanding how these processes are constructed during development allows for effective measurement of EF in this population. This meta-analysis aims to contribute to a better understanding of the structure of executive function in children. A coordinate-based meta-analysis was conducted (using BrainMap GingerALE 2.3), which incorporated studies administering functional magnetic resonance imaging (fMRI) during inhibition, switching, and working memory updating tasks in typical children (aged 6-18 years). The neural activation common across all executive tasks was compared to that shared by tasks pertaining only to inhibition, switching or updating, which are commonly considered to be fundamental executive processes. Results support the existence of partially separable but partially overlapping inhibition, switching, and updating executive processes at a neural level, in children over 6 years. Further, the shared neural activation across all tasks (associated with a proposed "unitary" component of executive function) overlapped to different degrees with the activation associated with each individual executive process. These findings provide evidence to support the suggestion that one of the most influential structural models of executive functioning in adults can also be applied to children of this age. However, the findings also call for careful consideration and measurement of both specific executive processes, and unitary executive function in this population. Furthermore, a need is highlighted for a new systematic developmental model, which captures the integrative nature of executive function in children.
Collapse
Affiliation(s)
- Róisín McKenna
- School of Psychology, Queen's UniversityBelfast, Northern Ireland
| | | | - Kate A. Woodcock
- School of Psychology, Queen's UniversityBelfast, Northern Ireland
| |
Collapse
|
6
|
Smulders SF, Soetens E, van der Molen MW. What happens when children encounter an error? Brain Cogn 2016; 104:34-47. [DOI: 10.1016/j.bandc.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
|
7
|
Antisaccade-related brain activation in children with attention-deficit/hyperactivity disorder--A pilot study. Psychiatry Res 2015; 234:272-9. [PMID: 26459074 PMCID: PMC4663690 DOI: 10.1016/j.pscychresns.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
While antisaccade paradigms invoke circuitry associated with cognitive control and attention-deficit/hyperactivity disorder (ADHD), there is a dearth of functional magnetic resonance imaging (fMRI) investigations using antisaccade tasks among children with ADHD. Neural correlates associated with antisaccade performance were examined with fMRI in 11 children with ADHD (10 medicated) matched to 11 typically developing children. Significantly greater brain activation in regions in right dorsolateral prefrontal cortex and caudate nucleus was observed in children with ADHD relative to the control group. This pattern separated the children into their respective groups in a taxonomic manner. Sensitivity analyses probing comorbidity and medication-specific effects showed that results were consistent; however, the caudate nucleus difference was only detectable in the full sample, or in subsets with a more relaxed cluster threshold. Antisaccade performance did not significantly differ between the groups, perhaps as a result of greater brain activation or medication effects in the ADHD group. Thus, antisaccade paradigms may have sensitivity and specificity for the investigation of cognitive control deficits and associated neural correlates in ADHD, and may contribute towards the development of new treatment approaches for children with the disorder.
Collapse
|
8
|
Migliorini R, Moore EM, Glass L, Infante MA, Tapert SF, Jones KL, Mattson SN, Riley EP. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure. Behav Brain Res 2015; 292:26-35. [PMID: 26025509 DOI: 10.1016/j.bbr.2015.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/28/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure.
Collapse
Affiliation(s)
- Robyn Migliorini
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA.
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| | - Leila Glass
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA
| | - M Alejandra Infante
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA; San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120-4913, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., San Diego, CA 92037, USA; VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Kenneth Lyons Jones
- University of California, San Diego, School of Medicine, Department of Pediatrics, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA
| |
Collapse
|
9
|
Goepel J, Kissler J, Rockstroh B, Paul-Jordanov I. Medio-frontal and anterior temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD) during an acoustic antisaccade task as revealed by electro-cortical source reconstruction. BMC Psychiatry 2011; 11:7. [PMID: 21226906 PMCID: PMC3025949 DOI: 10.1186/1471-244x-11-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/12/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without) ADHD. METHODS Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months) and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls) while an electroencephalogram (EEG) was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. RESULTS When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC) between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC) between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency). When visual cues were used EEG-activity preceding antisaccades did not differ between groups. CONCLUSION Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.
Collapse
Affiliation(s)
- Johanna Goepel
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Johanna Kissler
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
10
|
Wang X, Garfinkel SN, King AP, Angstadt M, Dennis MJ, Xie H, Welsh RC, Tamburrino MB, Liberzon I. A multiple-plane approach to measure the structural properties of functionally active regions in the human cortex. Neuroimage 2010; 49:3075-85. [PMID: 19922802 PMCID: PMC2821824 DOI: 10.1016/j.neuroimage.2009.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques provide the means of studying both the structural and the functional properties of various brain regions, allowing us to address the relationship between the structural changes in human brain regions and the activity of these regions. However, analytical approaches combining functional (fMRI) and structural (sMRI) information are still far from optimal. In order to improve the accuracy of measurement of structural properties in active regions, the current study tested a new analytical approach that repeated a surface-based analysis at multiple planes crossing different depths of cortex. Twelve subjects underwent a fear conditioning study. During these tasks, fMRI and sMRI scans were acquired. The fMRI images were carefully registered to the sMRI images with an additional correction for cortical borders. The fMRI images were then analyzed with the new multiple-plane surface-based approach as compared to the volume-based approach, and the cortical thickness and volume of an active region were measured. The results suggested (1) using an additional correction for cortical borders and an intermediate template image produced an acceptable registration of fMRI and sMRI images; (2) surface-based analysis at multiple depths of cortex revealed more activity than the same analysis at any single depth; (3) projection of active surface vertices in a ribbon fashion improved active volume estimates; and (4) correction with gray matter segmentation removed non-cortical regions from the volumetric measurement of active regions. In conclusion, the new multiple-plane surface-based analysis approaches produce improved measurement of cortical thickness and volume of active brain regions. These results support the use of novel approaches for combined analysis of functional and structural neuroimaging.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fitzgerald KD, Perkins SC, Angstadt M, Johnson T, Stern ER, Welsh RC, Taylor SF. The development of performance-monitoring function in the posterior medial frontal cortex. Neuroimage 2009; 49:3463-73. [PMID: 19913101 DOI: 10.1016/j.neuroimage.2009.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 11/03/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Despite its critical role in performance-monitoring, the development of posterior medial prefrontal cortex (pMFC) in goal-directed behaviors remains poorly understood. Performance monitoring depends on distinct, but related functions that may differentially activate the pMFC, such as monitoring response conflict and detecting errors. Developmental differences in conflict- and error-related activations, coupled with age-related changes in behavioral performance, may confound attempts to map the maturation of pMFC functions. To characterize the development of pMFC-based performance monitoring functions, we segregated interference and error-processing, while statistically controlling for performance. METHODS Twenty-one adults and 23 youth performed an event-related version of the Multi-Source Interference Task during functional magnetic resonance imaging (fMRI). Linear modeling of interference and error contrast estimates derived from the pMFC were regressed on age, while covarying for performance. RESULTS Interference- and error-processing were associated with robust activation of the pMFC in both youth and adults. Among youth, interference- and error-related activation of the pMFC increased with age, independent of performance. Greater accuracy associated with greater pMFC activity during error commission in both groups. DISCUSSION Increasing pMFC response to interference and errors occurs with age, likely contributing to the improvement of performance monitoring capacity during development.
Collapse
|