1
|
Song EAC, Chung SH, Kim JH. Molecular mechanisms of saliva secretion and hyposecretion. Eur J Oral Sci 2024; 132:e12969. [PMID: 38192116 DOI: 10.1111/eos.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
The exocrine salivary gland secretes saliva, a fundamental body component to maintain oral homeostasis. Saliva is composed of water, ions, and proteins such as amylase, mucins, and immunoglobulins that play essential roles in the digestion of food, lubrication, and prevention of dental caries and periodontitis. An increasing number of people experience saliva hyposecretion due to aging, medications, Sjögren's syndrome, and radiation therapy for head and neck cancer. However, current treatments are mostly limited to temporary symptomatic relief. This review explores the molecular mechanisms underlying saliva secretion and hyposecretion to provide insight into putative therapeutic targets for treatment. Proteins implicated in saliva secretion pathways, including Ca2+ -signaling proteins, aquaporins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and tight junctions, are aberrantly expressed and localized in patients with saliva hyposecretion, such as Sjögren's syndrome. Analysis of studies on the mechanisms of saliva secretion and hyposecretion suggests that crosstalk between fluid and protein secretory pathways via Ca2+ /protein kinase C and cAMP/protein kinase A regulates saliva secretion. Impaired crosstalk between the two secretory pathways may contribute to saliva hyposecretion. Future research into the detailed regulatory mechanisms of saliva secretion and hyposecretion may provide information to define novel targets and generate therapeutic strategies for saliva hyposecretion.
Collapse
Affiliation(s)
- Eun-Ah Christine Song
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sul-Hee Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Department of KHU-KIST Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Miozza V, Sánchez G, Sterin-Borda L, Busch L. Enhancement of carbachol-induced amylase secretion in parotid glands from rats with experimental periodontitis. Arch Oral Biol 2011; 56:1514-20. [PMID: 21741619 DOI: 10.1016/j.archoralbio.2011.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/23/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In a previous study we observed that parotid glands from rats with experimental periodontitis showed an increase in basal amylase release as a result of an increase in cAMP accumulation induced by PGE(2) production. The aim of this work was to study whether this change in amylase release influences the secretory effect of carbachol. DESIGN Experimental periodontitis was induced through placing a black thread around the cervix of the two lower first molars. Experiments were done 22 days after ligature induced periodontitis. Amylase release was evaluated in vitro and determined using a colorimetric method which uses starch as substrate. RESULTS The effect of carbachol was increased in parotid glands from periodontitis rats. The effect of 10(-6)M carbachol was inhibited by 4-DAMP (10(-6)M), U-73122 (5 × 10(-6)M) and trifluoperazine (5 × 10(-6)M) in both groups. No changes were observed in the binding sites and affinity in parotid membranes from rats with experimental periodontitis. The inhibition of the adenylyl cyclase and the cyclooxygenase induced a right shift of the carbachol concentration-response curve in periodontitis group whilst the opposite effect was observed in control group in the presence of db-cAMP and PGE(2). CONCLUSIONS Parotid glands from rats with experimental periodontitis release more amylase in response to carbachol suggesting an interaction between Ca(2+) and cAMP in the fusion/exocytosis step of secretory vesicles.
Collapse
Affiliation(s)
- Valeria Miozza
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142 (1122AAH), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
3
|
Soltoff SP, Hedden L. Isoproterenol and cAMP block ERK phosphorylation and enhance [Ca2+]i increases and oxygen consumption by muscarinic receptor stimulation in rat parotid and submandibular acinar cells. J Biol Chem 2010; 285:13337-48. [PMID: 20207737 DOI: 10.1074/jbc.m110.112094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salivary glands are innervated by sympathetic and parasympathetic neurons, which release neurotransmitters that promote fluid secretion and exocytosis when they bind to muscarinic and beta-adrenergic receptors, respectively. Signaling pathways downstream of these receptors are mainly distinct, but there is cross-talk that affects receptor-dependent events. Here we report that the beta-adrenergic ligand isoproterenol blocks increases in extracellular signal-related kinase (ERK) phosphorylation, a protein kinase C-dependent event promoted by the muscarinic receptor ligand carbachol in freshly dispersed rat parotid acinar cells. The inhibitory action of isoproterenol was reproduced by cAMP stimuli (forskolin) and mimetics (dibutyryl-cAMP, 8-(4-chlorophenylthio)-cAMP), including one highly selective for protein kinase A (N(6)-benzoyl-cAMP). In contrast, Epac (exchange proteins directly activated by cAMP)-selective activators did not mimic the blockade of ERK by isoproterenol, suggesting that inhibition involved protein kinase A. Isoproterenol also blocked ERK downstream of phorbol 12-myristate 13-acetate and the P2X(7) and epidermal growth factor receptors. Isoproterenol and forskolin blocked MEK phosphorylation, reduced RAF phosphorylation on a stimulatory site (Ser-338), and increased RAF phosphorylation on an inhibitory site (Ser-259). Inhibitory effects on ERK were also observed in freshly dispersed rat submandibular acinar cells but not in three immortalized/cancer salivary cell lines (Par-C10, HSY, HSG), indicating significant differences between native cells and cell lines. Notably, in native parotid cells isoproterenol enhanced the carbachol-promoted increases in [Ca(2+)](i) and oxygen consumption, events that initiate and accompany, respectively, the stimulation of fluid secretion by muscarinic ligands. Thus, isoproterenol produces opposite effects on prominent events downstream of the muscarinic receptor second messengers diacylglycerol (decrease in ERK phosphorylation) and inositol trisphosphate (increase in [Ca(2+)](i) and fluid secretion).
