1
|
Wray S, Taggart MJ. An update on pacemaking in the myometrium. J Physiol 2024. [PMID: 39073139 DOI: 10.1113/jp284753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/30/2024] Open
Abstract
Timely and efficient contractions of the smooth muscle of the uterus - the myometrium - are crucial to a successful pregnancy outcome. These episodic contractions are regulated by spontaneous action potentials changing cell and tissue electrical excitability. In this short review we will document and discuss current knowledge of these processes. Those seeking a conclusive account of myometrial pacemaking mechanisms, or indeed a definitive description of the anatomical site of uterine pacemaking, may be disappointed. Rather, after almost a century of investigation, and in spite of promising studies in the last decade or so, there remain many gaps in our knowledge. We review the progress that has been made using recent technologies including in vivo and ex vivo imaging and electrophysiology and computational modelling, taking evidence from studies of animal and human myometrium, with particular emphasis on what may occur in the latter. We have prioritized physiological studies that bring us closer to understanding function. From our analyses we suggest that in human myometrium there is no fixed pacemaking site, but rather mobile, initiation sites produce the connectivity for synchronizing electrical and contractile activity. We call for more studies and funding, as physiological understanding of pacemaking gives hope to being better able to treat clinical conditions such as preterm and dysfunctional labours.
Collapse
Affiliation(s)
- Susan Wray
- Women's & Children's Health, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, Merseyside, UK
| | - Michael J Taggart
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle, UK
| |
Collapse
|
2
|
Almohanna AM, Noble K, Wray S. Extracellular acidification increases uterine contraction in pregnant mouse by increasing intracellular calcium. Acta Physiol (Oxf) 2024; 240:e14147. [PMID: 38650469 DOI: 10.1111/apha.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
AIMS As uterine extracellular pH decreases during the ischemic conditions of labor, but its effects on myometrial contraction are largely unknown, there is a need to elucidate its physiological effects and mechanisms of action. Furthermore, it is not known if any of the effects of extracellular acidification are affected by pregnancy, thus we also determined how gestation affects the response to acidification. METHODS Nonpregnant, mid-, and term-pregnant myometrial strips were obtained from humanely killed mice. Contractions were recorded under spontaneous, depolarized, and oxytocin-stimulated conditions. The extracellular pH of the perfusate was changed from 7.4 to 6.9 or 7.9 in HEPES-buffered physiological saline. Intracellular pH was measured using SNARF, and intracellular calcium was measured using Indo-1. Statistical differences were tested using the appropriate t-test. RESULTS Extracellular acidification significantly increased the frequency and amplitude of spontaneous contractions in pregnant, but not nonpregnant, myometrium, whereas alkalinization decreased contractions. Intracellular acidification, via Na-butyrate, transiently increased force in pregnant tissue. Intracellular pH was gradually acidified when extracellular pH was acidified, but extracellular acidification increased contractility before any significant change in intracellular pH. If myometrial force was driven by oxytocin or high-K depolarization, then extracellular pH did not further increase force. Intracellular calcium changes mirrored those of force in the spontaneously contracting pregnant myometrium, and if calcium entry was prevented by nifedipine, extracellular acidification could not induce a rise in force. CONCLUSION Extracellular acidification increases excitability, calcium entry, and thus force in pregnant mouse myometrium, and this may contribute to increasing contractions during labor when ischemic conditions and acidemia occur.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Karen Noble
- Department of Veterinary Anatomy, Physiology and Pathology Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Mahapatra C, Kumar R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. PATHOPHYSIOLOGY 2024; 31:225-243. [PMID: 38804298 PMCID: PMC11130850 DOI: 10.3390/pathophysiology31020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The vagina is an essential component of the female reproductive system and is responsible for providing female sexual satisfaction. Vaginal smooth muscle contraction plays a crucial role in various physiological processes, including sexual arousal, childbirth, and urinary continence. In pathophysiological conditions, such as pelvic floor disorders, aberrations in vaginal smooth muscle function can lead to urinary incontinence and pelvic organ prolapse. A set of cellular and sub-cellular physiological mechanisms regulates the contractile properties of the vaginal smooth muscle cells. Calcium influx is a crucial determinant of smooth muscle contraction, facilitated through voltage-dependent calcium channels and calcium release from intracellular stores. Comprehensive reviews on smooth muscle biophysics are relatively scarce within the scientific literature, likely due to the complexity and specialized nature of the topic. The objective of this review is to provide a comprehensive description of alterations in the cellular physiology of vaginal smooth muscle contraction. The benefit associated with this particular approach is that conducting a comprehensive examination of the cellular mechanisms underlying contractile activation will enable the creation of more targeted therapeutic agents to control vaginal contraction disorders.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Garrett AS, Means SA, Roesler MW, Miller KJW, Cheng LK, Clark AR. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review. Front Physiol 2022; 13:1017649. [PMID: 36277190 PMCID: PMC9585314 DOI: 10.3389/fphys.2022.1017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Wen B, Zheng Z, Wang L, Qian X, Wang X, Chen Y, Bao J, Jiang Y, Ji K, Liu H. HIF-1α is essential for the augmentation of myometrial contractility during labor†. Biol Reprod 2022; 107:1540-1550. [PMID: 36094838 PMCID: PMC9752684 DOI: 10.1093/biolre/ioac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine contraction is crucial for a successful labor and the prevention of postpartum hemorrhage. It is enhanced by hypoxia; however, its underlying mechanisms are yet to be elucidated. In this study, transcriptomes revealed that hypoxia-inducible factor-1alpha was upregulated in laboring myometrial biopsies, while blockade of hypoxia-inducible factor-1alpha decreased the contractility of the myometrium and myocytes in vitro via small interfering RNA and the inhibitor, 2-methoxyestradiol. Chromatin immunoprecipitation sequencing revealed that hypoxia-inducible factor-1alpha directly binds to the genome of contraction-associated proteins: the promoter of Gja1 and Ptgs2, and the intron of Oxtr. Silencing the hypoxia-inducible factor-1alpha reduced the expression of Ptgs2, Gja1, and Oxtr. Furthermore, blockade of Gja1 or Ptgs2 led to a significant decrease in myometrial contractions in the hypoxic tissue model, whereas atosiban did not remarkably influence contractility. Our study demonstrates that hypoxia-inducible factor-1alpha is essential for promoting myometrial contractility under hypoxia by directly targeting Gja1 and Ptgs2, but not Oxtr. These findings help us to better understand the regulation of myometrial contractions under hypoxia and provide a promising strategy for labor management and postpartum hemorrhage treatment.
