1
|
McGuire R, Swann W, Jurjans J, Parker C, Pawley M, Uhl T. Early Measures of Torque Development are Related to Peak Torque at Six Months Following ACL Reconstruction. Int J Sports Phys Ther 2025; 20:503-513. [PMID: 40182906 PMCID: PMC11964690 DOI: 10.26603/001c.132382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Purpose Individuals following anterior cruciate ligament reconstruction (ACLR) are at increased risk for subsequent anterior cruciate ligament (ACL) injury, with quadriceps strength deficits being a risk factor. While early measures of quadriceps strength can predict strength in the later stages of rehabilitation, it remains unclear whether isometric rate of torque development (RTD) is related to later outcomes. The purpose of this study was to examine the correlation between quadriceps RTD values at four months post-ACLR and quadriceps isokinetic peak torque values at six months post-ACLR. It was hypothesized that isometric RTD at four months would be significantly correlated with isokinetic peak torque at six months post-ACLR. A secondary hypothesis was that the involved limb RT would be significantly slower than the uninvolved limb at four months post-operative. Study Design Retrospective case series. Methods Forty-seven patients (22 males and 25 females) who had undergone ACLR performed isometric testing at four months and isokinetic testing at six months post-operatively. Isometric testing was utilized to measure torque from 0-100ms (RTD100) and from 100-200ms (RTD200), and isometric peak torque. Isokinetic testing was utilized to measure peak torque at 60°/sec and 180°/sec. Correlations between isometric and isokinetic measures were evaluated using Spearman's rho. RTD was compared between the involved and uninvolved limbs. Results The four-month measures of RTD100 (r=.55, r=.45), RTD200 (r=.63, r=.52), and peak isometric torque (r=.77, r=.64) were all significantly correlated with 60°/sec and 180°/sec isokinetic peak torque (p≤0.001), respectively. The involved limb rate of torque development was slower, and strength was lower than the uninvolved limb (p<0.001). Conclusions The hypotheses were supported as four-month isometric measures were moderately to strongly correlated to six-month isokinetic peak torque measures and the involved limb RTD was slower than the uninvolved limb. Incorporation of interventions focusing on development of force quickly is encouraged during rehabilitation. Level of Evidence 3b.
Collapse
Affiliation(s)
- Ryan McGuire
- Department of Physical TherapyUniversity of Kentucky
| | | | | | - Clare Parker
- Department of Physical TherapyUniversity of Kentucky
| | | | - Tim Uhl
- Department of Physical TherapyUniversity of Kentucky
| |
Collapse
|
2
|
Murtola T, Richards C. Matching dynamically varying forces with multi-motor-unit muscle models: a simulation study. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241401. [PMID: 40177106 PMCID: PMC11964109 DOI: 10.1098/rsos.241401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/21/2024] [Accepted: 02/01/2025] [Indexed: 04/05/2025]
Abstract
Human muscles exhibit great versatility, not only generating forces for demanding athleticism, but also for fine motor tasks. While standard musculoskeletal models may reproduce this versatility, they often lack multiple motor units (MUs) and rate-coded control. To investigate how these features affect a muscle's ability to generate desired force profiles, we performed simulations with nine alternative MU pool models for two cases: (i) a tibialis anterior muscle generating an isometric trapezoidal force profile, and (ii) a generic shoulder muscle generating force for a reaching movement whilst undergoing predetermined length changes. We implemented two control strategies, pure feedforward and combined feedforward-feedback, each parameterized using elementary tasks. The results suggest that the characteristics of MU pools have relatively little impact on the pools' overall ability to match forces across all tasks, although performances for individual tasks varied. Feedback improved performance for nearly all MU pools and tasks, but the physiologically more relevant MU pool types were more responsive to feedback particularly during reaching. While all MU pool models performed well in the conditions tested, we highlight the need to consider the functional characteristics of the control of rate-coded MU pools given the vast repertoire of dynamic tasks performed by muscles.
Collapse
Affiliation(s)
- T. Murtola
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - C. Richards
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
3
|
Prat-Ortega G, Ensel S, Donadio S, Borda L, Boos A, Yadav P, Verma N, Ho J, Carranza E, Frazier-Kim S, Fields DP, Fisher LE, Weber DJ, Balzer J, Duong T, Weinstein SD, Eliasson MJL, Montes J, Chen KS, Clemens PR, Gerszten P, Mentis GZ, Pirondini E, Friedlander RM, Capogrosso M. First-in-human study of epidural spinal cord stimulation in individuals with spinal muscular atrophy. Nat Med 2025:10.1038/s41591-024-03484-8. [PMID: 39910271 DOI: 10.1038/s41591-024-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease causing motoneuron dysfunction, muscle weakness, fatigue and early mortality. Three new therapies can slow disease progression, enabling people to survive albeit with lingering motor impairments. Indeed, weakness and fatigue are still among patients' main concerns. Here we show that epidural spinal cord stimulation (SCS) improved motoneuron function, thereby increasing strength, endurance and gait quality, in three adults with type 3 SMA. Preclinical works demonstrated that SMA motoneurons show low firing rates because of a loss of excitatory input from primary sensory afferents. In the present study, we hypothesized that correcting this loss with electrical stimulation of the sensory afferents could improve motoneuron function. To test this hypothesis, we implanted three adults with SMA with epidural electrodes over the lumbosacral spinal cord, targeting sensory axons of the legs. We delivered SCS for 4 weeks, 2 h per day during motor tasks. Our intervention led to improvements in strength (up to +180%), gait quality (mean step length: +40%) and endurance (mean change in 6-minute walk test: +26 m), paralleled by increased motoneuron firing rates. These changes persisted even when SCS was turned OFF. Notably, no adverse events related to the stimulation were reported. ClinicalTrials.gov identifier: NCT05430113 .
Collapse
Affiliation(s)
- Genís Prat-Ortega
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Ensel
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Serena Donadio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luigi Borda
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Amy Boos
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prakarsh Yadav
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nikhil Verma
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan Ho
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Carranza
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Frazier-Kim
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daryl P Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Doug J Weber
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- The Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeffrey Balzer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina Duong
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, USA
| | | | | | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA
| | - Karen S Chen
- Spinal Muscular Atrophy Foundation New York, New York, NY, USA
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Sun R, Wan J, Tang J, Deng Y, Zhang M, Liu C, Li J, Zhang Q. Effectiveness of resistance training on body composition, muscle strength, and biomarker in sarcopenic older adults: A meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2025; 128:105595. [PMID: 39191151 DOI: 10.1016/j.archger.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
This study analyzed 22 randomized controlled trials involving 959 participants to determine the impact of resistance training (RT) on body composition, muscle strength, and biomarkers in sarcopenic older adults. Regarding body composition, RT had a small effect size on relative muscle mass (RMM, SMD = 0.25[0.06,0.45]) and absolute muscle mass (AMM, SMD = 0.28[0.06,0.50]) but no effect on reducing body fat percentage (BF%). Meta-regression analysis pinpointed key predictors (p < 0.05): training period, number of sets, contraction speed, and average age. Subgroup analysis revealed that 3 sets over an 8-12 weeks training period, with slower muscle contraction speed at a 60-70 % 1-repetition maximum (1RM) training intensity, produced the most significant effects on reducing BF% and increasing RMM, respectively. Regarding muscle strength, RT had a large effect size on handgrip strength (HS, SMD = 0.83[0.43,1.23]), knee extension strength (KES, SMD = 0.90[0.50,1.30]), but no effect on chair stand test. Meta-regression analysis pinpointed key predictors (p < 0.05): training intensity, number of sets, body mass index, and sample size. Subgroup analysis revealed that the number of sets ≥ 3 and training intensity >70 % 1RM produced the most significant effect of RT on HS. Regarding biomarkers, RT had a medium effect size on insulin-like growth factor-1 (SMD = 0.70[0.10,1.30]), interleukin-10 (SMD = 0.61[0.09,1.13]), follistatin (SMD = 0.56[0.16,0.96]), but no effect on interleukin-6, tumor necrosis factor-alpha, and myostatin. It concludes that RT is an effective way to improve muscle strength and the level of synthetic hormones and anti-inflammatory factors in sarcopenic older adults, with a slight impact on body composition and no impact on pro-inflammatory factors.
Collapse
Affiliation(s)
- Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Yu Deng
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Meng Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, China
| | - Jiaqi Li
- Center of Medical, Joyful Retirement Village, Beijing, China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
5
|
de Abreu DCC, Peres-Ueno MJ, Porto JM. Conceptual framework for the associations between trunk and lower limb muscle parameters and physical performance in community-dwelling older women. Braz J Phys Ther 2025; 29:101143. [PMID: 39644696 PMCID: PMC11665646 DOI: 10.1016/j.bjpt.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Muscle status plays an important role in the achievement of good physical performance. However, which muscle group and muscle parameters are associated with different physical tasks is not well defined. OBJECTIVE To determine the association between trunk and lower limb muscles and physical performance in community-dwelling older women. METHODS 118 older women, underwent an evaluation of physical performance, i.e., gait speed, Timed Up and Go (TUG), 5-times stand-to-sit (5TSST), forward and lateral step, and tandem gait, as well as a muscle performance evaluation with an isokinetic dynamometer to obtain the peak torque (PT), rate of torque development (RTD), and torque steadiness (TS) of the trunk, hip, knee, and ankle. RESULTS There were associations between physical performance and muscle variables. However, each physical task was associated with different muscle parameters. Gait speed is the motor task that requires the least muscle strength (i.e., PT), whereas 5TSST, forward and lateral steps require PT, RTD, and TS of different muscle groups. Lower limb muscles RTD also plays a role in TUG and gait speed performance. The ability to control a submaximal torque is mainly required for forward and lateral stepping tasks. The PT of trunk muscles is also important for better performance of clinical tests. CONCLUSION This conceptual framework may be a guide for the understanding of the association between physical performance and trunk and lower limb muscle functional parameters in older women and may help future longitudinal research to confirm causality and assist physical therapists in decision-making.
Collapse
Affiliation(s)
| | - Melise Jacon Peres-Ueno
- Program in Rehabilitation and Functional Performance, Ribeirão Preto School of Medicine, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jaqueline Mello Porto
- Program in Rehabilitation and Functional Performance, Ribeirão Preto School of Medicine, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Benitez B, Kwak M, Succi PJ, Mitchinson CJ, Weir JP, Bergstrom HC. Examination of sex differences in fatigability and neuromuscular responses during continuous, maximal, isometric leg extension. Physiol Meas 2024; 45:105001. [PMID: 39322012 DOI: 10.1088/1361-6579/ad7fcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.This study examined sex-related differences in fatigability and neuromuscular responses using surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude (AMP) and frequency (MPF) during fatiguing, maximal, bilateral isometric leg extensions.Approach.Twenty recreationally active males and females with resistance training experience performed continuous, maximal effort, bilateral isometric leg extensions until their force reduced by 50%. Linear mixed effect models analyzed patterns of force, sEMG, and sMMG AMP and MPF responses in the dominant limb. An independent samples t-test compared time-to-task failure (TTF) between sexes.Main Results.There were no significant differences in TTF between males and females. However, males experienced a greater rate of force loss compared to females. Furthermore, sEMG AMP and MPF and sMMG AMP responses followed similar linear trends for both sexes, while sMMG MPF showed non-linear responses with sex-dependent differences.Significance.These data suggest that although TTF was similar, males had a higher rate of force reduction, likely due to greater absolute strength. Furthermore, despite parallel changes in sEMG AMP and MPF, as well as sMMG AMP, the divergent responses observed in sMMG MPF highlight sex-dependent differences in how males and females experience changes in the firing rates of active motor units during sustained maximal contractions.
