1
|
Zhang X, Lee MD, Wilson C, McCarron JG. Hydrogen peroxide depolarizes mitochondria and inhibits IP 3-evoked Ca 2+ release in the endothelium of intact arteries. Cell Calcium 2019; 84:102108. [PMID: 31715384 PMCID: PMC6891240 DOI: 10.1016/j.ceca.2019.102108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
H2O2 is produced by several cell processes including mitochondria and may act as an intracellular messenger and cell-cell signalling molecule. Spontaneous local Ca2+ signals and IP3-evoked Ca2+ increases were inhibited by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria via a decrease in the mitochondrial membrane potential. H2O2-induced mitochondrial depolarization and inhibition of IP3-evoked Ca2+ release, may protect mitochondria from Ca2+ overload during IP3-linked Ca2+ signals.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
2
|
Fedotcheva TA, Sheichenko OP, Sheichenko VI, Fedotcheva NI, Shimanovskii NL. Preparation of a Horse Chestnut Extract with a 50% Content of Escin and its Actions on Tumor Cell Proliferation and Isolated Mitochondria. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Wilson C, Lee MD, Heathcote HR, Zhang X, Buckley C, Girkin JM, Saunter CD, McCarron JG. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate-evoked calcium signaling. J Biol Chem 2019; 294:737-758. [PMID: 30498088 PMCID: PMC6341391 DOI: 10.1074/jbc.ra118.005913] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells are reported to be glycolytic and to minimally rely on mitochondria for ATP generation. Rather than providing energy, mitochondria in endothelial cells may act as signaling organelles that control cytosolic Ca2+ signaling or modify reactive oxygen species (ROS). To control Ca2+ signaling, these organelles are often observed close to influx and release sites and may be tethered near Ca2+ transporters. In this study, we used high-resolution, wide-field fluorescence imaging to investigate the regulation of Ca2+ signaling by mitochondria in large numbers of endothelial cells (∼50 per field) in intact arteries from rats. We observed that mitochondria were mostly spherical or short-rod structures and were distributed widely throughout the cytoplasm. The density of these organelles did not increase near contact sites with smooth muscle cells. However, local inositol trisphosphate (IP3)-mediated Ca2+ signaling predominated near these contact sites and required polarized mitochondria. Of note, mitochondrial control of Ca2+ signals occurred even when mitochondria were far from Ca2+ release sites. Indeed, the endothelial mitochondria were mobile and moved throughout the cytoplasm. Mitochondrial control of Ca2+ signaling was mediated by ATP production, which, when reduced by mitochondrial depolarization or ATP synthase inhibition, eliminated local IP3-mediated Ca2+ release events. ROS buffering did not significantly alter local Ca2+ release events. These results highlight the importance of mitochondrial ATP production in providing long-range control of endothelial signaling via IP3-evoked local Ca2+ release in intact endothelium.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - John M Girkin
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Christopher D Saunter
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| |
Collapse
|
4
|
Roder P, Hille C. Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes. Sci Rep 2018; 8:5892. [PMID: 29651136 PMCID: PMC5897369 DOI: 10.1038/s41598-018-24255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022] Open
Abstract
Local manipulation of complex tissues at the single-cell level is challenging and requires excellent sealing between the specimen and the micromanipulation device. Here, biological applications for a recently developed loading technique for a force- and pressure-controlled fluidic force microscope micropipette are described. This technique allows for the exact positioning and precise spatiotemporal control of liquid delivery. The feasibility of a local loading technique for tissue applications was investigated using two fluorescent dyes, with which local loading behaviour could be optically visualised. Thus, homogeneous intracellular distribution of CellTracker Red and accumulation of SYTO 9 Green within nuclei was realised in single cells of a tissue preparation. Subsequently, physiological micromanipulation experiments were performed. Salivary gland tissue was pre-incubated with the Ca2+-sensitive dye OGB-1. An intracellular Ca2+ rise was then initiated at the single-cell level by applying dopamine via micropipette. When pre-incubating tissue with the nitric oxide (NO)-sensitive dye DAF-FM, NO release and intercellular NO diffusion was observed after local application of the NO donor SNP. Finally, local micromanipulation of a well-defined area along irregularly shaped cell surfaces of complex biosystems was shown for the first time for the fluidic force microscope micropipette. Thus, this technique is a promising tool for the investigation of the spatiotemporal effects of locally applied substances in complex tissues.
