1
|
Guedes MR, de Noronha SISR, Chírico MTT, da Costa GDC, de Freitas Castro T, de Brito RCF, Vieira LG, Reis TO, Ribeiro MC, Reis AB, Carneiro CM, Bezerra FS, Montano N, da Silva VJD, de Menezes RCA, Chianca-Jr DA, Silva FCDS. Ivabradine restores tonic cardiovascular autonomic control and reduces tachycardia, hypertension and left ventricular inflammation in post-weaning protein malnourished rats. Life Sci 2024; 346:122636. [PMID: 38614307 DOI: 10.1016/j.lfs.2024.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Malnutrition results in autonomic imbalance and heart hypertrophy. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the left ventricles (LV) is linked to hypertrophied hearts and abnormal myocardium automaticity. Given that ivabradine (IVA) has emerging pleiotropic effects, in addition to the widely known bradycardic response, this study evaluated if IVA treatment could repair the autonomic control and cardiac damages in malnourished rats. AIM Assess the impact of IVA on tonic cardiovascular autonomic control and its relationship with hemodynamics regulation, LV inflammation, and HCN gene expression in post-weaning protein malnutrition condition. MAIN METHODS After weaning, male rats were divided into control (CG; 22 % protein) and malnourished (MG; 6 % protein) groups. At 35 days, groups were subdivided into CG-PBS, CG-IVA, MG-PBS and MG-IVA (PBS 1 ml/kg or IVA 1 mg/kg) received during 8 days. We performed jugular vein cannulation and electrode implant for drug delivery and ECG registration to assess tonic cardiovascular autonomic control; femoral cannulation for blood pressure (BP) and heart rate (HR) assessment; and LV collection to evaluate ventricular remodeling and HCN gene expression investigation. KEY FINDINGS Malnutrition induced BP and HR increases, sympathetic system dominance, and LV remodeling without affecting HCN gene expression. IVA reversed the cardiovascular autonomic imbalance; prevented hypertension and tachycardia; and inhibited the LV inflammatory process and fiber thickening caused by malnutrition. SIGNIFICANCE Our findings suggest that ivabradine protects against malnutrition-mediated cardiovascular damage. Moreover, our results propose these effects were not attributed to HCN expression changes, but rather to IVA pleiotropic effects on autonomic control and inflammation.
Collapse
Affiliation(s)
- Mariana Reis Guedes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Sylvana Izaura Salyba Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Máira Tereza Talma Chírico
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Gabriela Dias Carvalho da Costa
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thalles de Freitas Castro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Rory Cristiane Fortes de Brito
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Marcelo Carlos Ribeiro
- Statistics Department, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Alexandre Barbosa Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Cláudia Martins Carneiro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - Valdo José Dias da Silva
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Fernanda Cacilda Dos Santos Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
2
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Kawada T, Yokoi A, Nishiura A, Kakuuchi M, Yokota S, Matsushita H, Li M, Uemura K, Saku K. Dynamic accentuated antagonism of heart rate control during different levels of vagal nerve stimulation intensity in rats. Am J Physiol Regul Integr Comp Physiol 2023; 324:R260-R270. [PMID: 36572552 DOI: 10.1152/ajpregu.00229.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accentuated antagonism refers to a phenomenon in which the vagal effect on heart rate (HR) is augmented by background sympathetic tone. The dynamic aspect of accentuated antagonism remains to be elucidated during different levels of vagal nerve stimulation (VNS) intensity. We performed VNS on anesthetized rats (n = 8) according to a binary white noise signal with a switching interval of 500 ms at three different stimulation rates (low-intensity: 0-10 Hz, moderate-intensity: 0-20 Hz, and high-intensity: 0-40 Hz). The transfer function from VNS to HR was estimated with and without concomitant tonic sympathetic nerve stimulation (SNS) at 5 Hz. The asymptotic low-frequency (LF) gain (in beats/min/Hz) of the transfer function increased with SNS regardless of the VNS rate [low-intensity: 3.93 ± 0.70 vs. 5.82 ± 0.65 (P = 0.021), moderate-intensity: 3.87 ± 0.62 vs. 5.36 ± 0.53 (P = 0.018), high-intensity: 4.77 ± 0.85 vs. 7.39 ± 1.36 (P = 0.011)]. Moreover, SNS slightly increased the ratio of high-frequency (HF) gain to the LF gain. These effects of SNS were canceled by the pretreatment of ivabradine, an inhibitor of hyperpolarization-activated cyclic nucleotide-gated channels, in another group of rats (n = 6). Although background sympathetic tone antagonizes the vagal effect on mean HR, it enables finer HR control by increasing the dynamic gain of the vagal HR transfer function regardless of VNS intensity. When interpreting the HF component of HR variability, the augmenting effect from background sympathetic tone needs to be considered.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Aimi Yokoi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Midori Kakuuchi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
4
|
Barbuti A, Baruscotti M, Bucchi A. The “Funny” Pacemaker Current. HEART RATE AND RHYTHM 2023:63-87. [DOI: 10.1007/978-3-031-33588-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Piantoni C, Paina M, Molla D, Liu S, Bertoli G, Jiang H, Wang Y, Wang Y, Wang Y, DiFrancesco D, Barbuti A, Bucchi A, Baruscotti M. Chinese natural compound decreases pacemaking of rabbit cardiac sinoatrial cells by targeting second messenger regulation of f-channels. eLife 2022; 11:75119. [PMID: 35315774 PMCID: PMC8940175 DOI: 10.7554/elife.75119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Tongmai Yangxin (TMYX) is a complex compound of the Traditional Chinese Medicine (TCM) used to treat several cardiac rhythm disorders; however, no information regarding its mechanism of action is available. In this study we provide a detailed characterization of the effects of TMYX on the electrical activity of pacemaker cells and unravel its mechanism of action. Single-cell electrophysiology revealed that TMYX elicits a reversible and dose-dependent (2/6 mg/ml) slowing of spontaneous action potentials rate (−20.8/–50.2%) by a selective reduction of the diastolic phase (−50.1/–76.0%). This action is mediated by a negative shift of the If activation curve (−6.7/–11.9 mV) and is caused by a reduction of the cyclic adenosine monophosphate (cAMP)-induced stimulation of pacemaker channels. We provide evidence that TMYX acts by directly antagonizing the cAMP-induced allosteric modulation of the pacemaker channels. Noticeably, this mechanism functionally resembles the pharmacological actions of muscarinic stimulation or β-blockers, but it does not require generalized changes in cytoplasmic cAMP levels thus ensuring a selective action on rate. In agreement with a competitive inhibition mechanism, TMYX exerts its maximal antagonistic action at submaximal cAMP concentrations and then progressively becomes less effective thus ensuring a full contribution of If to pacemaker rate during high metabolic demand and sympathetic stimulation.