Collapse
Affiliation(s)
- Brian Benitez
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Minyoung Kwak
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS 66045, United States of America
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| |
Collapse
|
8
|
Woods S, McKiel A, Herda T, Klentrou P, Holmes M, Gabriel D, Falk B. Motor unit firing rates during slow and fast contractions in boys and men. Eur J Appl Physiol 2024; 124:2965-2979. [PMID: 38762834 DOI: 10.1007/s00421-024-05500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Motor unit (MU) activation during maximal contractions is lower in children compared with adults. Among adults, discrete MU activation differs, depending on the rate of contraction. We investigated the effect of contraction rate on discrete MU activation in boys and men. METHODS Following a habituation session, 14 boys and 20 men completed two experimental sessions for knee extension and wrist flexion, in random order. Maximal voluntary isometric torque (MVIC) was determined before completing trapezoidal isometric contractions (70%MVIC) at low (10%MVIC/s) and high (35%MVIC/s) contraction rates. Surface electromyography was captured from the vastus lateralis (VL) and flexor carpi radialis (FCR) and decomposed into individual MU action potential (MUAP) trains. RESULTS In both groups and muscles, the initial MU firing rate (MUFR) was greater (p < 0.05) at high compared with low contraction rates. The increase in initial MUFR at the fast contraction in the VL was greater in men than boys (p < 0.05). Mean MUFR was significantly lower during fast contractions only in the FCR (p < 0.05). In both groups and muscles, the rate of decay of MUFR with increasing MUAP amplitude was less steep (p < 0.05) during fast compared with slow contractions. CONCLUSION In both groups and muscles, initial MUFRs, as well as MUFRs of large MUs were higher during fast compared with slow contractions. However, in the VL, the increase in initial MUFR was greater in men compared with boys. This suggests that in large muscles, men may rely more on increasing MUFR to generate torque at faster rates compared with boys.
Collapse
Affiliation(s)
- Stacey Woods
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Andrew McKiel
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Trent Herda
- School of Education and Human Sciences, University of Kansas, Lawrence, KS, USA
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Michael Holmes
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - David Gabriel
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Bareket Falk
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
9
|
Dalton B, Hester G, Alesi M, McDougle J, Cooper M, VanDusseldorp T, Buresh R, Feito Y. Central and peripheral neuromuscular fatigue following ramp and rapid maximal voluntary isometric contractions. Front Physiol 2024; 15:1434473. [PMID: 39229620 PMCID: PMC11368765 DOI: 10.3389/fphys.2024.1434473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Maximal voluntary isometric contractions (MVICs) as a fatiguing modality have been widely studied, but little attention has been given to the influence of the rate of torque development. Given the established differences in motor command and neuromuscular activation between ramp and rapid MIVCs, it is likely performance fatigue differs as well as the underlying physiological mechanisms. Purpose To compare responses for rapid and maximal torque following ramp and rapid MVICs, and the corresponding neuromuscular and corticospinal alterations. Methods On separate visits, twelve healthy males (22.8 ± 2.5 years) performed fatiguing intermittent MVICs of the knee extensors with either 2 s (RAMP) or explosive (RAPID) ramp-ups until a 50% reduction in peak torque was achieved. Before and after each condition, maximal and rapid torque measures were determined from an MVIC. Additionally, peripheral (twitch parameters) and central (voluntary activation) fatigue, as well as rapid muscle activation, and cortical-evoked twitch and electromyographic responses were recorded. Results Maximal and late-phase rapid torque measures (p ≤ 0.001;η p 2 = 0.635-0.904) were reduced similarly, but early rapid torque capacity (0-50 ms) (p = 0.003; d = 1.11 vs. p = 0.054; d = 0.62) and rapid muscle activation (p = 0.008; d = 1.07 vs. p = 0.875; d = 0.06) decreased more after RAMP. Changes in peripheral fatigue, as indicated by singlet and doublet contractile parameters (p < 0.001 for all;η p 2 = 0.752-0.859), and nerve-evoked voluntary activation (p < 0.001;η p 2 = 0.660) were similar between conditions. Corticospinal inhibition (via silent period) was only increased after RAPID (p = 0.007; d = 0.94 vs. p = 0.753; d = 0.09), whereas corticospinal voluntary activation and excitability were unchanged. Conclusion Ramp, fatiguing MVICs impaired early rapid torque capacity more than rapid MVICs, and this was accompanied by decrements in rapid muscle activation. Responses for peripheral and central fatigue (nerve and cortical stimulation) were largely similar between conditions, except that rapid MVICs increased corticospinal inhibition.
Collapse
Affiliation(s)
- Benjamin Dalton
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | - Garrett Hester
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | - Michaela Alesi
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | - Jacob McDougle
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | - Michael Cooper
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | | | - Robert Buresh
- Wellstar College of Health and Human Services, Kennesaw State University, Kennesaw, GA, United States
| | - Yuri Feito
- dNea Onnim Consultancy, StAugustine, FL, United States
| |
Collapse
|
10
|
Paris MT, Zero AM, Rice CL. Influence of stimulation frequency on early and late phase rate of torque and velocity development. J Appl Physiol (1985) 2024; 137:349-356. [PMID: 38900861 DOI: 10.1152/japplphysiol.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The early (≤50 ms) rate of torque development (RTD) is dependent upon the speed of neuromuscular activation; however, few studies have evaluated the determinants of rate of velocity development (RVD), which may be load-dependent. The purpose here was to explore the relationship between stimulation frequency with the early and late (≥100 ms) phase isometric RTD and isotonic RVD. The knee extensors of 16 (five female) young recreationally active participants were stimulated using 14 frequencies from 1 to 100 Hz during isometric and isotonic ("unloaded" and 7.5% of the isometric maximal voluntary contraction [MVC]) contractions. Isometric RTD and isotonic RVD were evaluated for the early (0-50 ms) and late (0-100 ms) phases from torque and velocity onset, respectively. Sigmoid functions were fit and bilinear regressions were used to examine the slopes of the steep portion of the curve and the plateau frequency. RTD- and RVD-frequency relationships were well described by a sigmoid function (all r2 > 0.96). Compared with the late phase, early isometric RTD, and unloaded RVD displayed lower slopes (all P ≤ 0.001) and higher plateau frequencies (all P < 0.001). In contrast, early and late RVD of a moderately loaded isotonic contraction did not display different slopes (P = 0.055) or plateau frequencies (P = 0.690). Early isometric RTD and unloaded isotonic RVD are more dependent on changes in stimulation frequency compared with late phases. However, RVD for a moderately loaded isotonic contraction displayed similar responses for the early and late phases. Therefore, a high frequency of activation is critical for early torque and velocity generation but dependent upon the load for isotonic contractions.NEW & NOTEWORTHY We show that during an "unloaded" isotonic contraction, the early phase rate of velocity development is more dependent upon a high electrical activation frequency compared with the late phase, similar to isometric torque. However, early and late phase rates of velocity development of moderately loaded isotonic contractions display similar responses. These results indicate that the determinants of isotonic shortening function are dependent on the externally applied load, highlighting the importance of task-specificity of contraction.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Curovic I, Rhodes D, Alexander J, Harper DJ. Vertical Strength Transfer Phenomenon Between Upper Body and Lower Body Exercise: Systematic Scoping Review. Sports Med 2024; 54:2109-2139. [PMID: 38743172 PMCID: PMC11329601 DOI: 10.1007/s40279-024-02039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND There are a myriad of exercise variations in which upper body (UB) and lower body (LB) exercises have been intermittently used. However, it is still unclear how training of one body region (e.g. LB) affects adaptations in distant body areas (e.g. UB), and how different UB and LB exercise configurations could help facilitate physiological adaptations of either region; both referred to in this review as vertical strength transfer. OBJECTIVE We aimed to investigate the existence of the vertical strength transfer phenomenon as a response to various UB and LB exercise configurations and to identify potential mechanisms underpinning its occurrence. METHODS A systematic search using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) for Scoping Reviews protocol was conducted in February 2024 using four databases (Web of Science, MEDLINE, Scopus and CINAHL) to identify peer-reviewed articles that investigated the vertical strength transfer phenomenon. RESULTS Of the 5242 identified articles, 24 studies met the inclusion criteria. Findings suggest that the addition of UB strength training to LB endurance exercise may help preserve power-generating capacity for the leg muscle fibres. Furthermore, systemic endocrine responses to high-volume resistance exercise may beneficially modulate adaptations in precedingly or subsequently trained muscles from a different body region, augmenting their strength gains. Last, strength training for LB could result in improved strength of untrained UB, likely due to the increased central neural drive. CONCLUSIONS Vertical strength transfer existence is enabled by neurophysiological mechanisms. Future research should involve athletic populations, examining the potential of vertical strength transfer to facilitate athletic performance and preserve strength in injured extremities.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK.
- , Jurija Gagarina 102/7, 11070, Belgrade, Serbia.
| | - David Rhodes
- Human Performance Department, Burnley Football Club, Burnley, UK
| | - Jill Alexander
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - Damian J Harper
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| |
Collapse
|
12
|
Evans NH, Field-Fote EC. Brief High-Velocity Motor Skill Training Increases Step Frequency and Improves Length/Frequency Coordination in Slow Walkers With Chronic Motor-Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2024; 105:1289-1298. [PMID: 38437897 DOI: 10.1016/j.apmr.2024.02.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To quantify spatiotemporal coordination during overground walking among persons with motor-incomplete spinal cord injury (PwMISCI) by calculating the step length (SL)/step frequency (SF) ratio (ie, the Walk Ratio [WR]) and to examine the effects of motor skill training (MST) on the relationship between changes in these parameters and walking speed (WS). DESIGN Between-day exploratory analysis. SETTING Research laboratory in a rehabilitation hospital PARTICIPANTS: PwMISCI (N=26). INTERVENTIONS 3-day high-velocity MST. MAIN OUTCOME MEASURES Overground WS, SL, SF, and WR measured during the 10-Meter Walk Test. RESULTS Among the full sample, MST was associated with increases in WS, SL, SF, and a decrease in the WR. Relative change in WS and SF was higher among slow (ΔWS=↑46%, ΔSF=↑28%) vs fast (ΔWS=↑16%, ΔSF=↑8%) walkers. Change in the WR differed between groups (slow: ΔWR=↓10%; fast: ΔWR=0%). Twenty-six percent of the variability observed in ΔWR among slow walkers could be explained by ΔSF, while ΔSL did not contribute to ΔWR. Among fast walkers, ΔSL accounted for more than twice the observed ΔWR (43%) compared to ΔSF (15%). CONCLUSIONS On the whole, WR values among PwMISCI are higher than previous reports in other neurologic populations; however, values among fast walkers were comparable to noninjured adults. Slow walkers demonstrated greater variability in the WR, with higher values associated with slower WS. Following MST, increases in WS coincided with a decrease in the WR among slow walkers, mediated primarily through an effect on SF. This finding may point to a specific mechanism by which MST facilitates improvements in WS among PwMISCI with greater mobility deficits.