Collapse
Affiliation(s)
- Phillip Roder
- Department of Physical Chemistry/Applied Laser Sensing in Complex Biosystems (ALS ComBi), Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Hille
- Department of Physical Chemistry/Applied Laser Sensing in Complex Biosystems (ALS ComBi), Institute of Chemistry, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Dougoud M, Vinckenbosch L, Mazza C, Schwaller B, Pecze L. The Effect of Gap Junctional Coupling on the Spatiotemporal Patterns of Ca2+ Signals and the Harmonization of Ca2+-Related Cellular Responses. PLoS Comput Biol 2016; 12:e1005295. [PMID: 28027293 PMCID: PMC5226819 DOI: 10.1371/journal.pcbi.1005295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/11/2017] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) are important mediators of a great variety of cellular activities e.g. in response to an agonist activation of a receptor. The magnitude of a cellular response is often encoded by frequency modulation of Ca2+ oscillations and correlated with the stimulation intensity. The stimulation intensity highly depends on the sensitivity of a cell to a certain agonist. In some cases, it is essential that neighboring cells produce a similar and synchronized response to an agonist despite their different sensitivity. In order to decipher the presumed function of Ca2+ waves spreading among connecting cells, a mathematical model was developed. This model allows to numerically modifying the connectivity probability between neighboring cells, the permeability of gap junctions and the individual sensitivity of cells to an agonist. Here, we show numerically that strong gap junctional coupling between neighbors ensures an equilibrated response to agonist stimulation via formation of Ca2+ phase waves, i.e. a less sensitive neighbor will produce the same or similar Ca2+ signal as its highly sensitive neighbor. The most sensitive cells within an ensemble are the wave initiator cells. The Ca2+ wave in the cytoplasm is driven by a sensitization wave front in the endoplasmic reticulum. The wave velocity is proportional to the cellular sensitivity and to the strength of the coupling. The waves can form different patterns including circular rings and spirals. The observed pattern depends on the strength of noise, gap junctional permeability and the connectivity probability between neighboring cells. Our simulations reveal that one highly sensitive region gradually takes the lead within the entire noisy system by generating directed circular phase waves originating from this region. The calcium ion (Ca2+), a universal signaling molecule, is widely recognized to play a fundamental role in the regulation of various biological processes. Agonist–evoked Ca2+ signals often manifest as rhythmic changes in the cytosolic free Ca2+ concentration (ccyt) called Ca2+ oscillations. Stimuli intensity was found to be proportional to the oscillation frequency and the evoked down-steam cellular response. Stochastic receptor expression in individual cells in a cell population inevitably leads to individually different oscillation frequencies and individually different Ca2+-related cellular responses. However, in many organs, the neighboring cells have to overcome their individually different sensitivity and produce a synchronized response. Gap junctions are integral membrane structures that enable the direct cytoplasmic exchange of Ca2+ ions and InsP3 molecules between neighboring cells. By simulations, we were able to demonstrate how the strength of intercellular gap junctional coupling in relation to stimulus intensity can modify the spatiotemporal patterns of Ca2+ signals and harmonize the Ca2+-related cellular responses via synchronization of oscillation frequency. We demonstrate that the most sensitive cells are the wave initiator cells and that a highly sensitive region plays an important role in the determination of the Ca2+ phase wave direction. This sensitive region will then also progressively determine the global behavior of the entire system.
Collapse
Affiliation(s)
- Michaël Dougoud
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Laura Vinckenbosch
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
- University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-Bains, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Abstract
Ca
2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca
2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca
2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca
2+ are controlled not only by the frequency of Ca
2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca
2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca
2+ oscillations. The main characteristics of the Ca
2+ exchange fluxes with these compartments are also reviewed.