Collapse
Affiliation(s)
- Chiara Piantoni
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Manuel Paina
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - David Molla
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Sheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Giorgia Bertoli
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanyan Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dario DiFrancesco
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The Cell Physiology Lab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Yang D, Morrell CH, Lyashkov AE, Tagirova Sirenko S, Zahanich I, Yaniv Y, Vinogradova TM, Ziman BD, Maltsev VA, Lakatta EG. Ca 2+ and Membrane Potential Transitions During Action Potentials Are Self-Similar to Each Other and to Variability of AP Firing Intervals Across the Broad Physiologic Range of AP Intervals During Autonomic Receptor Stimulation. Front Physiol 2021; 12:612770. [PMID: 34566668 PMCID: PMC8456031 DOI: 10.3389/fphys.2021.612770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Ca2+ and V m transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca2+ domain) and limit-cycle (V m domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca2+ and V m transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to trans-species AP firing intervals (APFIs) of these cells in vitro, to heart rate in vivo, and to body mass. Neurotransmitter stimulation of β-adrenergic receptor or cholinergic receptor-initiated signaling in SAN cells modulates their AP firing rate and rhythm by impacting on the degree to which SAN clocks couple to each other, creating the broad physiologic range of SAN cell mean APFIs and firing interval variabilities. Here we show that Ca2+ and V m domain kinetic transitions (time to AP ignition in diastole and 90% AP recovery) occurring within given AP, the mean APFIs, and APFI variabilities within the time series of APs in 230 individual SAN cells are self-similar (obey power laws). In other terms, these long-range correlations inform on self-similar distributions of order among SAN cells across the entire broad physiologic range of SAN APFIs, regardless of whether autonomic receptors of these cells are stimulated or not and regardless of the type (adrenergic or cholinergic) of autonomic receptor stimulation. These long-range correlations among distributions of Ca2+ and V m kinetic functions that regulate SAN cell clock coupling during each AP cycle in different individual, isolated SAN cells not in contact with each other. Our numerical model simulations further extended our perspectives to the molecular scale and demonstrated that many ion currents also behave self-similar across autonomic states. Thus, to ensure rapid flexibility of AP firing rates in response to different types and degrees of autonomic input, nature "did not reinvent molecular wheels within the coupled-clock system of pacemaker cells," but differentially engaged or scaled the kinetics of gears that regulate the rate and rhythm at which the "wheels spin" in a given autonomic input context.
Collapse
Affiliation(s)
- Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD, United States
| | - Alexey E. Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ihor Zahanich
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
7
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
8
|
Porro A, Binda A, Pisoni M, Donadoni C, Rivolta I, Saponaro A. Rational design of a mutation to investigate the role of the brain protein TRIP8b in limiting the cAMP response of HCN channels in neurons. J Gen Physiol 2020; 152:e202012596. [PMID: 32633755 PMCID: PMC7478871 DOI: 10.1085/jgp.202012596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) is the neuronal regulatory subunit of HCN channels, a family of voltage-dependent cation channels also modulated by direct cAMP binding. TRIP8b interacts with the C-terminal region of HCN channels and controls both channel trafficking and gating. The association of HCN channels with TRIP8b is required for the correct expression and subcellular targeting of the channel protein in vivo. TRIP8b controls HCN gating by interacting with the cyclic nucleotide-binding domain (CNBD) and competing for cAMP binding. Detailed structural knowledge of the complex between TRIP8b and CNBD was used as a starting point to engineer a mutant channel, whose gating is controlled by cAMP, but not by TRIP8b, while leaving TRIP8b-dependent regulation of channel trafficking unaltered. We found two-point mutations (N/A and C/D) in the loop connecting the CNBD to the C-linker (N-bundle loop) that, when combined, strongly reduce the binding of TRIP8b to CNBD, leaving cAMP affinity unaltered both in isolated CNBD and in the full-length protein. Proof-of-principle experiments performed in cultured cortical neurons confirm that the mutant channel provides a genetic tool for dissecting the two effects of TRIP8b (gating versus trafficking). This will allow the study of the functional role of the TRIP8b antagonism of cAMP binding, a thus far poorly investigated aspect of HCN physiology in neurons.
Collapse
Affiliation(s)
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Donadoni
- Department of Biosciences, University of Milano, Milano, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Milano, Italy
| |
Collapse
|
9
|
Freeman DM, Lou D, Li Y, Martos SN, Wang Z. The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure. Epigenetics Chromatin 2020; 13:17. [PMID: 32178731 PMCID: PMC7076959 DOI: 10.1186/s13072-020-00338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Collapse
Affiliation(s)
- Dana M Freeman
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yanqiang Li
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N Martos
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- The State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Leypold T, Bonus M, Spiegelhalter F, Schwede F, Schwabe T, Gohlke H, Kusch J. N 6-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels. J Biol Chem 2019; 294:17978-17987. [PMID: 31615893 DOI: 10.1074/jbc.ra119.010246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Indexed: 11/06/2022] Open
Abstract
cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N 6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N 6-phenyladenosine-3',5'-cyclic monophosphate (N 6-Phe-cAMP), N 6-benzyladenosine-3',5'-cyclic monophosphate (N 6-Bn-cAMP), and N 6-benzoyl-adenosine-3',5'-cyclic monophosphate (N 6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N 6-Phe-cAMP or N 6-Bn-cAMP or a steric clash with the aromatic ring in N 6-Bnz-cAMP. A reduced apparent affinity of N 6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.