Collapse
Affiliation(s)
| | | | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xueya Qian
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Correspondence: Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, China. E-mail:
| |
Collapse
|
6
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
7
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
8
|
Bafor EE, Kalu CH, Omoruyi O, Elvis-Offiah UB, Edrada-Ebel R. Thyme ( Thymus vulgaris [Lamiaceae]) Leaves Inhibit Contraction of the Nonpregnant Mouse Uterus. J Med Food 2020; 24:541-550. [PMID: 32758061 DOI: 10.1089/jmf.2020.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysmenorrhea is painful menstrual periods, which affects 25% of women within reproductive age and has a prevalence of 67.2-90.0%. Current treatment has several adverse effects and can be ineffective once the pain is initiated. Thymus vulgaris traditionally used for pain management was investigated in this study for its activity on uterine contraction in the nonpregnant uterus, as a parameter for dysmenorrhea. The dried leaves of T. vulgaris were macerated in water, and the resulting aqueous extract was investigated on the isolated mouse uterus. Parameters investigated included spontaneous contractions, oxytocin-induced contractions, and high potassium chloride (KCl; 80 mM)-induced tonic contractions. Mass spectrometric analysis of the thyme extract was also performed using liquid chromatography-high-resolution Fourier Transform mass spectrometry. Thyme extract inhibited the amplitude and frequency of spontaneous and oxytocin-induced uterine contractions. It also inhibited KCl-induced tonic contractions. The activities observed suggest that T. vulgaris inhibits uterine contractions through blockade of extracellular voltage-gated calcium channels. Secondary metabolites detected included compounds belonging to chlorogenic phytochemical class and flavonoids, which are known to have activities on extracellular calcium blockade. This study has shown that aqueous T. vulgaris extract, also known as thyme, inhibits contractions of the nonpregnant uterus and can be a lead plant in the drug discovery process for the management of dysmenorrhea.
Collapse
Affiliation(s)
- Enitome E Bafor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Chioma H Kalu
- Department of Science and Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - Osemelomen Omoruyi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Uloma B Elvis-Offiah
- Department of Science and Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - RuAngelie Edrada-Ebel
- Department of Pharmaceutical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
9
|
Sadraei H, Sajjadi SE, Asghari G, Khalili M. Effect of Matricaria chamomilla hydro-alcoholic and flavonoids rich extracts on rat isolated uterus. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Pharmacological studies confirm antispasmodic activities of chamomile (Matricaria chamomilla) extract on intestinal smooth muscles and it has been suggested that chamomile increases uterus tone, but so far there is no scientific studies which support this assumption. Therefore, this study was designed to determine spasmodic and spasmolytic activities of M. chamomilla extracts on rat isolated uterus. Methods: Hydro-alcoholic extract of M. chamomilla was prepared by maceration technique. Flavonoids rich extract was prepared by liquid in liquid extraction technique. The spasmodic effects of the extracts were assessed on spontaneously contracting rat uterus. The myorelaxant effect of M. chamomilla extracts was validated on isolated uterus contractions induced by KCl, acetylcholine (ACh), electrical field stimulation (EFS) and oxytocin. Results: Hydro-alcoholic extract of M. chamomilla (0.8 and 1.6 mg/mL) enhanced spontaneous movement of rat isolated uterus smooth muscle suspended in an organ bath. On the other hand, flavonoids rich fraction only diminished uterus contractile activities. Flavonoids rich extract of the plant at bath concentration ranges of 40 μg/mL to 400 μg/mL attenuated uterus response to ACh, KCl, EFS and oxytocin. The hydro-alcoholic extract of M. chamomilla at higher concentration ranges (250 μg/mL to 1.5 mg/mL) inhibited uterus contractions induced by the above spasmogens. Conclusion: The present study confirms both spasmodic and spasmolytic activities M. chamomilla hydro-alcoholic extract. Therefore, medicinal use of the crude extract of M. chamomilla may initiate uterus contraction which could increase risk of spontaneous miscarriage or premature parturition.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ebrahim Sajjadi
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Asghari
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Khalili
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Bafor EE, Ukpebor F, Omoruyi O, Ochoyama E, Omogiade G, Ekufu J, Edrada-Ebel R. Tocolytic activity assessment of the methanol leaf extract of Justicia flava Vahl (Acanthaceae) on mouse myometrial contractility and preliminary mass spectrometric determination of secondary metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112087. [PMID: 31310827 DOI: 10.1016/j.jep.2019.112087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Justicia flava are traditionally used in the South of Nigeria to prevent preterm births. AIM OF THE STUDY In this study, the activity of the methanol leaf extract of J. flava (JF) was investigated on uterine contractility in non-pregnant and pregnant isolated mouse tissues. MATERIAL AND METHODS The effects on spontaneous, oxytocin, and KCl-induced contractions were determined. The effects in calcium-free media were also determined. Possible mechanisms of activity were investigated using receptor and channel modulators. Mass spectrometric analysis was additionally performed on the leaf extract to identify secondary metabolites. RESULTS JF was observed to inhibit spontaneous, oxytocin and high KCl-induced uterine contractility. JF also inhibited contractions in Ca2+-free media. JF was found to exert its inhibitory effect via interaction with inositol triphosphate and ryanodine receptors and also through modulation of K+- channels. Lignans and alkaloids were identified with the lignans being the most abundant in JF. CONCLUSION JF has been shown to potently inhibit uterine contractions in non-pregnant and pregnant isolated mouse uterus. The inhibitory activity of JF has been shown to occur via blockade of extracellular and intracellular calcium entry and these effects may be due to the lignans identified in - JF. JF has therefore been shown in this study to be a lead plant in the discovery of new drugs with uterine inhibitory activity.
Collapse
Affiliation(s)
- Enitome E Bafor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria.
| | - Faith Ukpebor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria.
| | - Osemelomen Omoruyi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Ejiro Ochoyama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Glory Omogiade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Jude Ekufu
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | | |
Collapse
|
11
|
The Myometrium: From Excitation to Contractions and Labour. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:233-263. [PMID: 31183830 DOI: 10.1007/978-981-13-5895-1_10] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female's reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca2+ channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca2+ balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required.
Collapse
|
12
|
Floyd RV, Mobasheri A, Wray S. Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus. Physiol Rep 2018; 5. [PMID: 29208689 PMCID: PMC5727280 DOI: 10.14814/phy2.13527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
Developmental and tissue‐specific differences in isoforms allow Na+, K+‐ATPase function to be tightly regulated, as they control sensitivity to ions and inhibitors. Uterine contraction relies on the activity of the Na+, K+ATPase, which creates ionic gradients that drive excitation‐contraction coupling. It is unknown whether Na+, K+ATPase isoforms are regulated throughout pregnancy or whether they have a direct role in modulating uterine contractility. We hypothesized that gestation‐dependent differential expression of isoforms would affect contractile responses to Na+, K+ATPase α subunit inhibition with ouabain. Our aims were therefore: (1) to determine the gestation‐dependent expression of mRNA transcripts, protein abundance and tissue distribution of Na+, K+ATPase isoforms in myometrium; (2) to investigate the functional effects of differential isoform expression via ouabain sensitivity; and (3) if changes in contractile responses can be explained by changes in intracellular [Ca2+]. Changes in abundance and distribution of the Na+, K+ATPase α, β and FXYD1 and 2 isoforms, were studied in rat uterus from nonpregnant, and early, mid‐, and term gestation. All α, β subunit isoforms (1,2,3) and FXYD1 were detected but FXYD2 was absent. The α1 and β1 isoforms were unchanged throughout pregnancy, whereas α2 and α3 significant decreased at term while β2 and FXYD1 significantly increased from mid‐term onwards. These changes in expression correlated with increased functional sensitivity to ouabain, and parallel changes in intracellular Ca2+, measured with Indo‐1. In conclusion, gestation induces specific regulatory changes in expression of Na+, K+ATPase isoforms in the uterus which influence contractility and may be related to the physiological requirements for successful pregnancy and delivery.