Collapse
Affiliation(s)
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA; Georgia Institute of Technology, Program in Applied Physiology, Atlanta, GA; Emory University School of Medicine, Department of Rehabilitation Medicine, Atlanta, GA.
| |
Collapse
|
13
|
Del Vecchio A, Enoka RM, Farina D. Specificity of early motor unit adaptations with resistive exercise training. J Physiol 2024; 602:2679-2688. [PMID: 38686581 DOI: 10.1113/jp282560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
After exposure of the human body to resistive exercise, the force-generation capacity of the trained muscles increases significantly. Despite decades of research, the neural and muscular stimuli that initiate these changes in muscle force are not yet fully understood. The study of these adaptations is further complicated by the fact that the changes may be partly specific to the training task. For example, short-term strength training does not always influence the neural drive to muscles during the early phase (<100 ms) of force development in rapid isometric contractions. Here we discuss some of the studies that have investigated neuromuscular adaptations underlying changes in maximal force and rate of force development produced by different strength training interventions, with a focus on changes observed at the level of spinal motor neurons. We discuss the different motor unit adjustments needed to increase force or speed, and the specificity of some of the adaptations elicited by differences in the training tasks.
Collapse
Affiliation(s)
- Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Roger Maro Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Caillet AH, Phillips ATM, Modenese L, Farina D. NeuroMechanics: Electrophysiological and computational methods to accurately estimate the neural drive to muscles in humans in vivo. J Electromyogr Kinesiol 2024; 76:102873. [PMID: 38518426 DOI: 10.1016/j.jelekin.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The ultimate neural signal for muscle control is the neural drive sent from the spinal cord to muscles. This neural signal comprises the ensemble of action potentials discharged by the active spinal motoneurons, which is transmitted to the innervated muscle fibres to generate forces. Accurately estimating the neural drive to muscles in humans in vivo is challenging since it requires the identification of the activity of a sample of motor units (MUs) that is representative of the active MU population. Current electrophysiological recordings usually fail in this task by identifying small MU samples with over-representation of higher-threshold with respect to lower-threshold MUs. Here, we describe recent advances in electrophysiological methods that allow the identification of more representative samples of greater numbers of MUs than previously possible. This is obtained with large and very dense arrays of electromyographic electrodes. Moreover, recently developed computational methods of data augmentation further extend experimental MU samples to infer the activity of the full MU pool. In conclusion, the combination of new electrode technologies and computational modelling allows for an accurate estimate of the neural drive to muscles and opens new perspectives in the study of the neural control of movement and in neural interfacing.
Collapse
Affiliation(s)
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, UK
| | - Luca Modenese
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | - Dario Farina
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
15
|
Haug WB, Pain MTG. Using a simple model to systematically examine the influence of force-velocity profile and power on vertical jump performance with different constraints. Sports Biomech 2024:1-28. [PMID: 38739038 DOI: 10.1080/14763141.2024.2351615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Power, and recently force-velocity (F-V) profiling, are well-researched and oft cited critical components for sports performance but both are still debated; some would say misused. A neat, applied formulation of power and linear F-V in the literature is practically useful but there is a dearth of fundamental explanations of how power and F-V interact with human and environmental constraints. To systematically explore the interactions of a linear F-V profile, peak power, gravity, mass, range of motion (ROM), and initial activation conditions, a forward dynamics point mass model of vertical jumping was parameterised from an athlete. With no constraints and for a given peak power, F-V favouring higher velocity performed better, but were impacted more under real-world conditions of gravity and finite ROM meaning the better F-V was dependent on constraints. Increasing peak power invariably increased jump height but improvement was dependent on the initial F-V and if it was altered by changing maximal force or velocity. When mass was changed along with power and F-V there was a non-linear interaction and jump improvement could be almost as large for a F-V change as an increase in power. An ideal F-V profile cannot be identified without knowledge of mass and ROM.
Collapse
Affiliation(s)
- William B Haug
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Matthew T G Pain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
16
|
Akalu Y, Tallent J, Frazer AK, Siddique U, Rostami M, Vallance P, Howatson G, Walker S, Kidgell DJ. Strength-trained adults demonstrate greater corticoreticular activation versus untrained controls. Eur J Neurosci 2024; 59:2336-2352. [PMID: 38419404 DOI: 10.1111/ejn.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The rapid increase in strength following strength-training involves neural adaptations, however, their specific localisation remains elusive. Prior focus on corticospinal responses prompts this study to explore the understudied cortical/subcortical adaptations, particularly cortico-reticulospinal tract responses, comparing healthy strength-trained adults to untrained peers. Fifteen chronically strength-trained individuals (≥2 years of training, mean age: 24 ± 7 years) were compared with 11 age-matched untrained participants (mean age: 26 ± 8 years). Assessments included maximal voluntary force (MVF), corticospinal excitability using transcranial magnetic stimulation (TMS), spinal excitability (cervicomedullary stimulation), voluntary activation (VA) and reticulospinal tract (RST) excitability, utilizing StartReact responses and ipsilateral motor-evoked potentials (iMEPs) for the flexor carpi radialis muscle. Trained participants had higher normalized MVF (6.4 ± 1.1 N/kg) than the untrained participants (4.8 ± 1.3 N/kg) (p = .003). Intracortical facilitation was higher in the strength-trained group (156 ± 49%) (p = .02), along with greater VA (98 ± 3.2%) (p = .002). The strength-trained group displayed reduced short-interval-intracortical inhibition (88 ± 8.0%) compared with the untrained group (69 ± 17.5%) (p < .001). Strength-trained individuals exhibited a greater normalized rate of force development (38.8 ± 10.1 N·s-1/kg) (p < .009), greater reticulospinal gain (2.5 ± 1.4) (p = .02) and higher ipsilateral-to-contralateral MEP ratios compared with the untrained group (p = .03). Strength-trained individuals displayed greater excitability within the intrinsic connections of the primary motor cortex and the RST. These results suggest greater synaptic input from the descending cortico-reticulospinal tract to α-motoneurons in strength-trained individuals, thereby contributing to the observed increase in VA and MVF.
Collapse
Affiliation(s)
- Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
- Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Patrick Vallance
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North-West University, Potchefstroom, South Africa
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Victoria, Australia
| |
Collapse
|
17
|
Jacquet T, Poulin-Charronnat B, Bard P, Lepers R. Effect of mental fatigue on hand force production capacities. PLoS One 2024; 19:e0298958. [PMID: 38564497 PMCID: PMC10986955 DOI: 10.1371/journal.pone.0298958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
Mental fatigue is common in society, but its effects on force production capacities remain unclear. This study aimed to investigate the impact of mental fatigue on maximal force production, rate of force development-scaling factor (RFD-SF), and force steadiness during handgrip contractions. Fourteen participants performed two randomized sessions, during which they either carried out a cognitively demanding task (i.e., a visual attention task) or a cognitively nondemanding task (i.e., documentary watching for 62 min). The mental fatigue was evaluated subjectively and objectively (performances and electroencephalography). Maximal voluntary contraction (MVC) force, RFD-SF, and force steadiness (i.e., force coefficient of variation at submaximal intensities; 25, 50, and 75% of MVC) were recorded before and after both tasks. The feeling of mental fatigue was much higher after completing the cognitively demanding task than after documentary watching (p < .001). During the cognitively demanding task, mental fatigue was evidenced by increased errors, missed trials, and decreased N100 amplitude over time. While no effect was reported on force steadiness, both tasks induced a decrease in MVC (p = .040), a force RFD-SF lower slope (p = .011), and a reduction in the coefficient of determination (p = .011). Nevertheless, these effects were not explicitly linked to mental fatigue since they appeared both after the mentally fatiguing task and after watching the documentary. The study highlights the importance of considering cognitive engagement and mental load when optimizing motor performance to mitigate adverse effects and improve force production capacities.
Collapse
Affiliation(s)
- Thomas Jacquet
- Faculté des Sciences du Sport, CAPS, Inserm U1093, BP 27877 UFR STAPS, Université de Bourgogne, Dijon, France
| | | | - Patrick Bard
- LEAD – CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Romuald Lepers
- Faculté des Sciences du Sport, CAPS, Inserm U1093, BP 27877 UFR STAPS, Université de Bourgogne, Dijon, France
| |
Collapse
|
18
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
19
|
Li Y, Zheng Y, Xu G, Zhang S, Liang R, Ji R. Classification of Action Potentials With High Variability Using Convolutional Neural Network for Motor Unit Tracking. IEEE Trans Neural Syst Rehabil Eng 2024; 32:905-914. [PMID: 38335077 DOI: 10.1109/tnsre.2024.3364716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The reliable classification of motor unit action potentials (MUAPs) provides the possibility of tracking motor unit (MU) activities. However, the variation of MUAP profiles caused by multiple factors in realistic conditions challenges the accurate classification of MUAPs. The goal of this study was to propose an effective method based on the convolutional neural network (CNN) to classify MUAPs with high levels of variation for MU tracking. MUAP variation was added artificially in the synthetic electromyogram (EMG) signals and was induced by changing the forearm postures in the experimental study. The proposed overlapped-segment-wise EMG decomposition method and the spike-triggered averaging method were combined to obtain the MUAP waveform samples of individual MUs in the experimental study, and the MUAP profile classification performance was tested. Since the ground-truth of MU discharge activities was known for the synthetic EMG, the MU tracking performance was further verified by mimicking the tracking procedure of MU discharge activities and the spike consistency with the true spike trains was tested in the simulation study. The conventional MUAP similarity index (SI)-based method was also performed as comparison. For both the experimental and the synthetic EMG signals, the CNN-based method significantly improved the MUAP tracking performance compared with the conventional SI-based method manifested as a higher classification accuracy (93.3%±5.4% vs 56.2%±13.9%) in the experimental study or higher spike consistency (71.1%±10.2% vs 29.2%±11.0%) in the simulation study with a smaller variation. These results demonstrated the efficiency and robustness of the proposed method to distinguish MUAPs with large variations accurately. Further development of the proposed method can promote the study on the physiological and pathological changes of the neuromuscular system where tracking MU activities is needed.