Collapse
Affiliation(s)
- Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Combettes
- Interactions Cellulaires et Physiopathologie Hépatique, UMR-S 1174, Université Paris Sud, Orsay, France
| |
Collapse
|
7
|
Wacquier B, Combettes L, Van Nhieu GT, Dupont G. Interplay Between Intracellular Ca(2+) Oscillations and Ca(2+)-stimulated Mitochondrial Metabolism. Sci Rep 2016; 6:19316. [PMID: 26776859 PMCID: PMC4725975 DOI: 10.1038/srep19316] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Oscillations of cytosolic Ca(2+) concentration are a widespread mode of signalling. Oscillatory spikes rely on repetitive exchanges of Ca(2+) between the endoplasmic reticulum (ER) and the cytosol, due to the regulation of inositol 1,4,5-trisphosphate receptors. Mitochondria also sequester and release Ca(2+), thus affecting Ca(2+) signalling. Mitochondrial Ca(2+) activates key enzymes involved in ATP synthesis. We propose a new integrative model for Ca(2+) signalling and mitochondrial metabolism in electrically non-excitable cells. The model accounts for (1) the phase relationship of the Ca(2+) changes in the cytosol, the ER and mitochondria, (2) the dynamics of mitochondrial metabolites in response to cytosolic Ca(2+) changes, and (3) the impacts of cytosol/mitochondria Ca(2+) exchanges and of mitochondrial metabolism on Ca(2+) oscillations. Simulations predict that as expected, oscillations are slowed down by decreasing the rate of Ca(2+) efflux from mitochondria, but also by decreasing the rate of Ca(2+) influx through the mitochondrial Ca(2+) uniporter (MCU). These predictions were experimentally validated by inhibiting MCU expression. Despite the highly non-linear character of Ca(2+) dynamics and mitochondrial metabolism, bioenergetics were found to be robust with respect to changes in frequency and amplitude of Ca(2+) oscillations.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Laurent Combettes
- Université Paris Sud, UMRS1174, Orsay F-91405, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMRS1174, Orsay F-91405, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie(CIRB), Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.,Inserm, U1050, Paris 75005, France.,Centre national de la Recherche Scientifique (CNRS), UMR7241, Paris 75005, France.,MEMOLIFE Laboratory of excellence and Paris Sciences et Lettres, Paris 75005, France
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050, Brussels, Belgium
| |
Collapse
|
8
|
Pecze L, Blum W, Schwaller B. Routes of Ca2+ Shuttling during Ca2+ Oscillations: FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS. J Biol Chem 2015; 290:28214-28230. [PMID: 26396196 PMCID: PMC4653679 DOI: 10.1074/jbc.m115.663179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/29/2023] Open
Abstract
In some cell types, Ca2+ oscillations are strictly dependent on Ca2+ influx across the plasma membrane, whereas in others, oscillations also persist in the absence of Ca2+ influx. We observed that, in primary mesothelial cells, the plasmalemmal Ca2+ influx played a pivotal role. However, when the Ca2+ transport across the plasma membrane by the “lanthanum insulation method” was blocked prior to the induction of the serum-induced Ca2+ oscillations, mitochondrial Ca2+ transport was found to be able to substitute for the plasmalemmal Ca2+ exchange function, thus rendering the oscillations independent of extracellular Ca2+. However, in a physiological situation, the Ca2+-buffering capacity of mitochondria was found not to be essential for Ca2+ oscillations. Moreover, brief spontaneous Ca2+ changes were observed in the mitochondrial Ca2+ concentration without apparent changes in the cytosolic Ca2+ concentration, indicating the presence of a mitochondrial autonomous Ca2+ signaling mechanism. In the presence of calretinin, a Ca2+-buffering protein, the amplitude of cytosolic spikes during oscillations was decreased, and the amount of Ca2+ ions taken up by mitochondria was reduced. Thus, the increased calretinin expression observed in mesothelioma cells and in certain colon cancer might be correlated to the increased resistance of these tumor cells to proapoptotic/pronecrotic signals. We identified and characterized (experimentally and by modeling) three Ca2+ shuttling pathways in primary mesothelial cells during Ca2+ oscillations: Ca2+ shuttled between (i) the endoplasmic reticulum (ER) and mitochondria, (ii) the ER and the extracellular space, and (iii) the ER and cytoplasmic Ca2+ buffers.
Collapse
Affiliation(s)
- László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland.