Collapse
Affiliation(s)
- Rachel V Floyd
- The Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Susan Wray
- The Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Testrow CP, Holden AV, Shmygol A, Zhang H. A computational model of excitation and contraction in uterine myocytes from the pregnant rat. Sci Rep 2018; 8:9159. [PMID: 29904075 PMCID: PMC6002389 DOI: 10.1038/s41598-018-27069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant uterine myometrial activities in humans are major health issues. However, the cellular and tissue mechanism(s) that maintain the uterine myometrium at rest during gestation, and that initiate and maintain long-lasting uterine contractions during delivery are incompletely understood. In this study we construct a computational model for describing the electrical activity (simple and complex action potentials), intracellular calcium dynamics and mechanical contractions of isolated uterine myocytes from the pregnant rat. The model reproduces variant types of action potentials - from spikes with a smooth plateau, to spikes with an oscillatory plateau, to bursts of spikes - that are seen during late gestation under different physiological conditions. The effects of the hormones oestradiol (via reductions in calcium and potassium selective channel conductance), oxytocin (via an increase in intracellular calcium release) and the tocolytic nifedipine (via a block of L-type calcium channels currents) on action potentials and contractions are also reproduced, which quantitatively match to experimental data. All of these results validated the cell model development. In conclusion, the developed model provides a computational platform for further investigations of the ionic mechanism underlying the genesis and control of electrical and mechanical activities in the rat uterine myocytes.
Collapse
Affiliation(s)
- Craig P Testrow
- The University of Manchester, School of Physics and Astronomy, Manchester, M13 9PL, UK
| | - Arun V Holden
- The University of Leeds, School of Biomedical Sciences, Leeds, LS2 9JT, UK
| | - Anatoly Shmygol
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Physiology, Al-Ain, P.O. Box 17666, Emirates, UAE
| | - Henggui Zhang
- The University of Manchester, School of Physics and Astronomy, Manchester, M13 9PL, UK.
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150001, China.
- Space Institute of Southern China, Shenzhen, 518117, China.
- Key laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
14
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
15
|
Carreiro JN, Magnani M, Jobling P, van Helden DF, Nalivaiko E, Braga VA. Resveratrol restores uterine contractions during hypoxia by blockade of ATP-sensitive potassium channels. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Cole M, Eikenberry S, Kato T, Sandler RA, Yamashiro SM, Marmarelis VZ. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation. J Comput Biol 2017; 24:229-237. [DOI: 10.1089/cmb.2016.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marc Cole
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California
| | - Steffen Eikenberry
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California
- Biomedical Simulations Resource, Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Takahide Kato
- Department of General Education, National Institute of Technology, Toyota College, Toyota, Japan
| | - Roman A. Sandler
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California
- Biomedical Simulations Resource, Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Stanley M. Yamashiro
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California
| | - Vasilis Z. Marmarelis
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California
- Biomedical Simulations Resource, Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless of pregnancy. Pflugers Arch 2016; 469:313-326. [PMID: 27866274 DOI: 10.1007/s00424-016-1900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Ryanodine receptor type 3 (RyR3) is expressed in myometrial smooth muscle cells (MSMCs). The short isoform of RyR3 is a dominant negative variant (DN-RyR3) and negatively regulates the functions of RyR2 and full-length (FL)-RyR3. DN-RyR3 has been suggested to function as a major RyR3 isoform in non-pregnant (NP) mouse MSMCs, and FL-RyR3 may also be upregulated during pregnancy (P). This increase in the FL-RyR3/DN-RyR3 ratio may contribute to the strong contractions by MSMCs for parturition. In the present study, spontaneous contractions by the myometrium in NP and P mice were highly susceptible to nifedipine but were not affected by ryanodine. Ca2+ image analyses under a voltage clamp revealed that the influx of Ca2+ through voltage-dependent Ca2+ channels did not cause the release of Ca2+ from the sarcoplasmic reticulum (SR). Cytosolic Ca2+ concentrations ([Ca2+]cyt) in MSMCs were not affected by caffeine. Despite the abundant expression of large conductance Ca2+-activated K+ channels in MSMCs, spontaneous transient outward currents were not observed in the resting state because of the substantive lack of Ca2+ sparks. Quantitative PCR and Western blot analyses indicated that DN-RyR3 was strongly expressed in the NP myometrium, while the expression of FL-RyR3 and DN-RyR3 was markedly reduced in the P myometrium. The messenger RNA (mRNA) expression of RyR2 and RyR1 was negligible in the NP and P myometria. Moreover, RyR3 knockout mice may become pregnant and deliver normally. Thus, we concluded that none of the RyR subtypes, including RyR3, play a significant role in the regulation of [Ca2+]cyt in or contractions by mouse MSMCs regardless of pregnancy.
Collapse
|
18
|
Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016; 12:e1004828. [PMID: 27105427 PMCID: PMC4841602 DOI: 10.1371/journal.pcbi.1004828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. A well-known problem in electrophysiologal modeling is that the parameters of the gating kinetics of the ion channels cannot be uniquely determined from observed behavior at the cellular level. One solution is to employ simplified “macroscopic” currents that mimic the behavior of aggregates of distinct entities at the protein level. The gating parameters of each channel or pump can be determined by studying it in isolation, leaving the general problem of finding the densities at which the channels occur in the plasma membrane. We propose an approach, which we apply to uterine smooth muscle cells, whereby we constrain the list of possible entities by means of transcriptomics and chart the indeterminacy of the problem in terms of the kernel of the corresponding linear transformation. A graphical representation of this kernel visualises the functional redundancy of the system. We show that the role of certain conductances can be fulfilled, or compensated for, by suitable combinations of other conductances; this is not always the case, and such “non-substitutable” conductances can be regarded as functionally non-redundant. Electrogenic entities belonging to the latter category are suitable putative clinical targets.