Collapse
|
20
|
Farina D, Gandevia S. The neural control of movement: a century of in vivo motor unit recordings is the legacy of Adrian and Bronk. J Physiol 2024; 602:281-295. [PMID: 38059891 PMCID: PMC10952757 DOI: 10.1113/jp285319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
In two papers dated 1928 to 1929 in The Journal of Physiology, Edgar Adrian and Detlev Bronk described recordings from motor nerve and muscle fibres. The recordings from motor nerve fibres required progressive dissection of the nerve until a few fibres remained, from which isolated single fibre activity could be detected. The muscle fibre recordings were performed in humans during voluntary contractions with an intramuscular electrode - the concentric needle electrode - that they describe for the first time in the second paper. They recognised that muscle fibres would respond to each impulse sent by the innervating motor neurone and that therefore muscle fibre recordings provided information on the times of activation of the motor nerve fibres which were as accurate as a direct record from the nerve. These observations and the description of the concentric needle electrode opened the era of motor unit recordings in humans, which have continued for almost a century and have provided a comprehensive view of the neural control of movement at the motor unit level. Despite important advances in technology, many of the principles of motor unit behaviour that would be investigated in the subsequent decades were canvassed in the two papers by Adrian and Bronk. For example, they described the concomitant motor neurones' recruitment and rate coding for force modulation, synchronisation of motor unit discharges, and the dependence of discharge rate on motor unit recruitment threshold. Here, we summarise their observations and discuss the impact of their work. We highlight the advent of the concentric needle, and its subsequent influence on motor control research.
Collapse
Affiliation(s)
- Dario Farina
- Department of BioengineeringImperial College LondonLondonUK
| | - Simon Gandevia
- Neuroscience Research AustraliaSydney and University of New South WalesSydneyAustralia
| |
Collapse
|
21
|
Crotty ED, Furlong LAM, Harrison AJ. Neuromuscular Plantar Flexor Performance of Sprinters versus Physically Active Individuals. Med Sci Sports Exerc 2024; 56:82-91. [PMID: 37718513 DOI: 10.1249/mss.0000000000003288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Comparison of the neuromuscular performance of different athlete types may give insight into the in vivo variability of these measures and their underpinning mechanisms. The study aims to compare the neuromuscular function of the plantar flexors of sprinters and physically active individuals to assess any differences in explosive force performance. METHODS Neuromuscular performance of a group of sprinters (highly trained/national level, n = 12; elite/international level, n = 2) and physically active individuals ( n = 14) were assessed during involuntary, explosive, and maximum voluntary isometric plantar flexions, across different muscle-tendon unit (MTU) lengths (10° plantarflexion, 0° (anatomical zero/neutral), and 10° dorsiflexion). Plantarflexion rate of torque development (RTD) was measured in three 50-ms time windows from their onset. The synchronous activation of the plantar flexor agonist muscles was calculated as the time difference between 1) the first and last muscle onset and 2) the onsets of the two gastrocnemii muscles. Muscle size and MTU stiffness were assessed using sonograms of the medial gastrocnemius and myotendinous junction. RESULTS Sprinters exhibited greater involuntary RTD across time points (0-50 ms, 50-100 ms) and MTU lengths. In addition, sprinters demonstrated greater early phase voluntary RTD (0-50 ms, 50-100 ms) across MTU lengths. Sprinters also demonstrated greater late-phase RTD (100-150 ms), and relative maximal voluntary torque at the DF angle only. The sprinters demonstrated a more synchronous activation of the gastrocnemii muscles. There were no observable differences in muscle size and MTU stiffness between groups. CONCLUSIONS These findings suggest sprint-specific training could be a contributing factor toward improved explosive performance of the plantar flexors, particularly in the early phase of muscular contraction, evidenced by the greater explosive torque producing capabilities of sprinters.
Collapse
Affiliation(s)
- Evan D Crotty
- Sport and Human Performance Research Centre, University of Limerick, Limerick, IRELAND
| | | | | |
Collapse
|
22
|
Leadbetter B, Sénéchal M, Seaman K, Bouchard DR. Resistance Training on an Outdoor Exercise Structure Improves Lower-Body Relative Strength in Older Adults. Gerontol Geriatr Med 2024; 10:23337214241232552. [PMID: 38370580 PMCID: PMC10874140 DOI: 10.1177/23337214241232552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Improving relative strength is important for maintaining functionality with age, and outdoor exercise structures could be useful to facilitate this. A total of 29 adults aged 65+ participated in a non-randomized crossover study with a 6-week control followed by a 6-week resistance training intervention on an outdoor exercise structure (3x/week). Relative strength (predicted maximal leg press/lower body lean mass [Dual-energy X-ray Absorptiometry]) and physical function variables were measured at baseline, post-control, and post-intervention. Represented as median (25th-75th), lower body relative strength improved from 7.91 (7.01-9.35) post-control to 8.50 (7.99-9.72) post-intervention (p = .002) in study completers (n = 17). Maximum leg press (p = .002), 30-second chair stand (p < .001), one-leg stance (p = .011), and maximum chest press (p = .009) also improved significantly during the intervention. There were no significant changes in aerobic activity, grip strength, lean mass, or muscle power. This study demonstrates that there could be potential relative strength benefits associated with the use of outdoor exercise structures in older adults.
Collapse
Affiliation(s)
- Brianna Leadbetter
- University of New Brunswick, Fredericton, NB, Canada
- Cardiometabolic Exercise & Lifestyle Laboratory (CELLAB), Fredericton, NB, Canada
| | - Martin Sénéchal
- Cardiometabolic Exercise & Lifestyle Laboratory (CELLAB), Fredericton, NB, Canada
| | - Ken Seaman
- University of New Brunswick, Fredericton, NB, Canada
| | - Danielle R. Bouchard
- University of New Brunswick, Fredericton, NB, Canada
- Cardiometabolic Exercise & Lifestyle Laboratory (CELLAB), Fredericton, NB, Canada
| |
Collapse
|
23
|
Caillet AH, Phillips ATM, Farina D, Modenese L. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy. PLoS Comput Biol 2023; 19:e1011606. [PMID: 38060619 PMCID: PMC10729998 DOI: 10.1371/journal.pcbi.1011606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/19/2023] [Accepted: 10/16/2023] [Indexed: 12/20/2023] Open
Abstract
The computational simulation of human voluntary muscle contraction is possible with EMG-driven Hill-type models of whole muscles. Despite impactful applications in numerous fields, the neuromechanical information and the physiological accuracy such models provide remain limited because of multiscale simplifications that limit comprehensive description of muscle internal dynamics during contraction. We addressed this limitation by developing a novel motoneuron-driven neuromuscular model, that describes the force-generating dynamics of a population of individual motor units, each of which was described with a Hill-type actuator and controlled by a dedicated experimentally derived motoneuronal control. In forward simulation of human voluntary muscle contraction, the model transforms a vector of motoneuron spike trains decoded from high-density EMG signals into a vector of motor unit forces that sum into the predicted whole muscle force. The motoneuronal control provides comprehensive and separate descriptions of the dynamics of motor unit recruitment and discharge and decodes the subject's intention. The neuromuscular model is subject-specific, muscle-specific, includes an advanced and physiological description of motor unit activation dynamics, and is validated against an experimental muscle force. Accurate force predictions were obtained when the vector of experimental neural controls was representative of the discharge activity of the complete motor unit pool. This was achieved with large and dense grids of EMG electrodes during medium-force contractions or with computational methods that physiologically estimate the discharge activity of the motor units that were not identified experimentally. This neuromuscular model advances the state-of-the-art of neuromuscular modelling, bringing together the fields of motor control and musculoskeletal modelling, and finding applications in neuromuscular control and human-machine interfacing research.
Collapse
Affiliation(s)
- Arnault H. Caillet
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Andrew T. M. Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luca Modenese
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Gonçalves AD, Pezarat-Correia P, Vila-Chã C, Mendonça GV. Effects of Acute Sleep Deprivation on the Sequential Rate of Torque Development throughout the Force-Time Curve. Sleep Sci 2023; 16:e454-e461. [PMID: 38197028 PMCID: PMC10773507 DOI: 10.1055/s-0043-1776869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/27/2023] [Indexed: 01/11/2024] Open
Abstract
Objective The impact of sleep deprivation on the physiological determinants of explosive torque production remains poorly understood. We aimed at determining the acute effects of 24 hours of sleep deprivation on the sequential rate of torque development (RTD) obtained during plantar flexion through maximum voluntary isometric contraction (MVIC). Materials and Methods The study included 14 healthy-young adults (8 men and 6 women). The participants visited the laboratory on 2 different occasions: without and with 24 hours of sleep deprivation. In each session, the subjects were tested for RTD of the plantar flexors with concomitant recordings of the electromyographic (EMG) amplitude of the soleus over the following time intervals: 0 to 30, 30 to 50, 50 to 100, and 100 to 150 ms. Results Sleep deprivation did not affect peak RTD (without sleep deprivation: 283.3 ± 111.6 N.m.s -1 versus with sleep deprivation: 294.9 ± 99.2 N.m.s -1 ; p > 0.05) of plantar flexion. The sequential values of RTD, as well as the normalized amplitude of the soleus EMG, remained similar between both conditions (p > 0.05). Discussion In conclusion, we found that 24 hours of sleep deprivation do not affect muscle activation, nor explosive torque production throughout the torque-time curve. Thus, exercise performance and daily functionality in tasks involving rapid torque development might remain well preserved after 24 hours of acute sleep deprivation.
Collapse
Affiliation(s)
- André Dias Gonçalves
- Neuromuscular Research Lab, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Dafundo, Portugal
| | - Carolina Vila-Chã
- CIDESD, Escola Superior de Educação, Comunicação e Desporto, Instituto Politécnico da Guarda, Guarda Portugal
| | - Gonçalo Vilhena Mendonça
- Neuromuscular Research Lab, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Dafundo, Portugal
| |
Collapse
|
25
|
Kristiansen M, Hansen EA, Samani A, Madeleine P. Changes in normalized mutual information in response to strength training: An ancillary analysis of a quasi-randomized controlled trial. Scand J Med Sci Sports 2023; 33:2181-2192. [PMID: 37555451 DOI: 10.1111/sms.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
The aim of the present investigation was twofold. (1) to assess test-retest reliability of normalized mutual information (NMI) values extracted from the surface electromyography (sEMG) signal of muscles pairs of the upper body during dynamic bench press at a high load, and (2) to assess changes in NMI values from before to after a five-week quasi-randomized controlled bench press training intervention. For test-retest reliability, 20 strength trained males (age 25 ± 2 years, height 1.81 ± 0.07 m) performed two three-repetition maximum (3RM) tests in bench press, while sEMG was recorded from six upper body muscles. Tests were separated by 8.2 ± 2.9 days. For the training intervention, 17 male participants (age 26 ± 5 years, height 1.80 ± 0.07 m) trained bench press specific strength training for 5 weeks (TRA), while 13 male participants (age 23 ± 3 years, height 1.80 ± 0.08 m) constituted a control group (CON). 3RM bench press test and sEMG recordings were carried out before and after the intervention period. The NMI values ranged from poor to almost perfect reliability, with the majority displaying substantial reliability. TRA displayed a significant decrease in NMI values during the concentric phase for two agonist-agonist muscle pairs, while one agonist-agonist and two agonist-antagonist muscle pairs increased the NMI values during the eccentric phase. The observed changes did not exceed the minimal detectable threshold, and we therefore cannot surely ascertain that the changes observed in NMI values reflect genuine neural adaptations.