Collapse
Affiliation(s)
- Stephen P Soltoff
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
4
|
Satoh K, Matsuki-Fukushima M, Qi B, Guo MY, Narita T, Fujita-Yoshigaki J, Sugiya H. Phosphorylation of myristoylated alanine-rich C kinase substrate is involved in the cAMP-dependent amylase release in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1382-90. [PMID: 19372103 DOI: 10.1152/ajpgi.90536.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) is known as a major cellular substrate for protein kinase C (PKC). MARCKS has been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as phagocytosis, endocytosis, and exocytosis. The involvement of MARCKS phosphorylation in secretory function has been reported in Ca(2+)-mediated exocytosis. In rat parotid acinar cells, the activation of beta-adrenergic receptors provokes exocytotic amylase release via accumulation of intracellular cAMP levels. Here, we studied the involvement of MARCKS phosphorylation in the cAMP-dependent amylase release in rat parotid acinar cells. MARCKS protein was detected in rat parotid acinar cells by Western blotting. The beta-adrenergic agonist isoproterenol (IPR) induced MARCKS phosphorylation in a time-dependent manner. Translocation of a part of phosphorylated MARCKS from the membrane to the cytosol and enhancement of MARCKS phosphorylation at the apical membrane site induced by IPR were observed by immunohistochemistry. H89, a cAMP-dependent protein kinase (PKA) inhibitor, inhibited the IPR-induced MARCKS phosphorylation. The PKCdelta inhibitor rottlerin inhibited the IPR-induced MARCKS phosphorylation and amylase release. IPR activated PKCdelta, and the effects of IPR were inhibited by the PKA inhibitors. A MARCKS-related peptide partially inhibited the IPR-induced amylase release. These findings suggest that MARCKS phosphorylation via the activation of PKCdelta, which is downstream of PKA activation, is involved in the cAMP-dependent amylase release in parotid acinar cells.
Collapse
Affiliation(s)
- Keitaro Satoh
- Dept. of Physiology, Nihon Univ. School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Ozaki N, Miura Y, Yamada T, Kato Y, Oiso Y. RasGRP3 mediates phorbol ester-induced, protein kinase C-independent exocytosis. Biochem Biophys Res Commun 2005; 329:765-71. [PMID: 15737652 DOI: 10.1016/j.bbrc.2005.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Indexed: 10/25/2022]
Abstract
Phorbol esters are involved in neurotransmitter release and hormone secretion via activation of protein kinase C (PKC). In addition, it has been recently reported to enhance neurotransmitter release in a PKC-independent manner. However, the exocytotic machinery is not fully clarified. Nowadays members of the RasGRP family are being identified as novel molecules binding to diacylglycerol and calcium, representing a new class of guanine nucleotide exchange factor that activates small GTPases including Ras and Rap1. In the present study, we demonstrated that RasGRP3 is expressed in endocrine tissues and mediates phorbol ester-induced exocytosis. Furthermore, the effects were partially blocked by PKC inhibitor but not mitogen-activated protein kinase kinase inhibitor, although both significantly suppressed the phorbol ester-induced phosphorylation of extracellular signal-regulated kinase 1/2. These results indicate that RasGRP3 is implicated in phorbol ester-induced, PKC-independent exocytosis.