Collapse
Affiliation(s)
- Jolene Atia
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Conor McCloskey
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anatoly S. Shmygol
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Andrew M. Blanks
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol 2015; 100:1468-76. [PMID: 26289390 DOI: 10.1113/ep085131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? I focus on clinical aspects of uterine physiology, specifically, myometrial contractility. I bring together and contrast findings using physiological approaches and those using newer techniques, 'omics'. What advances does it highlight? Physiological studies have recently shed light on the myometrium in twin pregnancies, but there have been no 'omic' approaches. In contrast, studies of preterm delivery using newer approaches are generating new research avenues, whereas traditional approaches have not flourished. Finally, I describe significant advances in understanding of 'slow-to-progress' labours, achieved using physiological and clinical approaches. Advances in molecular, genetic and 'omic' technologies are fuelling the thirst for better understanding of the uterus and application of this information to problems in pregnancy and labour. Progress has, however, been limited while we still have an incomplete understanding of some of the basic physiology of uterine smooth muscle (myometrium). In this review and opinion piece, I explore some of the fascinating findings from selected recent studies and see how these may provide new avenues for physiological and clinical research. It is also the case, however, that there is still limited mechanistic understanding about physiological and pathophysiological processes in the myometrium. This lack of understanding limits the usefulness of some findings from genomic and allied studies. By focusing on some key recent findings and relating these to two important clinical problems in childbirth that involve myometrial activity, namely preterm delivery and difficult labours, the interplay between our physiological knowledge and the information provided by newer technologies is explored. My opinion is that physiology has provided much more new mechanistic insight into difficult births and that the newer technologies may lead to breakthroughs in preterm birth research, but that this has not yet happened.
Collapse
Affiliation(s)
- Susan Wray
- Harris/Wellbeing Centre for Preterm Birth Research, Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Differing In Vitro Potencies of Tocolytics and Progesterone in Myometrium From Singleton and Twin Pregnancies. Reprod Sci 2015; 23:98-111. [DOI: 10.1177/1933719115597788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Wray S, Burdyga T, Noble D, Noble K, Borysova L, Arrowsmith S. Progress in understanding electro-mechanical signalling in the myometrium. Acta Physiol (Oxf) 2015; 213:417-31. [PMID: 25439280 DOI: 10.1111/apha.12431] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
In this review, we give a state-of-the-art account of uterine contractility, focussing on excitation-contraction (electro-mechanical) coupling (ECC). This will show how electrophysiological data and intracellular calcium measurements can be related to more modern techniques such as confocal microscopy and molecular biology, to advance our understanding of mechanical output and its modulation in the smooth muscle of the uterus, the myometrium. This new knowledge and understanding, for example concerning the role of the sarcoplasmic reticulum (SR), or stretch-activated K channels, when linked to biochemical and molecular pathways, provides a clearer and better informed basis for the development of new drugs and targets. These are urgently needed to combat dysfunctions in excitation-contraction coupling that are clinically challenging, such as preterm labour, slow to progress labours and post-partum haemorrhage. It remains the case that scientific progress still needs to be made in areas such as pacemaking and understanding interactions between the uterine environment and ion channel activity.
Collapse
Affiliation(s)
- S. Wray
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| | - T. Burdyga
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| | - D. Noble
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| | - K. Noble
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| | - L. Borysova
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| | - S. Arrowsmith
- Department of Cellular and Molecular Physiology; Institute of Translational Medicine; University of Liverpool; Liverpool Women's Hospital; Liverpool UK
| |
Collapse
|
22
|
Borahay MA, Kilic GS, Yallampalli C, Snyder RR, Hankins GDV, Al-Hendy A, Boehning D. Simvastatin potently induces calcium-dependent apoptosis of human leiomyoma cells. J Biol Chem 2014; 289:35075-86. [PMID: 25359773 DOI: 10.1074/jbc.m114.583575] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery.
Collapse
Affiliation(s)
- Mostafa A Borahay
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, the Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, Texas 77030,
| | - Gokhan S Kilic
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekha Yallampalli
- the Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Russell R Snyder
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gary D V Hankins
- From the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Ayman Al-Hendy
- the Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia 30912
| | - Darren Boehning
- the Department of Biochemistry and Molecular Biology, University of Texas Health Sciences Center at Houston, Houston, Texas 77030,
| |
Collapse
|
23
|
Tong WC, Ghouri I, Taggart MJ. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials. Front Physiol 2014; 5:399. [PMID: 25360118 PMCID: PMC4199256 DOI: 10.3389/fphys.2014.00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | | | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
24
|
Store-operated Ca²⁺ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca²⁺ and force. Cell Calcium 2014; 56:188-94. [PMID: 25084623 PMCID: PMC4169181 DOI: 10.1016/j.ceca.2014.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022]
Abstract
SERCA pump inhibition by CPA caused membrane depolarization, activation of action potentials, Ca2+ spikes and force. Depletion of Ca2+ store by agonists leads to membrane depolarization and activation of electrical and mechanical activity. Ca2+ release/Ca2+ entry coupling is playing a key role in control of spontaneous electrical and mechanical activity in rat pregnant myometrium.
In the myometrium SR Ca2+ depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca2+ sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca2+-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca2+ transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca2+]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca2+ spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca2+ and depolarization continued a point was reached when electrical and Ca2+ spikes and phasic contractions ceased, and a maintained, tonic force and Ca2+ was produced. Lanthanum, a non-selective blocker of store-operated Ca2+ entry, but not the L-type Ca2+ channel blocker nifedipine (1–10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca2+ depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca2+ release is coupled to marked Ca2+ entry, via store operated Ca2+ channels, leading to depolarization and enhanced electrical and mechanical activity.
Collapse
|
25
|
Pehlivanoğlu B, Bayrak S, Doğan M. A close look at the contraction and relaxation of the myometrium; the role of calcium. J Turk Ger Gynecol Assoc 2013; 14:230-4. [PMID: 24592112 DOI: 10.5152/jtgga.2013.67763] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022] Open
Abstract
The function and regulation of the myometrium, especially during pregnancy, labour and birth are important in reproductive physiology. It is crucial to understand the mechanisms that generate and modulate uterine contractility in order to be able to prevent and/or treat the problems related with the myometrium. A limited understanding of the cellular and molecular events underlying these phenomena complicates the situation. Various agonists, hormones, transmitters and/or chemicals are related to the regulation of the functions of the myometrium. Although notable advances regarding the key steps in receptor signalling explaining the actions of these factors have been achieved, a good deal of information is still necessary to understand this vital process. A better comprehension of myometrium physiology and the translation of research findings to clinical settings will help progress in women's health. In this review, we attempt to present a critical overview of myometrial functions and focus specifically on the role of calcium.
Collapse
Affiliation(s)
- Bilge Pehlivanoğlu
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sibel Bayrak
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Doğan
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
26
|
Sukhanova KY, Harhun MI, Bouryi VA, Gordienko DV. Mechanisms of [Ca2+]i elevation following P2X receptor activation in the guinea-pig small mesenteric artery myocytes. Pharmacol Rep 2013; 65:152-63. [PMID: 23563033 DOI: 10.1016/s1734-1140(13)70973-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/24/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is growing evidence suggesting involvement of L-type voltage-gated Ca2+ channels (VGCCs) in purinergic signaling mechanisms. However, detailed interplay between VGCCs and P2X receptors in intracellular Ca2+ mobilization is not well understood. This study examined relative contribution of the Ca2+ entry mechanisms and induced by this entry Ca2+ release from the intracellular stores engaged by activation of P2X receptors in smooth muscle cells (SMCs) from the guinea-pig small mesenteric arteries. METHODS P2X receptors were stimulated by the brief local application of αβ-meATP and changes in [Ca2+]i were monitored in fluo-3 loaded SMCs using fast x-y confocal Ca2+ imaging. The effects of the block of L-type VGCCs and/or depletion of the intracellular Ca2+ stores on αβ-meATP-induced [Ca2+]i transients were analyzed. RESULTS Our analysis revealed that Ca2+ entry via L-type VGCCs is augmented by the Ca2+-induced Ca2+ release significantly more than Ca2+ entry via P2X receptors, even though net Ca2+ influxes provided by the two mechanisms are not significantly different. CONCLUSIONS Thus, arterial SMCs upon P2X receptor activation employ an effective mechanism of the Ca2+ signal amplification, the major component of which is the Ca2+ release from the SR activated by Ca2+ influx via L-type VGCCs. This signaling pathway is engaged by depolarization of the myocyte membrane resulting from activation of P2X receptors, which, being Ca2+ permeable, per se form less effective Ca2+ signaling pathway. This study, therefore, rescales potential targets for therapeutic intervention in purinergic control of vascular tone.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, A.A. Bogomoletz, Institute of Physiology, Bogomoletz 4, Kiev, 01024, Ukraine.