Collapse
Affiliation(s)
- Mathias Kristiansen
- Sport Sciences-Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernst Albin Hansen
- Sport Sciences-Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Centre for Health and Rehabilitation, University College Absalon, Slagelse, Denmark
| | - Afshin Samani
- Sport Sciences-Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pascal Madeleine
- Sport Sciences-Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Lee H, Dennis HE, Han S, Hopkins JT, Seeley MK. Decreased rate of torque development in ankle evertors for individuals with chronic ankle instability. Clin Biomech (Bristol, Avon) 2023; 109:106096. [PMID: 37725866 DOI: 10.1016/j.clinbiomech.2023.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Individuals with chronic ankle instability have decreased peak torque during maximum voluntary contraction in ankle evertors/invertors, and hip abductors. However, it is unclear whether individuals with chronic ankle instability and/or copers demonstrate decreased rate of torque development in ankle evertors/invertors, and hip abductors. METHODS 54 university-aged participants (18 chronic ankle instability, 18 copers, and 18 controls) performed three maximal isometric contractions for ankle evertors and invertors, and hip abductors. Rate of torque development was defined as the linear slope of the torque-time curve during the first 200 ms of each contraction and compared between the three groups using a one-way analysis of variance (α = 0.05). FINDINGS The chronic ankle instability group showed 38.1% less rate of torque development than the coper (P = 0.03 and d = 0.84) and 37.1% than the control groups (P = 0.03 and d = 1.03) in the ankle evertors. For the hip abductors, there were moderate effects between the chronic ankle instability group and the copers (P = 0.06 and d = 0.70), and control groups (P = 0.06 and d = 0.75). INTERPRETATIONS The observed between-groups differences in rate of torque development indicate that restoring rate of torque development after lateral ankle sprain may be important to reduce risk of reinjury and development of chronic ankle instability. Clinicians should consider the rate of torque development in the ankle evertors and hip abductors during rehabilitation chronic ankle instability patients.
Collapse
Affiliation(s)
- Hyunwook Lee
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA; Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hayden E Dennis
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Seunguk Han
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA.
| | - J Ty Hopkins
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Matthew K Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
27
|
Santos PDG, Vaz JR, Correia J, Neto T, Pezarat-Correia P. Long-Term Neurophysiological Adaptations to Strength Training: A Systematic Review With Cross-Sectional Studies. J Strength Cond Res 2023; 37:2091-2105. [PMID: 37369087 DOI: 10.1519/jsc.0000000000004543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Santos, PDG, Vaz, JR, Correia, J, Neto, T, and Pezarat-Correia, P. Long-term neurophysiological adaptations to strength training: a systematic review with cross-sectional studies. J Strength Cond Res 37(10): 2091-2105, 2023-Neuromuscular adaptations to strength training are an extensively studied topic in sports sciences. However, there is scarce information about how neural mechanisms during force production differ between trained and untrained individuals. The purpose of this systematic review is to better understand the differences between highly trained and untrained individuals to establish the long-term neural adaptations to strength training. Three databases were used for the article search (PubMed, Web of Science, and Scopus). Studies were included if they compared groups of resistance-trained with untrained people, aged 18-40 year, and acquired electromyography (EMG) signals during strength tasks. Twenty articles met the eligibility criteria. Generally, strength-trained individuals produced greater maximal voluntary activation, while reducing muscle activity in submaximal tasks, which may affect the acute response to strength training. These individuals also presented lower co-contraction of the antagonist muscles, although it depends on the specific training background. Global intermuscular coordination may be another important mechanism of adaptation in response to long-term strength training; however, further research is necessary to understand how it develops over time. Although these results should be carefully interpreted because of the great disparity of analyzed variables and methods of EMG processing, chronic neural adaptations seem to be decisive to greater force production. It is crucial to know the timings at which these adaptations stagnate and need to be stimulated with advanced training methods. Thus, training programs should be adapted to training status because the same stimulus in different training stages will lead to different responses.
Collapse
Affiliation(s)
- Paulo D G Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - João R Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz-Cooperativa de Ensino Superior, Monte da Caparica, Portugal; and
| | - Joana Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - Tiago Neto
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
| |
Collapse
|
28
|
Uygur M, Barone DA. The rate of force relaxation scaling factor is highly sensitive to detect upper and lower extremity motor deficiencies in mildly affected people with multiple sclerosis. Mult Scler Relat Disord 2023; 77:104897. [PMID: 37481819 DOI: 10.1016/j.msard.2023.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The motor symptoms affecting upper and lower extremity functioning in people with multiple sclerosis (PwMS) are considered the cardinal symptoms of multiple sclerosis. There is still a need for outcome measures that can sensitively evaluate these symptoms. We aimed to investigate the sensitivity of the isometric outcomes (maximum force; Fmax, maximum rate of force development; RFDmax, rate of force development scaling factor; RFD-SF, and rate of force relaxation scaling factor; RFR-SF) and standard clinical tests (9-hole peg test; 9HPT and timed 25-feet walk test; T25FW) in detecting the upper and lower extremity motor deficiencies in PwMS and also in a subgroup of mildly affected PwMS whose performance in standard clinical tests were similar to controls. METHODS Twenty-nine PwMS (age: 47.9 (8.6) years, relapsing-remitting type, expanded disability status scale: 2.5 (1.5)) and their age- and gender-matched controls completed an identical testing protocol in the upper (grip force muscles) and lower (knee extensors) extremities. For each extremity, we assessed Fmax, RFDmax, RFD-SF, and RFR-SF. Additionally, participants completed standard clinical tests for the evaluation of upper- (9HPT) and lower-extremity (T25FW) function. Comparisons were made between controls and PwMS 1) using all study participants and 2) including only mildly affected PwMS whose performance in standard functional tests was comparable to controls. Independent sample t-tests were utilized to compare groups, with a p-value set at 0.01 to correct for multiple comparisons. P-values and effect sizes were used to evaluate the sensitivity of the outcome measures in detecting group differences. RESULTS Our results indicate that most isometric outcomes and standard functional tests were sensitive in detecting motor deficiencies in both upper and lower extremities between groups (p<0.001). Among participants, 16 PwMS in 9HPT and 11 PwMS in T25FW demonstrated performance similar to that of the control group (9HPT: 18.85 (2.20) s vs 17.81 (2.19) s; p=0.19) and (T25FW: 3.60 (0.42) s vs 3.58 (0.29) s; p=0.92). The results of the comparisons between mildly affected PwMS and their controls indicate that RFR-SF is the only sensitive isometric outcome to detect differences between groups in the upper (-8.24 (0.76) 1/s vs -8.93 (0.6) 1/s; p=0.008) and lower extremity (-5.86 (1.13) 1/s vs -7.71 (1.11) 1/s; p<0.001). CONCLUSION The rate of force relaxation scaling factor, which assesses the ability to rapidly relax muscle forces after quick contractions, demonstrates high sensitivity in detecting motor deficiencies in PwMS, even when the current standard clinical outcomes fail to detect these differences. Our findings emphasize the importance of future randomized controlled trials focusing on rehabilitative and therapeutic interventions that specifically target muscle force relaxation to enhance motor functioning in PwMS.
Collapse
Affiliation(s)
- Mehmet Uygur
- Department of Health and Exercise Science, Rowan University, Glassboro, NJ 08028, USA.
| | - Donald A Barone
- Neurological Institute, Cooper University Health Care, Cherry Hill, NJ 08002, USA
| |
Collapse
|
29
|
Wilson MT, Hunter AM, Fairweather M, Kerr S, Hamilton DL, Macgregor LJ. Enhanced skeletal muscle contractile function and corticospinal excitability precede strength and architectural adaptations during lower-limb resistance training. Eur J Appl Physiol 2023; 123:1911-1928. [PMID: 37185932 PMCID: PMC10460716 DOI: 10.1007/s00421-023-05201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Evolving investigative techniques are providing greater understanding about the early neuromuscular responses to resistance training among novice exercisers. The aim of this study was to investigate the time-course of changes in muscle contractile mechanics, architecture, neuromuscular, and strength adaptation during the first 6-weeks of lower-limb resistance training. METHODS Forty participants: 22 intervention (10 males/12 females; 173.48 ± 5.20 cm; 74.01 ± 13.13 kg) completed 6-week resistance training, and 18 control (10 males/8 females; 175.52 ± 7.64 cm; 70.92 ± 12.73 kg) performed no resistance training and maintained their habitual activity. Radial muscle displacement (Dm) assessed via tensiomyography, knee extension maximal voluntary contraction (MVC), voluntary activation (VA), corticospinal excitability and inhibition via transcranial magnetic stimulation, motor unit (MU) firing rate, and muscle thickness and pennation angle via ultrasonography were assessed before and after 2, 4, and 6-weeks of dynamic lower-limb resistance training or control. RESULTS After 2-weeks training, Dm reduced by 19-25% in the intervention group; this was before any changes in neural or morphological measures. After 4-weeks training, MVC increased by 15% along with corticospinal excitability by 16%; however, there was no change in VA, corticospinal inhibition, or MU firing rate. After 6-weeks training there was further MVC increase by 6% along with muscle thickness by 13-16% and pennation angle by 13-14%. CONCLUSION Enhanced contractile properties and corticospinal excitability occurred before any muscle architecture, neural, and strength adaptation. Later increases in muscular strength can be accounted for by architectural adaptation.
Collapse
Affiliation(s)
- Matthew T Wilson
- Physiology, Exercise, and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Angus M Hunter
- Physiology, Exercise, and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK.
- Department of Sports Sciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | | | - Stewart Kerr
- Life Fit Wellness, Healthcare & Exercise Centre, Falkirk, Scotland, UK
| | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - Lewis J Macgregor
- Physiology, Exercise, and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
30
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
31
|
Nyland J, Pyle B, Richards J, Yoshida K, Brey J, Carter S. A clinical practice review of therapeutic movement-based anterior cruciate ligament reconstruction return to sports bridge program: the biological, biomechanical and behavioral rationale. ANNALS OF JOINT 2023; 8:23. [PMID: 38529232 PMCID: PMC10929313 DOI: 10.21037/aoj-23-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/12/2023] [Indexed: 03/27/2024]
Abstract
This clinical practice review describes the biological, biomechanical and behavioral rationale behind a return to sport bridge program used predominantly with non-elite, youth and adolescent high school and college athletes following anterior cruciate ligament (ACL) reconstruction. Post-physiotherapy, this program has produced outcomes that meet or exceed previous reports. With consideration for athletic identity and the Specific Adaptations to Imposed Demands (SAID) principle, the early program focus was on restoring non-impaired bilateral lower extremity joint mobility and bi-articular musculotendinous extensibility. Building on this foundation, movement training education, fundamental bilateral lower extremity strength and power, and motor learning was emphasized with use of external focus cues and ecological dynamics-social cognition considerations. Plyometric and agility tasks were integrated to enhance fast twitch muscle fiber recruitment, anaerobic metabolic energy system function, and fatigue resistance. The ultimate goal was to achieve the lower extremity neuromuscular control and activation responsiveness needed for bilateral dynamic knee joint stability. The rationale and conceptual basis of selected movement tasks and general philosophy of care concepts are described and discussed in detail. Based on the previously reported efficacy of this movement-based therapeutic exercise program we recommend that supplemental programs such as this become standard practice following release from post-surgical physiotherapy and before return to sports decision-making.