Collapse
Affiliation(s)
- Tim Leypold
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany
| | - Felix Spiegelhalter
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Tina Schwabe
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jana Kusch
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
11
|
Rivera-Meza M. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion Channels in the Rewarding Effects of Ethanol. NEUROSCIENCE OF ALCOHOL 2019:171-178. [DOI: 10.1016/b978-0-12-813125-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
13
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
14
|
Saponaro A, Cantini F, Porro A, Bucchi A, DiFrancesco D, Maione V, Donadoni C, Introini B, Mesirca P, Mangoni ME, Thiel G, Banci L, Santoro B, Moroni A. A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. eLife 2018; 7:35753. [PMID: 29923826 PMCID: PMC6023613 DOI: 10.7554/elife.35753] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented β-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Cantini
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy
| | | | - Annalisa Bucchi
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Vincenzo Maione
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | - Chiara Donadoni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Bianca Introini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, CNRS, INSERM F-34094, Université de Montpellier, Montpellier, France.,Laboratory of Excellence Ion Channels Science and Therapeutics, Valbonne, France
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Lucia Banci
- Department of Chemistry, University of Florence, Florence, Italy.,Magnetic Resonance Center, University of Florence, Florence, Italy.,Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Florence, Italy
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, United States
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
15
|
Hummert S, Thon S, Eick T, Schmauder R, Schulz E, Benndorf K. Activation gating in HCN2 channels. PLoS Comput Biol 2018; 14:e1006045. [PMID: 29565972 PMCID: PMC5863937 DOI: 10.1371/journal.pcbi.1006045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is essentially governed by two separable voltage-dependent steps followed by voltage-independent opening of the pore. According to this model analysis, the binding of cAMP to the channels exerts multiple effects on the voltage-dependent gating: It stabilizes the open pore, reduces the total gating charge from ~8 to ~5, makes an additional closed state outside the activation pathway accessible and strongly accelerates the ON-gating but not the OFF-gating. Furthermore, the open channel has a much slower computed OFF-gating current than the closed channel, in both the absence and presence of cAMP. Together, these results provide detailed new insight into the voltage- and cAMP-induced activation gating of HCN channels. Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric voltage-controlled ion channels in the cell membrane of specialized nerve and heart cells. Their main function is to generate a so-called pacemaker current which plays a key role in the generation of electrical rhythmicity. A special messenger molecule, cAMP, synthesized within these cells at sympathetic stimulation, can bind to these channels, thereby enhancing channel opening evoked by voltage. The mechanism of this dual activation is still poorly understood. Here we quantified this duality of activation for HCN2 channels by globally fitting hidden Markovian state models to extensive sets of data. We propose that activation of this tetrameric channel requires for a full description only two voltage-dependent steps that are followed by a voltage-independent opening step of the channel pore. According to this model analysis cAMP exerts multiple effects on channel activation: It notably accelerates the charge movement of the voltage-dependent steps and reduces the number of the involved electrical charges. Furthermore, it introduces an additional closed state and stabilizes the open pore. Together, our results provide new insight into the duality of voltage- and cAMP-induced activation of HCN channels.
Collapse
Affiliation(s)
- Sabine Hummert
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
16
|
Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, Kano M, Nakazawa M, Ichida F, Nishida N, Tabata T. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels 2018; 33:802-819. [DOI: 10.1007/s00380-018-1116-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
|
17
|
|
18
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
19
|
Thon S, Schulz E, Kusch J, Benndorf K. Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides. Biophys J 2016; 109:2268-76. [PMID: 26636938 PMCID: PMC4675818 DOI: 10.1016/j.bpj.2015.08.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3',5'-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.
Collapse
Affiliation(s)
- Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany.
| |
Collapse
|
20
|
Biel S, Aquila M, Hertel B, Berthold A, Neumann T, DiFrancesco D, Moroni A, Thiel G, Kauferstein S. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch 2016; 468:1663-71. [PMID: 27553229 DOI: 10.1007/s00424-016-1870-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Diseases such as the sick sinus and the Brugada syndrome are cardiac abnormalities, which can be caused by a number of genetic aberrances. Among them are mutations in HCN4, a gene, which encodes the hyperpolarization-activated, cyclic nucleotide-gated ion channel 4; this pacemaker channel is responsible for the spontaneous activity of the sinoatrial node. The present genetic screening of patients with suspected or diagnosed Brugada or sick sinus syndrome identified in 1 out of 62 samples the novel mutation V492F. It is located in a highly conserved site of hyperpolarization-activated cyclic nucleotide-gated (HCN)4 channel downstream of the filter at the start of the last transmembrane domain S6. Functional expression of mutant channels in HEK293 cells uncovered a profoundly reduced channel function but no appreciable impact on channel synthesis and trafficking compared to the wild type. The inward rectifying HCN4 current could be partially rescued by an expression of heteromeric channels comprising wt and mutant monomers. These heteromeric channels were responsive to cAMP but they required a more negative voltage for activation and they exhibited a lower current density than the wt channel. This suggests a dominant negative effect of the mutation in patients, which carry this heterozygous mutation. Such a modulation of HCN4 activity could be the cause of the diagnosed cardiac abnormality.
Collapse
Affiliation(s)
- Stephanie Biel
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| | - Marco Aquila
- Department of Biosciences and CNR IBF-Mi, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Brigitte Hertel
- Department of Biology, Plant Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Anne Berthold
- Department of Biology, Plant Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Thomas Neumann
- Kerckhoff Heart and Thorax Center, University of Giessen, Benekestraße 2, 61231, Bad Nauheim, Germany
| | - Dario DiFrancesco
- The PaceLab, Department of Biosciences, University of Milano, via Celoria 26, 20133, Milan, Italy
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, Plant Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany.
| | - Silke Kauferstein
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Magee KEA, Madden Z, Young EC. HCN Channel C-Terminal Region Speeds Activation Rates Independently of Autoinhibition. J Membr Biol 2015; 248:1043-60. [PMID: 26123597 DOI: 10.1007/s00232-015-9816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Hyperpolarization- and cyclic nucleotide-activated (HCN) channels contribute to rhythmic oscillations in excitable cells. They possess an intrinsic autoinhibition with a hyperpolarized V 1/2, which can be relieved by cAMP binding to the cyclic nucleotide binding (CNB) fold in the C-terminal region or by deletion of the CNB fold. We questioned whether V 1/2 shifts caused by altering the autoinhibitory CNB fold would be accompanied by parallel changes in activation rates. We used two-electrode voltage clamp on Xenopus oocytes to compare wildtype (WT) HCN2, a constitutively autoinhibited point mutant incapable of cAMP binding (HCN2 R591E), and derivatives with various C-terminal truncations. Activation V 1/2 and deactivation t 1/2 measurements confirmed that a truncated channel lacking the helix αC of the CNB fold (ΔαC) had autoinhibition comparable to HCN2 R591E; however, ΔαC activated approximately two-fold slower than HCN2 R591E over a 60-mV range of hyperpolarizations. A channel with a more drastic truncation deleting the entire CNB fold (ΔCNB) had similar V 1/2 values to HCN2 WT with endogenous cAMP bound, confirming autoinhibition relief, yet it surprisingly activated slower than the autoinhibited HCN2 R591E. Whereas CNB fold truncation slowed down voltage-dependent reaction steps, the voltage-independent closed-open equilibrium subject to autoinhibition in HCN2 was not rate-limiting. Chemically inhibiting formation of the endogenous lipid PIP2 hyperpolarized the V 1/2 of HCN2 WT but did not slow down activation to match ΔCNB rates. Our findings suggest a "quickening conformation" mechanism, requiring a full-length CNB that ensures fast rates for voltage-dependent steps during activation regardless of potentiation by cAMP or PIP2.