| | | | | | | |
Collapse
|
27
|
Hutchinson JL, Rajagopal SP, Yuan M, Norman JE. Lipopolysaccharide promotes contraction of uterine myocytes
via
activation of Rho/ROCK signaling pathways. FASEB J 2013; 28:94-105. [DOI: 10.1096/fj.13-237040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- James L. Hutchinson
- Medical Research Council Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| | - Shalini P. Rajagopal
- Medical Research Council Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| | - Mei Yuan
- Medical Research Council Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| | - Jane E. Norman
- Medical Research Council Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| |
Collapse
|
28
|
Sharp GC, Saunders PTK, Norman JE. Computer models to study uterine activation at labour. Mol Hum Reprod 2013; 19:711-7. [PMID: 23778245 DOI: 10.1093/molehr/gat043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improving our understanding of the initiation of labour is a major aim of modern obstetric research, in order to better diagnose and treat pregnant women in which the process occurs abnormally. In particular, increased knowledge will help us identify the mechanisms responsible for preterm labour, the single biggest cause of neonatal morbidity and mortality. Attempts to improve our understanding of the initiation of labour have been restricted by the inaccessibility of gestational tissues to study during pregnancy and at labour, and by the lack of fully informative animal models. However, computer modelling provides an exciting new approach to overcome these restrictions and offers new insights into uterine activation during term and preterm labour. Such models could be used to test hypotheses about drugs to treat or prevent preterm labour. With further development, an effective computer model could be used by healthcare practitioners to develop personalized medicine for patients on a pregnancy-by-pregnancy basis. Very promising work is already underway to build computer models of the physiology of uterine activation and contraction. These models aim to predict changes and patterns in uterine electrical excitation during term labour. There have been far fewer attempts to build computer models of the molecular pathways driving uterine activation and there is certainly scope for further work in this area. The integration of computer models of the physiological and molecular mechanisms that initiate labour will be particularly useful.
Collapse
Affiliation(s)
- G C Sharp
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | |
Collapse
|
29
|
Robinson H, Wray S. A new slow releasing, H₂S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS One 2012; 7:e46278. [PMID: 23029460 PMCID: PMC3459845 DOI: 10.1371/journal.pone.0046278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H2S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H2S as a non-physiological bolus and thus alternative H2S donors are sought. GYY4137 has been developed to slowly release H2S and hence better reflect endogenous physiological release. We have examined its effects on spontaneous and oxytocin-stimulated contractility and compared them to NaHS, in human and rat myometrium, throughout gestation. The effects on contractility in response to GYY4137 (1 nM–1 mM) and NaHS (1 mM) were examined on myometrial strips from, biopsies of women undergoing elective caesarean section or hysterectomy, and from non-pregnant, 14, 18, 22 day (term) gestation or labouring rats. In pregnant rat and human myometrium dose-dependent and significant decreases in spontaneous contractions were seen with increasing concentrations of GYY4137, which also reduced underlying Ca transients. GYY4137 and NaHS significantly reduced oxytocin-stimulated and high-K depolarised contractions as well as spontaneous activity. Their inhibitory effects increased as gestation advanced, but were abruptly reversed in labour. Glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the inhibitory effect of GYY4137. These data suggest (i) H2S contributes to uterine quiescence from mid-gestation until labor, (ii) that H2S affects L-type calcium channels and KATP channels reducing Ca entry and thereby myometrial contractions, (iii) add to the evidence that H2S plays a physiological role in relaxing myometrium, and thus (iv) H2S is an attractive target for therapeutic manipulation of human myometrial contractility.
Collapse
Affiliation(s)
- Hayley Robinson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Kim YH, Chung S, Lee YH, Kim EC, Ahn DS. Increase of L-type Ca2+ current by protease-activated receptor 2 activation contributes to augmentation of spontaneous uterine contractility in pregnant rats. Biochem Biophys Res Commun 2012; 418:167-72. [PMID: 22244874 DOI: 10.1016/j.bbrc.2011.12.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022]
Abstract
We evaluated the effects of protease-activated receptor (PAR)-2 on spontaneous myometrial contraction (SMC) in isolated term pregnant myometrial strips of rat, and elucidated the cellular mechanisms of this effect using a conventional voltage-clamp method. In isometric tension measurements, trypsin and SL-NH(2), PAR-2 agonists, significantly augmented SMC in frequency and amplitude; however, boiled trypsin (BT) and LR-NH(2) had no effect on SMC. These stimulatory effects of PAR-2 agonists on SMC were nearly completely occluded by pre-application of Bay K 8644, an L-type voltage-gated Ca(2+) channel activator, thus showing the involvement of L-type voltage-gated Ca(2+) channels in PAR-2-induced augmentation of SMC. In addition, PAR-2 agonists significantly enhanced L-type voltage-gated Ca(2+) currents (I(Ca-L)), as measured by a conventional voltage-clamp method, and this increase was primarily mediated by activation of phospholipase C (PLC) and protein kinase C (PKC) via G-protein activation. Taken together, we have demonstrated that PAR-2 may actively regulate SMC during pregnancy by modulating Ca(2+) influx through L-type voltage-gated Ca(2+) channels, and that this increase of I(Ca-L) may be primarily mediated by PLC and PKC activation. These results suggest a cellular mechanism for the pathophysiological effects of PAR-2 activation on myometrial contractility during pregnancy and provide basic and theoretical information about developing new agents for the treatment of premature labor and other obstetric complications.