Collapse
Affiliation(s)
- John Nyland
- Norton Orthopedic Institute, Louisville, KY, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - Brandon Pyle
- MSAT Program, Spalding University, Louisville, KY, USA
| | - Jarod Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - Kei Yoshida
- MSAT Program, Spalding University, Louisville, KY, USA
| | - Jennifer Brey
- Norton Orthopedic Institute, Louisville, KY, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - Sam Carter
- Norton Orthopedic Institute, Louisville, KY, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
32
|
Mohamadi O, Torabinezhad F, Sanjari MA, Razazian N, Ebadi A. Evaluation of orofacial force-related measures using a novel measuring device: explanation of associations with speech rate in dysarthria. Expert Rev Med Devices 2023; 20:1193-1210. [PMID: 37942748 DOI: 10.1080/17434440.2023.2282178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The aim of this study was to examine the potential associations between orofacial force-related measures and speech rate in matched groups of 23 adults with dysarthria, and 69 healthy adults. RESEARCH DESIGN AND METHODS A novel piezoresistive sensor-based device was utilized to obtain the orofacial maximum forces (OMFs) and rate of force development (RFD) measures. The study computed alternating motion rates (AMRs), sequential motion rates (SMRs), and articulation rate (AR) for all participants. The analysis included between-group comparisons and correlation analyses. The study also examined the reliability of the OMFs and RFD measures. RESULTS Individuals with dysarthria exhibited significantly slower speech rates (approximately 41.89% to 56.53% slower) compared to the control group. Except for a few exceptions in the jaw, the dysarthria group demonstrated significantly lower OMFs and RFD measures. The correlation analysis revealed that OMFs were weakly to moderately correlated (r = .488-.674) and RFD measures were very weak to moderately correlated (r = .047-.578) with speech rate measures. CONCLUSIONS The findings suggest that reduced OMFs and RFD measures may contribute to the slowed speech rate observed in adults with dysarthria. The study also highlights that OMFs are significantly more reliable (day-to-day) than RFD measures.
Collapse
Affiliation(s)
- Omid Mohamadi
- Department of Speech-Language Pathology, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Torabinezhad
- Department of Speech-Language Pathology, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sanjari
- Biomechanics Lab. Rehabilitation Research Center, and Department of Basic Rehabilitation Sciences, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Razazian
- Department of Neurology, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbas Ebadi
- Behavioral Sciences Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Orssatto LBR, Rodrigues P, Mackay K, Blazevich AJ, Borg DN, Souza TRD, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motor neuron excitability is increased after resistance training in older adults. J Neurophysiol 2023; 129:635-650. [PMID: 36752407 DOI: 10.1152/jn.00462.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study investigated the effects of high-intensity resistance training on estimates of the motor neuron persistent inward current (PIC) in older adults. Seventeen participants (68.5 ± 2.8 yr) completed a 2-wk nonexercise control period followed by 6 wk of resistance training. Surface electromyographic signals were collected with two 32-channel electrodes placed over soleus to investigate motor unit discharge rates. Paired motor unit analysis was used to calculate delta frequency (ΔF) as an estimate of PIC amplitudes during 1) triangular-shaped contractions to 20% of maximum torque capacity and 2) trapezoidal- and triangular-shaped contractions to 20% and 40% of maximum torque capacity, respectively, to understand their ability to modulate PICs as contraction intensity increases. Maximal strength and functional capacity tests were also assessed. For the 20% triangular-shaped contractions, ΔF [0.58-0.87 peaks per second (pps); P ≤ 0.015] and peak discharge rates (0.78-0.99 pps; P ≤ 0.005) increased after training, indicating increased PIC amplitude. PIC modulation also improved after training. During the control period, mean ΔF differences between 20% trapezoidal-shaped and 40% triangular-shaped contractions were 0.09-0.18 pps (P = 0.448 and 0.109, respectively), which increased to 0.44 pps (P < 0.001) after training. Also, changes in ΔF showed moderate to very large correlations (r = 0.39-0.82) with changes in peak discharge rates and broad measures of motor function. Our findings indicate that increased motor neuron excitability is a potential mechanism underpinning training-induced improvements in motor neuron discharge rate, strength, and motor function in older adults. This increased excitability is likely mediated by enhanced PIC amplitudes, which are larger at higher contraction intensities.NEW & NOTEWORTHY Resistance training elicited important alterations in soleus intrinsic motor neuronal excitability, likely mediated by enhanced persistent inward current (PIC) amplitude, in older adults. Estimates of PICs increased after the training period, accompanied by an enhanced ability to increase PIC amplitudes at higher contraction intensities. Our data also suggest that changes in PIC contribution to self-sustained discharging may contribute to increases in motor neuron discharge rates, maximal strength, and functional capacity in older adults after resistance training.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick Rodrigues
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David N Borg
- Australian Centre for Health Services Innovation (AusHSI), School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tiago Rosa de Souza
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Department of Physical Education, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
D'Emanuele S, Tarperi C, Rainoldi A, Schena F, Boccia G. Neural and contractile determinants of burst-like explosive isometric contractions of the knee extensors. Scand J Med Sci Sports 2023; 33:127-135. [PMID: 36229231 PMCID: PMC10099358 DOI: 10.1111/sms.14244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 01/11/2023]
Abstract
Walking and running are based on rapid burst-like muscle contractions. Burst-like contractions generate a Gaussian-shaped force profile, in which neuromuscular determinants have never been assessed. We investigated the neural and contractile determinants of the rate of force development (RFD) in burst-like isometric knee extensions. Together with maximal voluntary force (MVF), voluntary and electrically evoked (8 stimuli at 300 Hz, octets) forces were measured in the first 50, 100, and 150 ms of burst-like quadriceps contractions in 24 adults. High-density surface electromyography (HDsEMG) was adopted to measure the root mean square (RMS) and muscle fiber conduction velocity (MFCV) from the vastus lateralis and medialis. The determinants of voluntary force at 50, 100, and 150 ms were assessed by stepwise multiple regression analysis. Force at 50 ms was explained by RMS (R2 = 0.361); force at 100 ms was explained by octet (R2 = 0.646); force at 150 ms was explained by MVF (R2 = 0.711) and octet (R2 = 0.061). Peak RFD (which occurred at 60 ± 10 ms from contraction onset) was explained by MVF (R2 = 0.518) and by RMS50 (R2 = 0.074). MFCV did not emerge as a determinant of RFD. Muscle excitation was the sole determinant of early RFD (50 ms), while contractile characteristics were more relevant for late RFD (≥100 ms). As peak RFD is mostly determined by MVF, it may not be more informative than MVF itself. Therefore, a time-locked analysis of RFD provides more insights into the neuromuscular characteristics of explosive contractions.
Collapse
Affiliation(s)
- Samuel D'Emanuele
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cantor Tarperi
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neuromuscular Function Research Group, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alberto Rainoldi
- Neuromuscular Function Research Group, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- School of Sport and Exercise Sciences, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gennaro Boccia
- Neuromuscular Function Research Group, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Jeon S, Sontag SA, Herda TJ, Trevino MA. Chronic training status affects muscle excitation of the vastus lateralis during repeated contractions. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:42-49. [PMID: 36994174 PMCID: PMC10040376 DOI: 10.1016/j.smhs.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
This study examined electromyographic amplitude (EMGRMS)-force relationships during repeated submaximal knee extensor muscle actions among chronic aerobically-(AT), resistance-trained (RT), and sedentary (SED) individuals. Fifteen adults (5/group) attempted 20 isometric trapezoidal muscle actions at 50% of maximal strength. Surface electromyography (EMG) was recorded from vastus lateralis (VL) during the muscle actions. For the first and last successfully completed contractions, linear regression models were fit to the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments, and the b terms (slope) and a terms (antilog of y-intercept) were calculated. EMGRMS was averaged during steady force. Only the AT completed all 20 muscle actions. During the first contraction, the b terms for RT (1.301 ± 0.197) were greater than AT (0.910 ± 0.123; p = 0.008) and SED (0.912 ± 0.162; p = 0.008) during the linearly increasing segment, and in comparison to the linearly decreasing segment (1.018 ± 0.139; p = 0.014), respectively. For the last contraction, the b terms for RT were greater than AT during the linearly increasing (RT = 1.373 ± 0.353; AT = 0.883 ± 0.129; p = 0.018) and decreasing (RT = 1.526 ± 0.328; AT = 0.970 ± 0.223; p = 0.010) segments. In addition, the b terms for SED increased from the linearly increasing (0.968 ± 0.144) to decreasing segment (1.268 ± 0.126; p = 0.015). There were no training, segment, or contraction differences for the a terms. EMGRMS during steady force increased from the first- ([64.08 ± 51.68] μV) to last-contraction ([86.73 ± 49.55] μV; p = 0.001) collapsed across training statuses. The b terms differentiated the rate of change for EMGRMS with increments in force among training groups, indicating greater muscle excitation to the motoneuron pool was necessary for the RT than AT during the linearly increasing and decreasing segments of a repetitive task.
Collapse
|
36
|
Dideriksen J, Del Vecchio A. Adaptations in motor unit properties underlying changes in recruitment, rate coding, and maximum force. J Neurophysiol 2023; 129:235-246. [PMID: 36515411 DOI: 10.1152/jn.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Changes in the discharge characteristics of motor units as well as in the maximum force-producing capacity of the muscle are observed following training, aging, and fatiguability. The ability to measure the adaptations in the neuromuscular properties underlying these changes experimentally, however, is limited. In this study we used a computational model to systematically investigate the effects of various neural and muscular adaptations on motor unit recruitment thresholds, average motor unit discharge rates in submaximal contractions, and maximum force. The primary focus was to identify candidate adaptations that can explain experimentally observed changes in motor unit discharge characteristics after 4 wk of strength training (Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. J Physiol 597: 1873-1887, 2019). The simulation results indicated that multiple combinations of adaptations, likely involving an increase in maximum discharge rate across motor units, may occur after such training. On a more general level, we found that the magnitude of the adaptations scales linearly with the change in recruitment thresholds, discharge rates, and maximum force. In addition, the combination of multiple adaptations can be predicted as the linear sum of their individual effects. Together, this implies that the outcomes of the simulations can be generalized to predict the effect of any combination of neural and muscular adaptations. In this way, the study provides a tool for estimating potential underlying adaptations in neural and muscular properties to explain any change in commonly used measures of rate coding, recruitment, and maximum force.NEW & NOTEWORTHY Our ability to measure adaptations in neuromuscular properties in vivo is limited. Using a computational model, we quantify the effect of multiple neuromuscular adaptations on common measures of motor unit recruitment, rate coding, and force-producing capacity. Scaling and combining adaptations had a near-linear effect on these measures, indicating that the results can explain and predict neuromuscular adaptations in a wide range of conditions, including, but not limited to, strength training.