Collapse
Affiliation(s)
- Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Zarina Madden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
22
|
DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 2015; 6:174. [PMID: 25805968 PMCID: PMC4354400 DOI: 10.3389/fncel.2015.00071] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological aspects.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neurophysiology, Foundation Neurological Institute C. Besta Milano, Italy ; Department of Neurology, San Gerardo Hospital and Laboratory of Neurobiology, Milan Center for Neuroscience, University of Milano-Bicocca Monza, Italy
| | - Dario DiFrancesco
- The PaceLab, Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
23
|
Verkerk AO, Wilders R. Pacemaker activity of the human sinoatrial node: effects of HCN4 mutations on the hyperpolarization-activated current. Europace 2014; 16:384-95. [PMID: 24569893 DOI: 10.1093/europace/eut348] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The hyperpolarization-activated 'funny' current, If, plays an important modulating role in the pacemaker activity of the human sinoatrial node (SAN). If is carried by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are tetramers built of four HCN subunits. In human SAN, HCN4 is the most abundant of the four isoforms of the HCN family. Since 2003, several loss-of-function mutations in the HCN4 gene, which encodes the HCN4 protein, or in the KCNE2 gene, which encodes the MiRP1 accessory β-subunit, have been associated with sinus node dysfunction. Voltage-clamp experiments on HCN4 channels expressed in COS-7 cells, Xenopus oocytes, or HEK-293 cells have revealed changes in the expression and kinetics of mutant channels, but the extent to which these changes would affect If flowing during a human SAN action potential is unresolved. Here, we review the changes in expression and kinetics of HCN4 mutant channels and provide an overview of their effects on If during the time course of a human SAN action potential, both under resting conditions and upon adrenergic stimulation. These effects are assessed in simulated action potential clamp experiments, with action potentials recorded from isolated human SAN pacemaker cells as command potential and kinetics of If based on voltage-clamp data from these cells. Results from in vitro and in silico experiments show several inconsistencies with clinical observations, pointing to challenges for future research.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Lyashchenko AK, Redd KJ, Goldstein PA, Tibbs GR. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 2014; 9:e101236. [PMID: 24983358 PMCID: PMC4077740 DOI: 10.1371/journal.pone.0101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.
Collapse
Affiliation(s)
- Alex K. Lyashchenko
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
| | - Kacy J. Redd
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gareth R. Tibbs
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci 2013; 33:16853-64. [PMID: 24155292 PMCID: PMC3807019 DOI: 10.1523/jneurosci.1844-13.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.
Collapse
Affiliation(s)
- Cameron H. Good
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Huikun Wang
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Yuan-Hao Chen
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Carlos A. Mejias-Aponte
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, and
| | | | - Carl R. Lupica
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| |
Collapse
|
26
|
Stillitano F, Lonardo G, Giunti G, Del Lungo M, Coppini R, Spinelli V, Sartiani L, Poggesi C, Mugelli A, Cerbai E. Chronic atrial fibrillation alters the functional properties of If in the human atrium. J Cardiovasc Electrophysiol 2013; 24:1391-400. [PMID: 23869794 DOI: 10.1111/jce.12212] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite the evidence that the hyperpolarization-activated current (If) is highly modulated in human cardiomyopathies, no definite data exist in chronic atrial fibrillation (cAF). We investigated the expression, function, and modulation of If in human cAF. METHODS AND RESULTS Right atrial samples were obtained from sinus rhythm (SR, n = 49) or cAF (duration >1 year, n = 31) patients undergoing corrective cardiac surgery. Among f-channel isoforms expressed in the human atrium (HCN1, 2 and 4), HCN4 mRNA levels measured by RT-PCR were significantly reduced. However, protein expression was preserved in cAF compared to SR (+85% for HCN4); concurrently, miR-1 expression was significantly reduced. In patch-clamped atrial myocytes, current-specific conductance (gf) was significantly increased in cAF at voltages around the threshold for If activation (-60 to -80 mV); accordingly, a 10-mV rightward shift of the activation curve occurred (P < 0.01). β-Adrenergic and 5-HT4 receptor stimulation exerted similar effects on If in cAF and SR cells, while the ANP-mediated effect was significantly reduced (P < 0.02), suggesting downregulation of natriuretic peptide signaling. CONCLUSIONS In human cAF modifications in transcriptional and posttranscriptional mechanisms of HCN channels occur, associated with a slight yet significant gain-of-function of If , which may contribute to enhanced atrial ectopy.
Collapse
Affiliation(s)
- Francesca Stillitano
- Center for Molecular Medicine (C.I.M.M.B.A.), Department NEUROFARBA, University of Firenze, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- François Roubille
- Montreal Heart Institute, 5000 Belanger St, Montreal, PQ H1T 1C8, QC, Canada
| | | |
Collapse
|
28
|
Hyperpolarization-activated current, If, in mathematical models of rabbit sinoatrial node pacemaker cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:872454. [PMID: 23936852 PMCID: PMC3722861 DOI: 10.1155/2013/872454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/31/2013] [Indexed: 01/01/2023]
Abstract
A typical feature of sinoatrial (SA) node pacemaker cells is the presence of an ionic current that activates upon hyperpolarization. The role of this hyperpolarization-activated current, If, which is also known as the “funny current” or “pacemaker current,” in the spontaneous pacemaker activity of SA nodal cells remains a matter of intense debate. Whereas some conclude that If plays a fundamental role in the generation of pacemaker activity and its rate control, others conclude that the role of If is limited to a modest contribution to rate control. The ongoing debate is often accompanied with arguments from computer simulations, either to support one's personal view or to invalidate that of the antagonist. In the present paper, we review the various mathematical descriptions of If that have been used in computer simulations and compare their strikingly different characteristics with our experimental data. We identify caveats and propose a novel model for If based on our experimental data.