Collapse
Affiliation(s)
- Young-Hwan Kim
- Brain Korea 21 Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Aslanidi O, Atia J, Benson A, van den Berg H, Blanks A, Choi C, Gilbert S, Goryanin I, Hayes-Gill B, Holden A, Li P, Norman J, Shmygol A, Simpson N, Taggart M, Tong W, Zhang H. Towards a computational reconstruction of the electrodynamics of premature and full term human labour. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:183-92. [DOI: 10.1016/j.pbiomolbio.2011.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 01/02/2023]
|
32
|
Curine, a bisbenzylisoquinoline alkaloid, blocks L-type Ca²⁺ channels and decreases intracellular Ca²⁺ transients in A7r5 cells. Eur J Pharmacol 2011; 669:100-7. [PMID: 21872583 DOI: 10.1016/j.ejphar.2011.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/13/2011] [Accepted: 07/30/2011] [Indexed: 12/14/2022]
Abstract
Curine is a novel bisbenzylisoquinoline alkaloid that has previously been reported as a vasodilator. The underlying mechanism(s) of the vasodilator effect of curine remains to be characterized. In this study, we investigated the cellular mechanism that is responsible for the vasodilator effect of curine in the rat aorta. The vasorelaxant activity of curine was recorded using a myograph. Ca(2+) currents in A7r5 cells were measured using the whole-cell patch-clamp technique. Intracellular Ca(2+) transients were determined using confocal microscopy. In a concentration-dependent manner, curine inhibited contractions elicited by high extracellular K(+) and Bay K8644 in the rat aorta and reduced the rise in the intracellular Ca(2+) concentration induced by membrane depolarization in response to an increase in extracellular K(+) concentration in vascular smooth muscle cells. Moreover, curine decreased the peak amplitude of L-type Ca(2+) currents (I(Ca,L)) in a concentration-dependent manner without changing the characteristics of the current density vs. voltage relationship and the steady-state activation of I(Ca,L). Furthermore, curine shifted the steady-state inactivation curve of I(Ca,L) toward more hyperpolarized membrane potentials. None of the following modified the effect of curine on I(Ca,L) amplitude: 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterases; dibutyryl cyclic AMP, an activator of protein kinase A (PKA); or 8-Br-cyclic GMP, an activator of protein kinase G (PKG). Our results showed that curine inhibited the L-type voltage-dependent Ca(2+) current in rat aorta smooth muscle cells, which caused a decrease in intracellular global Ca(2+) transients that led to vasorelaxation.
Collapse
|
33
|
Skarra DV, Cornwell T, Solodushko V, Brown A, Taylor MS. CyPPA, a positive modulator of small-conductance Ca(2+)-activated K(+) channels, inhibits phasic uterine contractions and delays preterm birth in mice. Am J Physiol Cell Physiol 2011; 301:C1027-35. [PMID: 21795518 DOI: 10.1152/ajpcell.00082.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organized uterine contractions, including those necessary for parturition, are dependent on calcium entry through voltage-gated calcium channels in myometrial smooth muscle cells. Recent evidence suggests that small-conductance Ca(2+)-activated potassium channels (K(Ca)2), specifically isoforms K(Ca)2.2 and 2.3, may control these contractions through negative feedback regulation of Ca(2+) entry. We tested whether selective pharmacologic activation of K(Ca)2.2/2.3 channels might depress uterine contractions, providing a new strategy for preterm labor intervention. Western blot analysis and immunofluorescence microscopy revealed expression of both K(Ca)2.2 and K(Ca)2.3 in the myometrium of nonpregnant (NP) and pregnant (gestation day 10 and 16; D10 and D16, respectively) mice. Spontaneous phasic contractions of isolated NP, D10, and D16 uterine strips were all suppressed by the K(Ca)2.2/2.3-selective activator CyPPA in a concentration-dependent manner. This effect was antagonized by the selective K(Ca)2 inhibitor apamin. Whereas CyPPA sensitivity was reduced in D10 and D16 versus NP strips (pIC(50) 5.33 ± 0.09, 4.64 ± 0.03, 4.72 ± 0.10, respectively), all contractions were abolished between 30 and 60 μM. Blunted contractions were associated with CyPPA depression of spontaneous Ca(2+) events in myometrial smooth muscle bundles. Augmentation of uterine contractions with oxytocin or prostaglandin F(2α) did not reduce CyPPA sensitivity or efficacy. Finally, in an RU486-induced preterm labor model, CyPPA significantly delayed time to delivery by 3.4 h and caused a 2.5-fold increase in pup retention. These data indicate that pharmacologic stimulation of myometrial K(Ca)2.2/2.3 channels effectively suppresses Ca(2+)-mediated uterine contractions and delays preterm birth in mice, supporting the potential utility of this approach in tocolytic therapies.
Collapse
Affiliation(s)
- Dana V Skarra
- Department of Physiology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
34
|
Lecarpentier ER, Claes VA, Timbely O, Arsalane A, Wipff JA, Hébert JLM, Michel FY, Lecarpentier YC. Mechanics and energetics of myosin molecular motors from nonpregnant human myometrium. J Appl Physiol (1985) 2011; 111:1096-105. [PMID: 21778420 DOI: 10.1152/japplphysiol.00414.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical properties of spontaneously contracting isolated nonpregnant human myometrium (NPHM) were investigated throughout the whole continuum of load from zero load up to isometry. This made it possible to assess the three-dimensional tension-velocity-length (T-V-L) relationship characterizing the level of contractility and to determine crossbridge (CB) kinetics of myosin molecular motors. Seventy-seven muscle strips were obtained from hysterectomy in 42 nonpregnant patients. Contraction and relaxation parameters were measured during spontaneous mechanical activity. The isotonic tension-peak velocity (T-V) relationship was hyperbolic in 30 cases and nonhyperbolic in 47 cases. When the T-V relationship was hyperbolic, the Huxley formalism could be used to calculate CB kinetics and CB unitary force. At the whole muscle level and for a given isotonic load level, part of the V-L phase plane showed a common pathway, so that a given instantaneous length corresponded to only one possible instantaneous velocity, independent of time and initial length. At the molecular level, rate constants for CB attachment and detachment were dramatically low, ∼100 times lower than those of striated muscles, and ∼5 to 10 times lower than those of other smooth muscles. The CB unitary force was ∼1.4 ± 0.1 pN. NPHM shared similar basic contractile properties with striated muscles, reflected in the three-dimensional T-V-L relationship characterizing the contractile level. Low CB attachment and detachment rate constants made it possible to generate normal CB unitary force and normal muscle tension in NPHM, even though it contracted extremely slowly compared with other muscles.
Collapse
|
35
|
Murtazina DA, Chung D, Ulloa A, Bryan E, Galan HL, Sanborn BM. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells. Biol Reprod 2011; 85:315-26. [PMID: 21565997 DOI: 10.1095/biolreprod.111.091082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.