Collapse
Affiliation(s)
- Jakob Dideriksen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Brooks SV, Guzman SD, Ruiz LP. Skeletal muscle structure, physiology, and function. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:3-16. [PMID: 37562874 DOI: 10.1016/b978-0-323-98818-6.00013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Contractions of skeletal muscles provide the stability and power for all body movements. Consequently, any impairment in skeletal muscle function results in some degree of instability or immobility. Factors that influence skeletal muscle structure and function are therefore of great interest scientifically and clinically. Injury, neuromuscular disease, and old age are among the factors that commonly contribute to impairments in skeletal muscle function. The goal of this chapter is to summarize the fundamentals of skeletal muscle structure and function to provide foundational knowledge for this Handbook volume. We examine the molecular interactions that provide the basis for the generation of force and movement, discuss mechanisms of the regulation of contraction at the level of myofibers, and introduce concepts of the activation and control of muscle function in vivo. Where appropriate, the chapter updates the emerging science that will increase understanding of muscle function.
Collapse
Affiliation(s)
- Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Steve D Guzman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Lloyd P Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Intersession Variability of Knee Extension Kinetics Using a Strain Gauge Device With Differing Clinically Practical Physical Constraints. J Sport Rehabil 2023; 32:96-101. [PMID: 36395761 DOI: 10.1123/jsr.2022-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
CONTEXT Intrasession reliabilities of isometric knee extension kinetics via portable strain gauge have been reported across several knee joint angles and constraints. However, intersession variabilities, which are more valuable, have yet to be determined. Therefore, we aimed to quantify the intersession variability of knee extension kinetics over 3 testing sessions using an affordable and portable strain gauge. DESIGN Participants performed maximum voluntary isometric contractions of the knee extensors over 3 sessions. METHODS Eleven (6 men and 5 women; 31 [6.4] y) volunteers performed maximum voluntary isometric contractions in constrained (isokinetic setup with thigh and chest straps) and unconstrained (treatment plinth) conditions. Peak force (PF), peak rate of force development, rate of force development (RFD), and impulse (IMP) from 20% to 80% of PF were assessed. Means, SDs, percentage changes, minimal detectable changes, coefficients of variation (CV), and intraclass correlation coefficients (ICC) were calculated and reported. RESULTS PF had the lowest intersession variability regardless of condition (CV = 5.5%-13.8%, ICC = .67-.93). However, variability of peak rate of force development (CV [range] = 12.2%-24.7%, ICC = .50-.78), RFD (CV = 10.0%-26.8%, ICC = .48-.84), and IMP (CV = 15.2%-35.4%, ICC = .44-.88) was moderate at best. The constrained condition (CV [SD] = 14.1% [4.8%], ICC = .74 [.08]) had lower variability compared with the plinth (CV = 19.8% [7.9%], ICC = .68 [.15]). Variability improved from sessions 1 to 2 (CV = 20.4% [7.7%], ICC = .64 [.14]) and to sessions 2 to 3 (CV = 15.3% [6.4%], ICC = .76 [.10]). CONCLUSIONS PF can be assessed regardless of setup. However, RFD and IMP changes across sessions should be approached with caution. Backrests and thigh straps improve RFD and IMP variability, and at least 1 familiarization session should be provided before relying on knee-extensor kinetics while utilizing a portable strain gauge.
Collapse
|
39
|
Fong SSM, Chung LMY, Schooling CM, Lau EHY, Wong JYH, Bae YH, Chung JWY. Tai chi-muscle power training for children with developmental coordination disorder: a randomized controlled trial. Sci Rep 2022; 12:22078. [PMID: 36543796 PMCID: PMC9769475 DOI: 10.1038/s41598-022-25822-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study compared the effectiveness of tai chi (TC) muscle power training (MPT), TC alone, MPT alone, and no training for improving the limits of stability (LOS) and motor and leg muscular performance and decreasing falls in children with developmental coordination disorder (DCD). One hundred and twenty-one children with DCD were randomly assigned to the TC-MPT, TC, MPT, or control group. The three intervention groups received TC-MPT, TC, or MPT three times per week for 3 months. Measurements were taken before and after the intervention period. The primary outcomes were the LOS completion time and dynamic LOS scores. The secondary outcomes included the Movement Assessment Battery for Children-Second Edition total test score and percentile rank, knee muscle peak force and time to peak force, and the number of falls. None of the interventions affected the LOS test scores. Improvements in the peak forces of the knee extensors and flexors were demonstrated in the TC (p = 0.006) and MPT groups (p = 0.032), respectively. The number of falls also decreased in these two groups (p < 0.001). Thus, clinicians may prescribe TC or MPT for children with DCD to increase their knee muscle strength and reduce their risk of falls.
Collapse
Affiliation(s)
- Shirley S. M. Fong
- grid.419993.f0000 0004 1799 6254Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, N.T, Hong Kong S.A.R. China ,grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong S.A.R. China
| | - Louisa M. Y. Chung
- grid.419993.f0000 0004 1799 6254Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, N.T, Hong Kong S.A.R. China
| | - Catherine Mary Schooling
- grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong S.A.R. China ,grid.212340.60000000122985718Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| | - Eric H. Y. Lau
- grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong S.A.R. China
| | - Janet Y. H. Wong
- grid.194645.b0000000121742757School of Nursing, The University of Hong Kong, Pokfulam, Hong Kong S.A.R. China
| | - Young-Hyeon Bae
- grid.419707.c0000 0004 0642 3290Korea National Rehabilitation Center, Department of Healthcare and Public Health, Rehabilitation Research Institute, Seoul, 01022 Korea
| | - Joanne W. Y. Chung
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Hong Kong S.A.R. China
| |
Collapse
|
40
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
41
|
Laidlaw R, Vandenboom R. Posttetanic potentiation improves neuromuscular efficiency of mouse muscle in vitro. Physiol Rep 2022; 10:e15529. [PMID: 36461650 PMCID: PMC9718938 DOI: 10.14814/phy2.15529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Neuromuscular efficiency is defined as the ratio of work output to stimulation rate. The purpose of these experiments was to test the hypothesis that neuromuscular efficiency would be increased in proportion to posttetanic potentiation, that is, the stimulation-induced increase in work output displayed by rodent fast-twitch muscle. To this end, extensor digitorum longus muscles from wild-type and skeletal myosin light chain kinase knockout (skMLCK-/- ) mice were surgically isolated and suspended in vitro (25°C). Concentric force development during shortening at 70% of maximal unloaded shortening velocity was tested at stimulus frequencies between 10 and 80 Hz both before and after a potentiating tetanus. A strong genotype-dependent difference in the potentiation of concentric work output was observed; concentric work output of wild-type muscles was increased by 51%-88% while that of skMLCK-/- muscles was increased by only 20%-34% across the frequencies tested. As a result, comparison of work - frequency plots revealed that the frequency required for peak and 50% peak unpotentiated work of wild-type muscles was decreased from ~80 to 52 Hz and from ~48 to 21 Hz, respectively. By contrast, the frequency required for peak and 50% peak unpotentiated work of skMLCK-/- muscles was decreased from ~80 to 68 Hz and from ~51 to 41 Hz, respectively. Thus, wild-type muscles with the ability to phosphorylate myosin displayed larger increases in neuromuscular efficiency than skMLCK-/- muscles (25-30 vs 10-15 Hz, respectively). This suggests that the presence of myosin phosphorylation may ameliorate or mitigate fatigue mechanisms associated with high-frequency stimulation rates.
Collapse
Affiliation(s)
- Ryan Laidlaw
- Department of KinesiologyFaculty of Applied Health Sciences, Center of Bone and Muscle HealthSt. Catharine'sOntarioCanada
| | - Rene Vandenboom
- Department of KinesiologyFaculty of Applied Health Sciences, Center of Bone and Muscle HealthSt. Catharine'sOntarioCanada
| |
Collapse
|
42
|
Qiu F, Liu X, Xu Y, Shi L, Sheng X, Chen C. Neural inputs from spinal motor neurons to lateralis vastus muscle: Comparison between sprinters and nonathletes. Front Physiol 2022; 13:994857. [PMID: 36277210 PMCID: PMC9585313 DOI: 10.3389/fphys.2022.994857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The adaptation of neural contractile properties has been observed in previous work. However, the neural changes on the motor unit (MU) level remain largely unknown. Voluntary movements are controlled through the precise activation of MU populations. In this work, we estimate the neural inputs from the spinal motor neurons to the muscles during isometric contractions and characterize the neural adaptation during training by comparing the MU properties decomposed from sprinters and nonathletes. Twenty subjects were recruited and divided into two groups. The high-density surface electromyography (EMG) signals were recorded from the lateralis vastus muscle during the isometric contraction of knee extension and were then decomposed into MU spike trains. Each MU’s action potentials and discharge properties were extracted for comparison across subject groups and tasks. A total of 1097 MUs were identified from all subjects. Results showed that the discharge rates and amplitudes of MUAPs from athletes were significantly higher than those from nonathletes. These results demonstrate the neural adaptations in physical training at the MU population level and indicate the great potential of EMG decomposition in physiological investigations.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yilin Xu
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Chen Chen,
| |
Collapse
|
43
|
Evans NH, Field-Fote EC. A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. J Neurol Phys Ther 2022; 46:281-292. [PMID: 35544283 DOI: 10.1097/npt.0000000000000403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Improved walking function is a priority among persons with motor-incomplete spinal cord injury (PwMISCI). Accessibility and cost limit long-term participation in locomotor training offered in specialized centers. Intensive motor training that facilitates neuroplastic mechanisms that support skill learning and can be implemented in the home/community may be advantageous for promoting long-term restoration of walking function. Additionally, increasing corticospinal drive via transcranial direct current stimulation (tDCS) may enhance training effects. In this pilot study, we investigated whether a moderate-intensity motor skill training (MST) circuit improved walking function in PwMISCI and whether augmenting training with tDCS influenced outcomes. METHODS Twenty-five adults (chronic, motor-incomplete spinal cord injury) were randomized to a 3-day intervention of a locomotor-related MST circuit and concurrent application of sham tDCS (MST+tDCS sham ) or active tDCS (MST+tDCS). The primary outcome was overground walking speed. Secondary outcomes included walking distance, cadence, stride length, and step symmetry index (SI). RESULTS Analyses revealed significant effects of the MST circuit on walking speed, walking distance, cadence, and bilateral stride length but no effect on interlimb SI. No significant between-groups differences were observed. Post hoc analyses revealed within-groups change in walking speed (ΔM = 0.13 m/s, SD = 0.13) that app-roached the minimally clinically important difference of 0.15 m/s. DISCUSSION AND CONCLUSIONS Brief, intensive MST involving locomotor-related activities significantly increased walking speed, walking distance, and spatiotemporal measures in PwMISCI. Significant additive effects of tDCS were not observed; however, participation in only 3 days of MST was associated with changes in walking speed that were comparable to longer locomotor training studies.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A386 ).