Collapse
|
29
|
Kurata Y, Hisatome I, Tanida M, Shibamoto T. Effect of hyperpolarization-activated current I(f) on robustness of sinoatrial node pacemaking: theoretical study on influence of intracellular Na(+) concentration. Am J Physiol Heart Circ Physiol 2013; 304:H1337-51. [PMID: 23504184 DOI: 10.1152/ajpheart.00777.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To elucidate the effects of hyperpolarization-activated current I(f) on robustness of sinoatrial node (SAN) pacemaking in connection with intracellular Na(+) concentration (Na(i)) changes, we theoretically investigated 1) the impacts of I(f) on dynamical properties of SAN model cells during inhibition of L-type Ca(2+) channel currents (I(CaL)) or hyperpolarizing loads and 2) I(f)-dependent changes in Na(i) and their effects on dynamical properties of model cells. Bifurcation analyses were performed for Na(i)-variable and Na(i)-fixed versions of mathematical models for rabbit SAN cells; equilibrium points (EPs), limit cycles (LCs), and their stability were determined as functions of model parameters. Increasing I(f) conductance (g(f)) shrank I(CaL) conductance (g(CaL)) regions of unstable EPs and stable LCs (rhythmic firings) in the Na(i)-variable system but slightly broadened that of rhythmic firings at lower g(f) in the Na(i)-fixed system. In the Na(i)-variable system, increased g(f) yielded elevations in Na(i) at EPs and during spontaneous oscillations, which caused EP stabilization and shrinkage in the parameter regions of unstable EPs and rhythmic firings. As g(f) increased, parameter regions of unstable EPs and stable LCs determined for hyperpolarizing loads shrank in the Na(i)-variable system but were enlarged in the Na(i)-fixed system. These findings suggest that 1) I(f) does not enhance but rather attenuates robustness of rabbit SAN cells via facilitating EP stabilization and LC destabilization even in physiological g(f) ranges; and 2) the enhancing effect of I(f) on robustness of pacemaker activity, which could be observed at lower g(f) when Na(i) was fixed, is actually reversed by I(f)-dependent changes in Na(i).
Collapse
Affiliation(s)
- Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | |
Collapse
|
30
|
Du L, Wang SJ, Cui J, He WJ, Ruan HZ. The role of HCN channels within the periaqueductal gray in neuropathic pain. Brain Res 2013; 1500:36-44. [PMID: 23375842 DOI: 10.1016/j.brainres.2013.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 02/08/2023]
Abstract
Peripheral and spinal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a key role in neuropathic pain by regulating neuronal excitability. HCN channels are expressed in the ventral-lateral periaqueductal gray (vlPAG), a region that is important for pain modulation. However, the role of vlPAG HCN channels in neuropathic pain remains poorly understood. In the present study, we investigated the impact of changes to vlPAG HCN channels on neural activity in neuropathic pain. First, sciatic nerve chronic constriction injury (CCI) was established as a neuropathic pain model. Then, changes in HCN channels and their influence on vlPAG neuronal activity were detected. Our results indicate that after CCI surgery the following changes occur in vlPAG neurons: the expression of HCN1 and HCN2 channels is increased, the amplitude of the hyperpolarization-activated current (Ih) is augmented and its activation curve is shifted to more positive potentials and there is an increase in the frequency of action potential (AP) firing and spontaneous EPSCs that is attenuated by ZD7288, a HCN channel blocker. In addition, forskolin, which can elevate intracellular cAMP, mimics the CCI induced changes in neuronal excitability in the vlPAG. The effects of forskolin were also reversed by ZD7288. Taken together, the present data indicate an important role for HCN channels in the vlPAG in neuropathic pain.
Collapse
Affiliation(s)
- Lu Du
- Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
31
|
Scicchitano P, Carbonara S, Ricci G, Mandurino C, Locorotondo M, Bulzis G, Gesualdo M, Zito A, Carbonara R, Dentamaro I, Riccioni G, Ciccone MM. HCN channels and heart rate. Molecules 2012; 17:4225-35. [PMID: 22481543 PMCID: PMC6268830 DOI: 10.3390/molecules17044225] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/21/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
Hyperpolarization and Cyclic Nucleotide (HCN) -gated channels represent the molecular correlates of the "funny" pacemaker current (I(f)), a current activated by hyperpolarization and considered able to influence the sinus node function in generating cardiac impulses. HCN channels are a family of six transmembrane domain, single pore-loop, hyperpolarization activated, non-selective cation channels. This channel family comprises four members: HCN1-4, but there is a general agreement to consider HCN4 as the main isoform able to control heart rate. This review aims to summarize advanced insights into the structure, function and cellular regulation of HCN channels in order to better understand the role of such channels in regulating heart rate and heart function in normal and pathological conditions. Therefore, we evaluated the possible therapeutic application of the selective HCN channels blockers in heart rate control.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Santa Carbonara
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Gabriella Ricci
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Cosimo Mandurino
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Manuela Locorotondo
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Gabriella Bulzis
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Michele Gesualdo
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Annapaola Zito
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Rosa Carbonara
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Ilaria Dentamaro
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
| | - Graziano Riccioni
- Cardiology Unit, San Camillo De Lellis Hospital, Manfredonia (FG) 71043, Italy
| | - Marco Matteo Ciccone
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Policlinico, Bari 70124, Italy
- Author to whom correspondence should be addressed; ; Tel.: +39-080-5478791; Fax: +39-080-5478796
| |
Collapse
|
32
|
Kusch J, Thon S, Schulz E, Biskup C, Nache V, Zimmer T, Seifert R, Schwede F, Benndorf K. How subunits cooperate in cAMP-induced activation of homotetrameric HCN2 channels. Nat Chem Biol 2011; 8:162-9. [PMID: 22179066 DOI: 10.1038/nchembio.747] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/06/2011] [Indexed: 02/03/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric membrane proteins that generate electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are primarily activated by voltage but are receptors as well, binding the intracellular ligand cyclic AMP. The molecular mechanism of channel activation is still unknown. Here we analyze the complex activation mechanism of homotetrameric HCN2 channels by confocal patch-clamp fluorometry and kinetically quantify all ligand binding steps and closed-open isomerizations of the intermediate states. For the binding affinity of the second, third and fourth ligand, our results suggest pronounced cooperativity in the sequence positive, negative and positive, respectively. This complex interaction of the subunits leads to a preferential stabilization of states with zero, two or four ligands and suggests a dimeric organization of the activation process: within the dimers the cooperativity is positive, whereas it is negative between the dimers.
Collapse
Affiliation(s)
- Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chow SS, Van Petegem F, Accili EA. Energetics of cyclic AMP binding to HCN channel C terminus reveal negative cooperativity. J Biol Chem 2011; 287:600-606. [PMID: 22084239 DOI: 10.1074/jbc.m111.269563] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP binds to the HCN channel C terminus and variably stabilizes its open state. Using isothermal titration calorimetry, we show that cAMP binds to one subunit of tetrameric HCN2 and HCN4 C termini with high affinity (∼0.12 μM) and subsequently with low affinity (∼1 μM) to the remaining three subunits. Changes induced by high affinity binding already exist in both a constrained HCN2 tetramer and the unconstrained HCN1 tetramer. Natural "preactivation" of HCN1 may explain both the smaller effect of cAMP on stabilizing its open state and the opening of unliganded HCN1, which occurs as though already disinhibited.