Collapse
Affiliation(s)
- Dilyara A Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lijuan W, Kupittayanant P, Chudapongse N, Wray S, Kupittayanant S. The Effects of Wild Ginger (Costus speciosus (Koen) Smith) Rhizome Extract and Diosgenin on Rat Uterine Contractions. Reprod Sci 2011; 18:516-24. [DOI: 10.1177/1933719110391278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wanwisa Lijuan
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pakanit Kupittayanant
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nuannoi Chudapongse
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sajeera Kupittayanant
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
37
|
Tong WC, Choi CY, Karche S, Holden AV, Zhang H, Taggart MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One 2011; 6:e18685. [PMID: 21559514 PMCID: PMC3084699 DOI: 10.1371/journal.pone.0018685] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/15/2011] [Indexed: 11/18/2022] Open
Abstract
Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Cecilia Y. Choi
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Sanjay Karche
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Arun V. Holden
- Institute of Membrane and System Biology, University of Leeds, Leeds, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| |
Collapse
|
38
|
Povstyan OV, Harhun MI, Gordienko DV. Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries. Br J Pharmacol 2011; 162:1618-38. [PMID: 21175582 PMCID: PMC3057298 DOI: 10.1111/j.1476-5381.2010.01169.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 11/04/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca(2+) concentration ([Ca(2+) ](i) ). Although it is well-appreciated that the myocyte Ca(2+) signalling system is composed of microdomains, little is known about the structure of the [Ca(2+) ](i) responses induced by P2X receptor stimulation in vascular myocytes. EXPERIMENTAL APPROACHES Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca(2+) signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP). KEY RESULTS RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP(3) R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca(2+) ](i) transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L(-1) αβ-meATP triggered an abrupt Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum enriched with IP(3) Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca(2+) channels (VGCCs) or IP(3) Rs suppressed the sub-plasmalemmal [Ca(2+) ](i) upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP(3) R inhibition on the sub-plasmalemmal [Ca(2+) ](i) upstroke was attenuated following block of VGCCs. CONCLUSIONS AND IMPLICATIONS Depolarization of RVSMCs following P2X receptor activation induces IP(3) R-mediated Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum, which is activated mainly by Ca(2+) influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kidney/blood supply
- Male
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Purinergic P2X Receptor Agonists/pharmacology
- Rats
- Rats, Inbred WKY
- Receptors, Purinergic P2X/metabolism
- Renal Artery/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Sarcoplasmic Reticulum/metabolism
Collapse
Affiliation(s)
- Oleksandr V Povstyan
- Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | | | | |
Collapse
|
39
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
40
|
Promprom W, Kupittayanant P, Indrapichate K, Wray S, Kupittayanant S. The Effects of Pomegranate Seed Extract and β-Sitosterol on Rat Uterine Contractions. Reprod Sci 2009; 17:288-96. [DOI: 10.1177/1933719109352687] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wilawan Promprom
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pakanit Kupittayanant
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Korakod Indrapichate
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Susan Wray
- The Physiological Laboratories, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sajeera Kupittayanant
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand,
| |
Collapse
|
41
|
Lee SE, Ahn DS, Lee YH. Role of T-type Ca Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:241-9. [PMID: 19885043 DOI: 10.4196/kjpp.2009.13.3.241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/04/2009] [Accepted: 06/19/2009] [Indexed: 11/15/2022]
Abstract
Although extracellular Ca(2+) entry through the voltage-dependent Ca(2+) channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type Ca(2+) channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type Ca(2+) channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and [Ca(2+)](i) were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18~20 of gestation: term=22 days). The expression of T-type Ca(2+) channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (<1 microM) of nifedipine, a L-type Ca(2+) channel blocker, produced a decrease in the amplitude of the spontaneous Ca(2+) transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (alpha1G, alpha1H) of the T-type Ca(2+) channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous Ca(2+) transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous Ca(2+) transients consistent with the reduction of the frequency. It is concluded that T-type Ca(2+) channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.
Collapse
Affiliation(s)
- Si-Eun Lee
- Department of Physiology, BK 21 Project for Medical Sciences, College of Medicine, Yonsei University, Seoul 120-752, Korea
| | | | | |
Collapse
|
42
|
Rihana S, Terrien J, Germain G, Marque C. Mathematical modeling of electrical activity of uterine muscle cells. Med Biol Eng Comput 2009; 47:665-75. [DOI: 10.1007/s11517-009-0433-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
43
|
Burdyga T, Borisova L, Burdyga AT, Wray S. Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S25-32. [PMID: 19282086 DOI: 10.1016/j.ejogrb.2009.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the temporal and spatial characteristics of spontaneous Ca signals in pregnant rat myometrium. STUDY DESIGN Confocal imaging of longitudinal strips of 21-day pregnant rats loaded with the Ca sensitive indicator Fluo-4, was combined with measurements of mechanical activity in uterine smooth muscle cells, in situ and freshly isolated. RESULTS Our results show that the Ca transients in pregnant uterine tissue are composed of Ca spikes, which are associated with the spike-like action potentials. There is large variation in the pattern of spontaneous activity in myometrium, ranging from non-propagating Ca spikes confined to individual smooth muscle cells, through to regional and global propagating Ca spikes. Irrespective of the pattern of activity displayed, the Ca signals were always in the form of Ca spikes, singularly or in bursts. These Ca spikes did not show fixed initiations sites, propagated in longitudinal and transverse directions from the initiation regions, and had a variable pattern of propagation in preparations which were not synchronously active. In preparations which showed synchronous activity, Ca spikes singularly or bursts propagated mainly in the transverse direction from the initiation regions. The amplitude of force generated by single spikes was dependent on the number of bundles recruited by the propagating Ca spike within the strip, and was about 30-40% of the maximal force produced by carbachol or high-K stimulation. If Ca spikes appeared in the form of bursts they generated longer lasting fused contractions, the amplitudes of which were dependent on the number and the frequency of Ca spikes in the burst. CONCLUSIONS Longitudinal myometrium from pregnant rats generates spontaneous Ca spikes which vary in their initiation sites, spatial spread and frequency and are associated with the spike-like action potentials. They are sensitive to the L-type Ca channel blocker, nifedipine. Contractile activity was dependent on the spatial spread of individual Ca spikes and when fully synchronized, produced single submaximal phasic contraction. The number and frequency of bursts of Ca spikes controlled the amplitude and duration of contraction.
Collapse
Affiliation(s)
- Theodor Burdyga
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L693BX, UK.
| | | | | | | |
Collapse
|
44
|
Noble K, Matthew A, Burdyga T, Wray S. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S11-9. [PMID: 19285773 DOI: 10.1016/j.ejogrb.2009.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The uterine sacroplasmic reticulum (SR) takes up and stores calcium [Ca], using an ATPase (SERCA) and the Ca-buffering proteins, calsequestrin and calreticulin. This stored Ca can be released via IP(3)-gated Ca channels. Decreases in luminal Ca concentration [Ca] have been directly measured following agonist stimulation. During spontaneous contractions however, there appears to be no involvement of the SR, as Ca entry and efflux across the plasma membrane account for these phasic contractions. After over-viewing current knowledge concerning SR structure and function, we highlight three areas of research which suggest new ways of looking at the role of the SR in the uterus, although they may be controversial or speculative at the moment. Firstly, we review the evidence for the function, if any, of Ca-induced SR Ca release channels, the ryanodine receptor (RyR) and the lack of Ca sparks (the elemental release events from RyRs), in the uterus. Secondly, we ask does regulation of SERCA by the accessory protein, phospholamban, occur in the uterus and what is the effect of knocking out phospholamban on uterine activity? Thirdly, we address the question of when and how store-operated Ca entry occurs in the myometrium. By analogy with other, usually less excitable tissues, is there a mechanism that links store Ca depletion to plasma membrane Ca entry in smooth muscle cells within intact uterus and is it physiologically relevant and regulated? Are the recently described proteins ORAI and STIM-1 involved in uterine store-operated Ca entry? We end the review by integrating these new insights with previous data to present a new working model of the SR in the uterus.