Collapse
Affiliation(s)
- Nicholas H Evans
- Crawford Research Institute, Shepherd Center, Atlanta, Georgia (N.H.E., E.F.F.); Program in Applied Physiology, Georgia Institute of Technology, Atlanta (N.H.E., E.F.F.); and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia (E.F.F.)
| | | |
Collapse
|
44
|
Tøien T, Malmo T, Espedal L, Wang E. Maximal intended velocity enhances strength training-induced neuromuscular stimulation in older adults. Eur J Appl Physiol 2022; 122:2627-2636. [PMID: 36112218 PMCID: PMC9613575 DOI: 10.1007/s00421-022-05045-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
AbstractThe age-related attenuation in neuromuscular function can be mitigated with strength training. Current recommendations for untrained and elderly recommend performing the strength training with a controlled movement velocity (CON). However, applying maximal intended velocity (MIV) in the concentric phase of movement may augment neuromuscular stimulation and potentially enhance training adaptations. Thus, applying rate of electromyography (EMG) rise (RER) recordings, we examined the acute early phase neuromuscular response to these two contraction types in quadriceps femoris during leg extension, along with actual movement velocity, in 12 older (76 ± 6 years) and 12 young men (23 ± 2 years). Results revealed that older adults had a lower one repetition maximum (1RM) than young (33 ± 9 kg vs. 50 ± 9 kg; p = 0.001) and lower actual velocity across relative intensities of ~ 10%, 30%, 50%, 70% and 90% of 1RM for CON and MIV (all p < 0.05). Older adults also had consistently reduced RER compared to young during both conditions (old: 1043–1810 μV; young: 1844–3015 μV; all p < 0.05). However, RER was higher in contractions with MIV compared to CON for both age groups, and across all intensities (98–674%, all p < 0.05). In conclusion, despite decreased maximal strength and attenuated neuromuscular response with advancing age, our results document an augmented neuromuscular activation when repetitions are performed with MIV in the concentric phase of movement.
Collapse
|
45
|
Caillet AH, Phillips ATM, Farina D, Modenese L. Estimation of the firing behaviour of a complete motoneuron pool by combining electromyography signal decomposition and realistic motoneuron modelling. PLoS Comput Biol 2022; 18:e1010556. [PMID: 36174126 PMCID: PMC9553065 DOI: 10.1371/journal.pcbi.1010556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the firing behaviour of motoneuron (MN) pools during human voluntary muscle contractions is currently limited to electrophysiological findings from animal experiments extrapolated to humans, mathematical models of MN pools not validated for human data, and experimental results obtained from decomposition of electromyographical (EMG) signals. These approaches are limited in accuracy or provide information on only small partitions of the MN population. Here, we propose a method based on the combination of high-density EMG (HDEMG) data and realistic modelling for predicting the behaviour of entire pools of motoneurons in humans. The method builds on a physiologically realistic model of a MN pool which predicts, from the experimental spike trains of a smaller number of individual MNs identified from decomposed HDEMG signals, the unknown recruitment and firing activity of the remaining unidentified MNs in the complete MN pool. The MN pool model is described as a cohort of single-compartment leaky fire-and-integrate (LIF) models of MNs scaled by a physiologically realistic distribution of MN electrophysiological properties and driven by a spinal synaptic input, both derived from decomposed HDEMG data. The MN spike trains and effective neural drive to muscle, predicted with this method, have been successfully validated experimentally. A representative application of the method in MN-driven neuromuscular modelling is also presented. The proposed approach provides a validated tool for neuroscientists, experimentalists, and modelers to infer the firing activity of MNs that cannot be observed experimentally, investigate the neuromechanics of human MN pools, support future experimental investigations, and advance neuromuscular modelling for investigating the neural strategies controlling human voluntary contractions.
Collapse
Affiliation(s)
- Arnault H. Caillet
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Andrew T. M. Phillips
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Luca Modenese
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
46
|
Zheng H, Liu J, Wei J, Chen H, Tang S, Zhou Z. The Influence on Post-Activation Potentiation Exerted by Different Degrees of Blood Flow Restriction and Multi-Levels of Activation Intensity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10597. [PMID: 36078311 PMCID: PMC9517872 DOI: 10.3390/ijerph191710597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: To explore the influence on post-activation potentiation (PAP) when combining different degrees of blood flow restriction (BFR) with multi-levels of resistance training intensity of activation. (2) Purpose: To provide competitive athletes with a more efficient and feasible warm-up program. (3) Study Design: The same batch of subjects performed the vertical jump test of the warm-up procedure under different conditions, one traditional and six BFR procedures. (4) Methods: Participants performed seven counter movement jump (CMJ) tests in random order, including 90% one repetition maximum (1RM) without BFR (CON), and three levels of BFR (30%, 50%, 70%) combined with (30% and 50% 1RM) (BFR-30-30, BFR-30-50, BFR-50-30, BFR-50-50, BFR-70-30 and BFR-70-50). Jump height (H), mean power output (P), peak vertical ground reaction force (vGRF), and the mean rate of force development (RFD) were recorded and measured. (5) Results: Significantly increasing results were observed in: jump height: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min), BFR-70-30 (8 min), (p < 0.05); and power output: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min) (p < 0.05); vGRF: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (4 min), BFR-50-50 (4, 8 min) (p < 0.05); RFD: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (4 min), BFR-50-50 (4 min) (p < 0.05). (5) Conclusions: low to moderate degrees of BFR procedures produced a similar PAP to traditional activation. Additionally, BFR-30-30, BFR-30-50, and BFR-50-50 were longer at PAP duration in comparison with CON.
Collapse
Affiliation(s)
- Hang Zheng
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Jiajun Liu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Jia Wei
- Shanghai University of Sport, Shanghai 200438, China
| | - Hui Chen
- School of Strength and Conditioning, Beijing Sport University, Beijing 100084, China
- School of Sports and Health Management, Chongqing University of Education, Chongqing 400067, China
| | - Shan Tang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Zhexiao Zhou
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| |
Collapse
|
47
|
Grgic J, Grgic I. Resistance Training–Induced Gains in Rate of Force Development Are Maintained During Training Cessation: A Meta-Analysis. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Ely IA, Jones EJ, Inns TB, Dooley S, Miller SBJ, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Training induced improvements in knee extensor force accuracy are associated with reduced vastus lateralis motor unit firing variability. Exp Physiol 2022; 107:1061-1070. [PMID: 35923141 PMCID: PMC9542263 DOI: 10.1113/ep090367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We aimed to determine levels of bilateral knee extensor force accuracy and any subsequent alterations to central and/or peripheral motor unit features, following 4 weeks of unilateral force accuracy training. What is the main finding and its importance? In the trained limb only, knee extensor force tracking accuracy improved with reduced motor unit firing rate variability in the vastus lateralis, and no change to neuromuscular junction transmission instability. Interventional strategies to improve force accuracy may be directed to older/clinical populations where such improvements may aid performance of daily living activities. ABSTRACT Background Muscle force output during sustained submaximal isometric contractions fluctuates around an average value and is partly influenced by variation in motor unit (MU) firing rates. MU firing rate (FR) variability seemingly reduces following exercise training interventions, however, much less is known with respect to peripheral MU properties. We therefore investigated whether targeted force accuracy training could lead to improved muscle functional capacity and control, in addition to determining any alterations of individual MU features. Methods Ten healthy participants (7 females, 3 males, 27±6 years, 170±8 cm, 69±16kg) underwent a 4-week supervised, unilateral knee extensor force accuracy training intervention. The coefficient of variation for force (FORCECoV ) and sinusoidal wave force tracking accuracy (FORCESinu ) were determined at 25% maximal voluntary contraction (MVC) pre- and post-training. Intramuscular electromyography was utilised to record individual MU potentials from the vastus lateralis (VL) muscles at 25% MVC during sustained contractions, pre- and post-training. Results Knee extensor muscle strength remained unchanged following training, with no improvements in unilateral leg-balance. FORCECoV and FORCESinu significantly improved in only the trained knee extensors by ∼13% (p = 0.01) and ∼30% (p<0.0001) respectively. MU FR variability significantly reduced in the trained VL by ∼16% (n = 8; p = 0.001), with no further alterations to MU FR or neuromuscular junction transmission instability. Conclusion Our results suggest muscle force control and tracking accuracy is a trainable characteristic in the knee extensors, which is likely explained by the reduction in MU FR variability which was apparent in the trained limb only. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Eleanor J Jones
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Thomas B Inns
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Síobhra Dooley
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sarah B J Miller
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Canada
| | - Philip J Atherton
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Bethan E Phillips
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
49
|
Lulic-Kuryllo T, Greig Inglis J. Sex differences in motor unit behaviour: A review. J Electromyogr Kinesiol 2022; 66:102689. [PMID: 36095969 DOI: 10.1016/j.jelekin.2022.102689] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022] Open
|
50
|
Škarabot J, Folland JP, Holobar A, Baker SN, Del Vecchio A. Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans. J Neurophysiol 2022; 128:455-469. [PMID: 35829632 PMCID: PMC9423775 DOI: 10.1152/jn.00115.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal rate of force development in adult humans is determined by the maximal motor unit discharge rate, however the origin of the underlying synaptic inputs remains unclear. Here, we tested a hypothesis that the maximal motor unit discharge rate will increase in response to a startling cue, a stimulus that purportedly activates the pontomedullary reticular formation neurons that make mono- and disynaptic connections to motoneurons via fast-conducting axons. Twenty-two men were required to produce isometric knee extensor forces "as fast and as hard" as possible from rest to 75% of maximal voluntary force, in response to visual (VC), visual-auditory (VAC; 80 dB), or visual-startling cue (VSC; 110 dB). Motoneuron activity was estimated via decomposition of high-density surface electromyogram recordings over the vastus lateralis and medialis muscles. Reaction time was significantly shorter in response to VSC compared to VAC and VC. The VSC further elicited faster neuromechanical responses including a greater number of discharges per motor unit per second and greater maximal rate of force development, with no differences between VAC and VC. We provide evidence, for the first time, that the synaptic input to motoneurons increases in response to a startling cue, suggesting a contribution of subcortical pathways to maximal motoneuron output in humans.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Stuart N Baker
- Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|