Collapse
Affiliation(s)
- Nobuaki Ozaki
- Department of Metabolic Disease, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
6
|
Castle AM, Huang AY, Castle JD. The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J Cell Sci 2002; 115:2963-73. [PMID: 12082156 DOI: 10.1242/jcs.115.14.2963] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we reported that the minor regulated and constitutive-like pathways are the main source of resting secretion by parotid acinar cells. Using tissue lobules biosynthetically labeled with [35S]amino acids, we now show that discharge of the minor regulated pathway precedes granule exocytosis stimulated by isoproterenol (≥1 μM) or carbachol (2μM). Stimulation of the minor regulated pathway by 40 nM carbachol as well as altering its trafficking, either by adding brefeldin A or by incubating in K+-free medium, cause potentiation of amylase secretion stimulated by isoproterenol, suggesting that the minor regulated pathway contributes to the mechanism of potentiation. Both exocytosis of the minor regulated pathway and the potentiation-inducing treatments induce relocation of immunostained subapical puncta of the SNARE protein syntaxin 3 into the apical plasma membrane. Rab11 and possibly VAMP2 may be concentrated in the same relocating foci. These results suggest that the minor regulated pathway and granule exocytosis are functionally linked and that the minor regulated pathway has a second role beyond contributing to resting secretion — providing surface docking/fusion sites for granule exocytosis. In the current model of salivary protein export, discharge of the minor regulated pathway by eitherβ-adrenergic or cholinergic stimulation is an obligatory first step. Ensuing granule exocytosis is controlled mainly by β-adrenergic stimulation whereas cholinergic stimulation mainly regulates the number of surface sites where release occurs.
Collapse
Affiliation(s)
- Anna M Castle
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville 22908-0732, USA
| | | | | |
Collapse
|
7
|
Affiliation(s)
- R James Turner
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda 20892-1190, USA.
| | | |
Collapse
|
8
|
Frick M, Eschertzhuber S, Haller T, Mair N, Dietl P. Secretion in alveolar type II cells at the interface of constitutive and regulated exocytosis. Am J Respir Cell Mol Biol 2001; 25:306-15. [PMID: 11588008 DOI: 10.1165/ajrcmb.25.3.4493] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long-term, simultaneous, measurements of cytoplasmic free Ca(2+) concentrations and single exocytotic fusion events in surfactant-secreting type II cells were performed. All fusion (constitutive, phorbol ester-induced, and agonist-induced) was Ca(2+)-dependent. Kinetic analysis revealed that agonist (adenosine triphosphate [ATP])-induced fusion exhibited a kinetic pattern that correlated well with the Ca(2+) signal. The effects of Ca(2+) release from intracellular stores (early) and Ca(2+) entry (late) could be demonstrated for the first time by dissecting the slow (10-to-15-min) fusion response to ATP into these two components. Bath Ba(2+) or Sr(2+) could replace Ca(2+) to elicit a fusion response in thapsigargin-pretreated cells lacking ATP-induced Ca(2+) release from stores. Although the late response was partially inhibited by interrupting the phospholipase D-protein kinase C axis, a high Ca(2+) dependence of the entire secretory course was demonstrated by a significant correlation between the integrated Ca(2+) signal and the fusion response. There was also a highly significant correlation between constitutive and ATP-stimulated fusion activity in individual cells. We propose a common mechanistic model for all types of fusion in this slow secretory cell, in which constitutive and regulated forms of exocytosis are subject to the same principles of regulation.
Collapse
Affiliation(s)
- M Frick
- Department of Physiology, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
9
|
Benes C, Soltoff SP. Modulation of PKCδ tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases. Am J Physiol Cell Physiol 2001; 280:C1498-510. [PMID: 11350745 DOI: 10.1152/ajpcell.2001.280.6.c1498] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) δ becomes tyrosine phosphorylated in rat parotid acinar cells exposed to muscarinic and substance P receptor agonists, which initiate fluid secretion in this salivary cell. Here we examine the signaling components of PKCδ tyrosine phosphorylation and effects of phosphorylation on PKCδ activity. Carbachol- and substance P-promoted increases in PKCδ tyrosine phosphorylation were blocked by inhibiting phospholipase C (PLC) but not by blocking intracellular Ca2+ concentration elevation, suggesting that diacylglycerol, rather than d- myo-inositol 1,4,5-trisphosphate production, positively modulated this phosphorylation. Stimuli-dependent increases in PKCδ activity in parotid and PC-12 cells were blocked in vivo by inhibitors of Src tyrosine kinases. Dephosphorylation of tyrosine residues by PTP1B, a protein tyrosine phosphatase, reduced the enhanced PKCδ activity. Lipid cofactors modified the tyrosine phosphorylation-dependent PKCδ activation. Two PKCδ regulatory sites (Thr-505 and Ser-662) were constitutively phosphorylated in unstimulated parotid cells, and these phosphorylations were not altered by stimuli that increased PKCδ tyrosine phosphorylation. These results demonstrate that PKCδ activity is positively modulated by tyrosine phosphorylation in parotid and PC-12 cells and suggest that PLC-dependent effects of secretagogues on salivary cells involve Src-related kinases.
Collapse
Affiliation(s)
- C Benes
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 330 Brookline Ave., Boston, MA 02215, USA
| | | |
Collapse
|