Collapse
Affiliation(s)
- Sarah S Chow
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
34
|
Wu S, Vysotskaya ZV, Xu X, Xie C, Liu Q, Zhou L. State-dependent cAMP binding to functioning HCN channels studied by patch-clamp fluorometry. Biophys J 2011; 100:1226-32. [PMID: 21354395 DOI: 10.1016/j.bpj.2011.01.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/16/2011] [Accepted: 01/21/2011] [Indexed: 11/25/2022] Open
Abstract
One major goal of ion channel research is to delineate the molecular events from the detection of the stimuli to the movement of channel gates. For ligand-gated channels, it is challenging to separate ligand binding from channel gating. Here we studied the cyclic adenosine monophosphate (cAMP)-dependent gating in hyperpolarization-activated cAMP-regulated (HCN) channel by simultaneously recording channel opening and ligand binding, using the patch-clamp fluorometry technique with a unique fluorescent cAMP analog that fluoresces strongly in the hydrophobic binding pocket and exerts regulatory effects on HCN channels similar to those imposed by cAMP. Corresponding to voltage-dependent channel activation, we observed a robust, close-to-threefold increase in ligand binding, which was more pronounced at subsaturating ligand concentrations than higher concentrations. This observation supported the cyclic allosteric models and indicated that protein allostery can be implemented through differentiating ligand binding affinities between resting and active states. The kinetics of ligand binding largely matched channel activation. However, during channel deactivation, ligand unbinding was slower than channel closing, suggesting a delayed response to membrane potential by the ligand binding machinery. Our results provide what we believe to be new insights into the cAMP-dependent gating in HCN channel and the interpretation of protein allostery for general ligand-gated channels and receptors.
Collapse
Affiliation(s)
- Shengjun Wu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kusch J, Biskup C, Thon S, Schulz E, Nache V, Zimmer T, Schwede F, Benndorf K. Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron 2010; 67:75-85. [PMID: 20624593 DOI: 10.1016/j.neuron.2010.05.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
HCN pacemaker channels are tetramers mediating rhythmicity in neuronal and cardiac cells. The activity of these channels is controlled by both membrane voltage and the ligand cAMP, binding to each of the four channel subunits. The molecular mechanism underlying channel activation and the relationship between the two activation stimuli are still unknown. Using patch-clamp fluorometry and a fluorescent cAMP analog, we show that full ligand-induced activation appears already with only two ligands bound to the tetrameric channel. Kinetic analysis of channel activation and ligand binding suggests direct interaction between the voltage sensor and the cyclic nucleotide-binding domain, bypassing the pore. By exploiting the duality of activation in HCN2 channels by voltage and ligand binding, we quantify the increase of the binding affinity and overall free energy for binding upon channel activation, proving thus the principle of reciprocity between ligand binding and conformational change in a receptor protein.
Collapse
Affiliation(s)
- Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kurata Y, Matsuda H, Hisatome I, Shibamoto T. Roles of hyperpolarization-activated current If in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models. Am J Physiol Heart Circ Physiol 2010; 298:H1748-60. [PMID: 20363885 DOI: 10.1152/ajpheart.00729.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To elucidate the roles of hyperpolarization-activated current (I(f)) in sinoatrial node (SAN) pacemaking, we theoretically investigated 1) the effects of I(f) on stability and bifurcation during hyperpolarization of SAN cells; 2) combined effects of I(f) and the sustained inward current (I(st)) or Na(+) channel current (I(Na)) on robustness of pacemaking against hyperpolarization; and 3) whether blocking I(f) abolishes pacemaker activity under certain conditions. Bifurcation analyses were performed for mathematical models of rabbit SAN cells; equilibrium points (EPs), periodic orbits, and their stability were determined as functions of parameters. Unstable steady-state potential region determined with applications of constant bias currents shrunk as I(f) density increased. In the central SAN cell, the critical acetylcholine concentration at which bifurcations, to yield a stable EP and quiescence, occur was increased by smaller I(f), but decreased by larger I(f). In contrast, the critical acetylcholine concentration and conductance of gap junctions between SAN and atrial cells at bifurcations progressively increased with enhancing I(f) in the peripheral SAN cell. These effects of I(f) were significantly attenuated by eliminating I(st) or I(Na), or by accelerating their inactivation. Under hyperpolarized conditions, blocking I(f) abolished SAN pacemaking via bifurcations. These results suggest that 1) I(f) itself cannot destabilize EPs; 2) I(f) improves SAN cell robustness against parasympathetic stimulation via preventing bifurcations in the presence of I(st) or I(Na); 3) I(f) dramatically enhances peripheral cell robustness against electrotonic loads of the atrium in combination with I(Na); and 4) pacemaker activity of hyperpolarized SAN cells could be abolished by blocking I(f).
Collapse
Affiliation(s)
- Yasutaka Kurata
- Dept. of Physiology, Kanazawa Medical Univ., 1-1 Daigaku, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan.
| | | | | | | |
Collapse
|
37
|
HCN-related channelopathies. Pflugers Arch 2010; 460:405-15. [DOI: 10.1007/s00424-010-0810-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023]
|
38
|
Abstract
Several hundred thousand electronic pacemakers are implanted in the US each year to treat abnormally slow heart rates. Biological pacemaker research strives to replace this hardware, and the associated monitoring and maintenance, by using gene or cell therapy to create a permanent and autonomically responsive pacemaker. While there are numerous technological hurdles to overcome before this is a therapeutic reality, one critical issue is determining the optimal channel gene to employ in creating a biological pacemaker. This review discusses the pros and cons of various model systems for characterizing and evaluating the function of candidate channel genes. It is argued that a sequential approach that combines in silico, in vitro and in vivo models is required.
Collapse
|
39
|
Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 2009; 89:847-85. [PMID: 19584315 DOI: 10.1152/physrev.00029.2008] [Citation(s) in RCA: 754] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a small subfamily of proteins within the superfamily of pore-loop cation channels. In mammals, the HCN channel family comprises four members (HCN1-4) that are expressed in heart and nervous system. The current produced by HCN channels has been known as I(h) (or I(f) or I(q)). I(h) has also been designated as pacemaker current, because it plays a key role in controlling rhythmic activity of cardiac pacemaker cells and spontaneously firing neurons. Extensive studies over the last decade have provided convincing evidence that I(h) is also involved in a number of basic physiological processes that are not directly associated with rhythmicity. Examples for these non-pacemaking functions of I(h) are the determination of the resting membrane potential, dendritic integration, synaptic transmission, and learning. In this review we summarize recent insights into the structure, function, and cellular regulation of HCN channels. We also discuss in detail the different aspects of HCN channel physiology in the heart and nervous system. To this end, evidence on the role of individual HCN channel types arising from the analysis of HCN knockout mouse models is discussed. Finally, we provide an overview of the impact of HCN channels on the pathogenesis of several diseases and discuss recent attempts to establish HCN channels as drug targets.