Collapse
Affiliation(s)
- Karen Noble
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L693BX, UK
| | | | | | | |
Collapse
|
45
|
Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol 2008; 20:451-61. [PMID: 18266942 DOI: 10.1111/j.1365-2826.2008.01665.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this review, we examine how far the increased understanding that we have of the events in excitation contraction can explain the effects of the oestrous cycle and sex hormones on uterine function. Observational studies of electrical and mechanical activity in the rat myometrium have shown a relative quiescence during pro-oestrous, with little propagation of any electrical events. Thus, uterine activity can be said to approximately inversely reflect plasma 17beta-oestradiol concentrations. We show that Ca(2+) signalling and mechanical activity are greatest in metoestrous and dioestrous compared to pro-oestrous and oestrous. These data are discussed in terms of hormonal effects on Ca(2+) and K(+) channels. Finally, the influence of sex hormones on lipid rafts and caveolae are considered and discussed in relation to recent findings on their role in uterine signalling and contractility, and cholesterol levels and obesity.
Collapse
Affiliation(s)
- S Wray
- The Physiological Department, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
46
|
Borisova L, Shmygol A, Wray S, Burdyga T. Evidence that a Ca2+ sparks/STOCs coupling mechanism is responsible for the inhibitory effect of caffeine on electro-mechanical coupling in guinea pig ureteric smooth muscle. Cell Calcium 2007; 42:303-11. [PMID: 17298845 DOI: 10.1016/j.ceca.2006.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.
Collapse
Affiliation(s)
- L Borisova
- The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
47
|
Srivastava A, Gupta PK, Knock GA, Aaronson PI, Mishra SK, Prakash VR. Effect of ceramide on the contractility of pregnant rat uterus. Eur J Pharmacol 2007; 567:159-65. [PMID: 17490636 DOI: 10.1016/j.ejphar.2007.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/27/2022]
Abstract
Ceramide and other sphingolipid mediators have emerged as a novel class of lipid second messengers in cell signaling. We assessed the effect of C(2)-ceramide (a membrane permeable analog of ceramide) on spontaneous and agonist-induced contractile responses of uterus, isolated from 19-day pregnant rats. Ceramide (3, 10 microM) moderately, but significantly inhibited the amplitude of spontaneous rhythmic contractions. However, a variable effect was seen on agonist-induced contractions. While 5-HT-induced contractions were markedly inhibited at 3 and 10 microM ceramide, oxytocin and carboprost (a PGF(2)alpha analogue)-induced contractions were not affected by the sphingolipid. Ceramide (10 microM) also markedly inhibited CaCl(2)-induced contractions elicited in K(+)-depolarized tissues. Further, in rabbit portal vein myocytes, which display robust L-type calcium channel current, ceramide inhibited the I(Ba) in a dose-dependent manner. Therefore, it is suggested that the inhibitory effect of ceramide on uterine contractility may involve a decrease in the influx of Ca(2+) through voltage-dependent L-type Ca(2+) channels, such that contractile responses that are primarily dependent on extracellular Ca(2+), like rhythmic and serotonin contractions, were inhibited by ceramide. Further study is required to establish the role of endogenous ceramide and other sphingolipids in regulating uterine tone during gestation and at term.
Collapse
Affiliation(s)
- Anuradha Srivastava
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
48
|
Wray S, Shmygol A. Role of the calcium store in uterine contractility. Semin Cell Dev Biol 2007; 18:315-20. [PMID: 17601757 DOI: 10.1016/j.semcdb.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
This article assesses the nature of the sarcoplasmic reticulum (SR) in uterine smooth muscle. Modern imagining techniques have revealed new information about the location and density of Ca storage and release. Release mechanisms, including IP(3) and Ca itself, via ryanodine receptors (RyR), as well as possible roles for cyclic ADP ribose, and the contribution of the SR to relaxation are detailed. The role of the SR Ca-ATPase in both decay of the Ca transient and maintaining Ca homeostasis is reviewed. Recent data on the role of local Ca signals from the SR in contributing to membrane excitability and contractility are discussed, along with interactions with ion channels in lipid microdomains.
Collapse
Affiliation(s)
- Susan Wray
- University of Liverpool, Department of Physiology, Crown Street, Liverpool L69 3BX, United Kingdom.
| | | |
Collapse
|
49
|
Sanborn BM. Hormonal signaling and signal pathway crosstalk in the control of myometrial calcium dynamics. Semin Cell Dev Biol 2007; 18:305-14. [PMID: 17627855 PMCID: PMC2000447 DOI: 10.1016/j.semcdb.2007.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Understanding the basis for the control of myometrial contractant and relaxant signaling pathways is important to understanding how to manage myometrial contractions. Signaling pathways are influenced by the level of expression of the signals and signal pathway components, the location of these components in the appropriate subcellular environment, and covalent modification. Crosstalk between these pathways regulates the effectiveness of signal transduction and represents an important way by which hormones can regulate phenotype. This review deals primarily with signaling pathways that control Ca2+ entry and intracellular release, as well as the interplay between these pathways.
Collapse
Affiliation(s)
- Barbara M Sanborn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA.
| |
Collapse
|
50
|
Bursztyn L, Eytan O, Jaffa AJ, Elad D. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J Physiol Cell Physiol 2007; 292:C1816-29. [PMID: 17267547 DOI: 10.1152/ajpcell.00478.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uterine contractility is generated by contractions of myometrial smooth muscle cells (SMCs) that compose most of the myometrial layer of the uterine wall. Calcium ion (Ca2+) entry into the cell can be initiated by depolarization of the cell membrane. The increase in the free Ca2+concentration within the cell initiates a chain of reactions, which lead to formation of cross bridges between actin and myosin filaments, and thereby the cell contracts. During contraction the SMC shortens while it exerts forces on neighboring cells. A mathematical model of myometrial SMC contraction has been developed to study this process of excitation and contraction. The model can be used to describe the intracellular Ca2+concentration and stress produced by the cell in response to depolarization of the cell membrane. The model accounts for the operation of three Ca2+control mechanisms: voltage-operated Ca2+channels, Ca2+pumps, and Na+/Ca2+exchangers. The processes of myosin light chain (MLC) phosphorylation and stress production are accounted for using the cross-bridge model of Hai and Murphy ( Am J Physiol Cell Physiol 254: C99–C106, 1988) and are coupled to the Ca2+concentration through the rate constant of myosin phosphorylation. Measurements of Ca2+, MLC phosphorylation, and force in contracting cells were used to set the model parameters and test its ability to predict the cell response to stimulation. The model has been used to reproduce results of voltage-clamp experiments performed in myometrial cells of pregnant rats as well as the results of simultaneous measurements of MLC phosphorylation and force production in human nonpregnant myometrial cells.
Collapse
Affiliation(s)
- Limor Bursztyn
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|