Collapse
Affiliation(s)
- Martin Biel
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung, Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.
| | | | | | | |
Collapse
|
40
|
Wicks NL, Chan KSC, Madden Z, Santoro B, Young EC. Sensitivity of HCN channel deactivation to cAMP is amplified by an S4 mutation combined with activation mode shift. Pflugers Arch 2009; 458:877-89. [PMID: 19544068 DOI: 10.1007/s00424-009-0687-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 12/20/2022]
Abstract
Hyperpolarisation-activation of HCN ion channels relies on the movement of a charged S4 transmembrane helix, preferentially stabilising the open conformation of the ion pore gate. The open state is additionally stabilised, (a) when cyclic AMP (cAMP) is bound to a cytoplasmic C-terminal domain or (b) when the "mode I" open state formed initially by gate opening undergoes a "mode shift" into a "mode II" open state with a new S4 conformation. We isolated a mutation (lysine 381 to glutamate) in S4 of mouse HCN4; patch-clamp of homomeric channels in excised inside-out membranes revealed a conditional phenotype. When cAMP-liganded K381E channels are previously activated by hyperpolarisation, tens of seconds are required for complete deactivation at a weakly depolarised potential; this "ultra-sustained activation" is not observed without cAMP. Whilst cAMP slows deactivation of wild-type channels, the K381E mutation amplifies this effect to enable extraordinary kinetic stabilisation of the open state. K381E channels retain S4-gate coupling, with strong voltage dependence of the rate-limiting step for deactivation of mode II channels near -40 mV. At these voltages, the mode I deactivation pathway shows a different rate-limiting step, lacking strong voltage or cAMP dependence. Ultra-sustained activation thus reflects stabilisation of the mode II open state by the K381E mutation in synergistic combination with cAMP binding. Thus, the voltage-sensing domain is subject to strong functional coupling not only to the pore domain but also to the cytoplasmic cAMP-sensing domain in a manner specific to the voltage sensor conformation.
Collapse
Affiliation(s)
- Nadine L Wicks
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | | | | | | | | |
Collapse
|
41
|
Rozario AO, Turbendian HK, Fogle KJ, Olivier NB, Tibbs GR. Voltage-dependent opening of HCN channels: Facilitation or inhibition by the phytoestrogen, genistein, is determined by the activation status of the cyclic nucleotide gating ring. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1939-49. [PMID: 19524546 DOI: 10.1016/j.bbamem.2009.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/29/2009] [Accepted: 06/08/2009] [Indexed: 11/27/2022]
Abstract
Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel's nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein -- the estrogenic isoflavonoid strongly depolarizes the activation mid-point of HCN1-R538E, but not HCN1 channels (+9.8 mV + or - 0.9 versus +2.2 mV + or - 0.6) and hyperpolarizes gating of HCN2 (-4.8 mV + or - 1.0) but depolarizes gating of HCN2-R591E (+13.2 mV + or - 2.1). However, excised patch recording, X-ray crystallography and modeling reveal that this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform-specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds.
Collapse
Affiliation(s)
- Anjali O Rozario
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
42
|
Macri V, Nazzari H, McDonald E, Accili EA. Alanine scanning of the S6 segment reveals a unique and cAMP-sensitive association between the pore and voltage-dependent opening in HCN channels. J Biol Chem 2009; 284:15659-67. [PMID: 19269964 DOI: 10.1074/jbc.m809164200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels resemble Shaker K+ channels in structure and function. In both, changes in membrane voltage produce directionally similar movement of positively charged residues in the voltage sensor to alter the pore structure at the intracellular side and gate ion flow. However, HCNs open when hyperpolarized, whereas Shaker opens when depolarized. Thus, electromechanical coupling between the voltage sensor and gate is opposite. A key determinant of this coupling is the intrinsic stability of the pore. In Shaker, an alanine/valine scan of residues across the pore, by single point mutation, showed that most mutations made the channel easier to open and steepened the response of the channel to changes in voltage. Because most mutations likely destabilize protein packing, the Shaker pore is most stable when closed, and the voltage sensor works to open it. In HCN channels, the pore energetics and vector of work by the voltage sensor are unknown. Accordingly, we performed a 22-residue alanine/valine scan of the distal pore of the HCN2 isoform and show that the effects of mutations on channel opening and on the steepness of the response of the channel to voltage are mixed and smaller than those in Shaker. These data imply that the stabilities of the open and closed pore are similar, the voltage sensor must apply force to close the pore, and the interactions between the pore and voltage sensor are weak. Moreover, cAMP binding to the channel heightens the effects of the mutations, indicating stronger interactions between the pore and voltage sensor, and tips the energetic balance toward a more stable open state.
Collapse
Affiliation(s)
- Vincenzo Macri
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
43
|
Zhao X, Bucchi A, Oren RV, Kryukova Y, Dun W, Clancy CE, Robinson RB. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality. J Physiol 2009; 587:1513-25. [PMID: 19171659 DOI: 10.1113/jphysiol.2008.163444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Characterization of the Heart Rate-Lowering Action of Ivabradine, a Selective I f Current Inhibitor. Am J Ther 2008; 15:461-73. [PMID: 18806523 DOI: 10.1097/mjt.0b013e3181758855] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Hyperpolarization-activated graded persistent activity in the prefrontal cortex. Proc Natl Acad Sci U S A 2008; 105:7298-303. [PMID: 18474856 DOI: 10.1073/pnas.0800360105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We describe a phenomenon of hyperpolarization-activated graded persistent activity (HAGPA) in prefrontal cortex neurons. Successive hyperpolarizing pulses induced increasingly higher rates of tonic firing that remained stable for tens of seconds, allowing the neuron to retain a memory of the previous history of stimulation. This phenomenon occurred at the cellular level and in the absence of neuromodulators. Neurons with HAGPA had a sag during hyperpolarization, and blocking h-current eliminated the sag and prevented HAGPA, suggesting that the activation of this hyperpolarization-activated cationic current was necessary for the occurrence of the phenomenon. A single-neuron biophysical model including h-current modulation by intracellular calcium was able to display HAGPA. This form of neuronal memory not only allows the transformation of inhibition into an increase of firing rate, but also endows neurons with a mechanism to compute the properties of successive inputs into persistent activity, thus solving a difficult computational problem.
Collapse
|
46
|
Sottocornola B, Gazzarrini S, Olivari C, Romani G, Valbuzzi P, Thiel G, Moroni A. 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:231-6. [PMID: 18304197 DOI: 10.1111/j.1438-8677.2007.00028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
KAT1 is a cloned plant potassium channel belonging to the superfamily of Shaker-like Kv channels. Previous studies have shown that 14-3-3 proteins significantly increase KAT1 current by modifying the channel open probability. Employing a 14-3-3 scavenger construct to lower the long-term availability of endogenous 14-3-3 proteins, we found that 14-3-3 proteins not only control the voltage dependency of the channel but also the number of channels in the plasma membrane.
Collapse
Affiliation(s)
- B Sottocornola
- Dipartimento di Biologia and IBF-CNR, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu J, Noble PJ, Xiao G, Abdelrahman M, Dobrzynski H, Boyett MR, Lei M, Noble D. Role of pacemaking current in cardiac nodes: Insights from a comparative study of sinoatrial node and atrioventricular node. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:294-304. [PMID: 17905415 DOI: 10.1016/j.pbiomolbio.2007.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiac pacemaking in the sinoatrial (SA) node and atrioventricular (AV) node is generated by an interplay of many ionic currents, one of which is the funny pacemaker current (If). To understand the functional role of If in two different pacemakers, comparative studies of spontaneous activity and expression of the HCN channel in mouse SA node and AV node were performed. The intrinsic cycle length (CL) is 179+/-2.7 ms (n=5) in SA node and 258+/-18.7 ms (n=5) in AV node. Blocking of If current by 1 micromol/L ZD7288 increased the CL to 258+/-18.7 ms (n=5) and 447+/-92.4 ms (n=5) in SA node and AV node, respectively. However, the major HCN channel, HCN4 expressed at low level in the AV node compared to the SA node. To clarify the discrepancy between the functional importance of If and expression level of HCN4 channel, a SA node cell model was used. Increasing the If conductance resulted in decreasing in the CL in the model, which explains the high pacemaking rate and high expression of HCN channel in the SA node. Resistance to the blocking of If in the SA node might result from compensating effects from other currents (especially voltage sensitive currents) involved in pacemaking. The computer simulation shows that the difference in the intrinsic CL could explain the difference in response to If blocking in these two cardiac nodes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Physiology, University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bruening-Wright A, Elinder F, Larsson HP. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. ACTA ACUST UNITED AC 2007; 130:71-81. [PMID: 17591986 PMCID: PMC2154369 DOI: 10.1085/jgp.200709769] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational changes and to correlate these to the different activation steps in spHCN channels. We show that S4 undergoes two distinct conformational changes during voltage activation. Analysis of the fluorescence signals suggests that the N-terminal region of S4 undergoes conformational changes during a previously characterized mode shift in HCN channel voltage dependence, while a more C-terminal region undergoes an additional conformational change during gating charge movements. We fit our fluorescence and ionic current data to a previously proposed 10-state allosteric model for HCN channels. Our results are not compatible with a fast S4 motion and rate-limiting channel opening. Instead, our data and modeling suggest that spHCN channels open after only two S4s have moved and that S4 motion is rate limiting during voltage activation of spHCN channels.
Collapse
Affiliation(s)
- Andrew Bruening-Wright
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
49
|
Zhou L, Siegelbaum SA. Gating of HCN channels by cyclic nucleotides: residue contacts that underlie ligand binding, selectivity, and efficacy. Structure 2007; 15:655-70. [PMID: 17562313 PMCID: PMC1995447 DOI: 10.1016/j.str.2007.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/19/2007] [Accepted: 04/06/2007] [Indexed: 11/19/2022]
Abstract
Cyclic nucleotides (cNMPs) regulate the activity of various proteins by interacting with a conserved cyclic nucleotide-binding domain (CNBD). Although X-ray crystallographic studies have revealed the structures of several CNBDs, the residues responsible for generating the high efficacy with which ligand binding leads to protein activation remain unknown. Here, we combine molecular dynamics simulations with mutagenesis to identify ligand contacts important for the regulation of the hyperpolarization-activated HCN2 channel by cNMPs. Surprisingly, out of 7 residues that make strong contacts with ligand, only R632 in the C helix of the CNBD is essential for high ligand efficacy, due to its selective stabilization of cNMP binding to the open state of the channel. Principal component analysis suggests that a local movement of the C helix upon ligand binding propagates through the CNBD of one subunit to the C linker of a neighboring subunit to apply force to the gate of the channel.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Neurobiology and Behavior, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
| | - Steven A. Siegelbaum
- Center for Neurobiology and Behavior, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
- Department of Pharmacology, Howard Hughes Medical Institute, Columbia University, 722 W. 168 St. New York, NY 10032
- * To whom correspondence should be addressed. E-mail: , Fax: 212-795-7997
| |
Collapse
|
50
|
Chen S, Wang J, Zhou L, George MS, Siegelbaum SA. Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels. ACTA ACUST UNITED AC 2007; 129:175-88. [PMID: 17261842 PMCID: PMC2154356 DOI: 10.1085/jgp.200609585] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated cation (HCN) channels are regulated by both membrane voltage and the binding of cyclic nucleotides to a cytoplasmic, C-terminal cyclic nucleotide-binding domain (CNBD). Here we have addressed the mechanism of this dual regulation for HCN2 channels, which activate with slow kinetics that are strongly accelerated by cAMP, and HCN1 channels, which activate with rapid kinetics that are weakly enhanced by cAMP. Surprisingly, we find that the rate of opening of HCN2 approaches a maximal value with extreme hyperpolarization, indicating the presence of a voltage-independent kinetic step in the opening process that becomes rate limiting at very negative potentials. cAMP binding enhances the rate of this voltage-independent opening step. In contrast, the rate of opening of HCN1 is much greater than that of HCN2 and does not saturate with increasing hyperpolarization over the voltage range examined. Domain-swapping chimeras between HCN1 and HCN2 reveal that the S4–S6 transmembrane region largely determines the limiting rate in opening kinetics at negative voltages. Measurements of HCN2 tail current kinetics also reveal a voltage-independent closing step that becomes rate limiting at positive voltages; the rate of this closing step is decreased by cAMP. These results are consistent with a cyclic allosteric model in which a closed–open transition that is inherently voltage independent is subject to dual allosteric regulation by voltage sensor movement and cAMP binding. This mechanism accounts for several properties of HCN channel gating and has potentially important physiological implications.
Collapse
Affiliation(s)
- Shan Chen
- Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|