| | - Walter Blum
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Pecze L, Schwaller B. Characterization and modeling of Ca2+ oscillations in mouse primary mesothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:632-45. [DOI: 10.1016/j.bbamcr.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
10
|
Zhang C, Pan T, Salesse C, Zhang D, Miao L, Wang L, Gao Y, Xu J, Dong Z, Luo Q, Liu J. Reversible Ca2+Switch of An Engineered Allosteric Antioxidant Selenoenzyme. Angew Chem Int Ed Engl 2014; 53:13536-9. [DOI: 10.1002/anie.201407135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 11/11/2022]
|
11
|
Zhang C, Pan T, Salesse C, Zhang D, Miao L, Wang L, Gao Y, Xu J, Dong Z, Luo Q, Liu J. Reversible Ca2+Switch of An Engineered Allosteric Antioxidant Selenoenzyme. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Quercetin as a fluorescent probe for the ryanodine receptor activity in Jurkat cells. Pflugers Arch 2013; 465:1101-19. [DOI: 10.1007/s00424-013-1235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023]
|
13
|
Pizzo P, Drago I, Filadi R, Pozzan T. Mitochondrial Ca²⁺ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17. [PMID: 22706634 DOI: 10.1007/s00424-012-1122-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria from every tissue are quite similar in their capability to accumulate Ca²⁺ in a process that depends on the electrical potential across the inner membrane; it is catalyzed by a gated channel (named mitochondrial Ca²⁺ uniporter), the molecular identity of which has only recently been unraveled. The release of accumulated Ca²⁺ in mitochondria from different tissues is, on the contrary, quite variable, both in terms of speed and mechanism: a Na⁺-dependent efflux in excitable cells (catalyzed by NCLX) and a H⁺/Ca²⁺ exchanger in other cells. The efficacy of mitochondrial Ca²⁺ uptake in living cells is strictly dependent on the topological arrangement of the organelles with respect to the source of Ca²⁺ flowing into the cytoplasm, i.e., plasma membrane or intracellular channels. In turn, the structural and functional relationships between mitochondria and other cellular membranes are dictated by the specific architecture of different cells. Mitochondria not only modulate the amplitude and the kinetics of local and bulk cytoplasmic Ca²⁺ changes but also depend on the Ca²⁺ signal for their own functionality, in particular for their capacity to produce ATP. In this review, we summarize the processes involved in mitochondrial Ca²⁺ handling and its integration in cell physiology, highlighting the main common characteristics as well as key differences, in different tissues.
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
14
|
Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 2011; 36:1175-85. [PMID: 21479917 PMCID: PMC3111726 DOI: 10.1007/s11064-011-0457-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 11/18/2022]
Abstract
Oscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca2+) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are intracellular Ca2+ release channels that mediate Ca2+ release from endoplasmic reticulum (ER) Ca2+ stores. The three IP3R subtypes described so far exhibit differential structural, biophysical, and biochemical properties. Subtype specific regulation of IP3R by the endogenous modulators IP3, Ca2+, protein kinases and associated proteins have been thoroughly examined. In this article we will review the contribution of each IP3R subtype in shaping cytosolic Ca2+ oscillations.
Collapse
|
15
|
Calcium regulating the polarity: a new pathogenesis of aphthous ulcer. Med Hypotheses 2009; 73:933-4. [PMID: 19632055 DOI: 10.1016/j.mehy.2009.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 06/07/2009] [Accepted: 06/18/2009] [Indexed: 11/21/2022]
Abstract
Aphthous ulcer is one of the most common oral conditions. Although many etiological factors have been presented, its precise cause remains unclear. Not only is calcium an integral part of the teeth and bones, but it is a second messenger involving in many physiological processes. Recently, with the study of calcium in polarity of cells or tissues, it was found that calcium can regulate the polarity of cells or tissues. The polarity of cells or tissues is the classic feature of metazoan, and this polarity makes sure the performing of cell or tissue's functions correctly. The polarity of oral mucous just likes a defender acting as a barrier to resist against external stimulation. So, we hypothesize that deficiency of calcium may be a new wire-puller of aphthous ulcer. That means, deficiency of calcium which may bring about the loss of polarity, could be a new pathogenesis of aphthous ulcer, meanwhile, supplement of calcium is necessary for gestation in order to avoid not only occurrence of osteoporosis and hypertension, but also prevention of aphthous ulcer and healing of focus.
Collapse
|
16
|
Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:335-44. [PMID: 19268425 DOI: 10.1016/j.bbabio.2009.02.021] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 12/17/2022]
Abstract
Mitochondrial Ca(2+) accumulation is a tightly controlled process, in turn regulating functions as diverse as aerobic metabolism and induction of cell death. The link between Ca(2+) (dys)regulation, mitochondria and cellular derangement is particularly evident in neurodegenerative disorders, in which genetic models and environmental factors allowed to identify common traits in the pathogenic routes. We will here summarize: i) the current view of mechanisms and functions of mitochondrial Ca(2+) homeostasis, ii) the basic principles of organelle Ca(2+) transport, iii) the role of Ca(2+) in neuronal cell death, and iv) the new information on the pathogenesis of Alzheimer's, Huntington's and Parkinson's diseases, highlighting the role of Ca(2+) and mitochondria.
Collapse
Affiliation(s)
- Fulvio Celsi
- Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Schmidt R, Baumann O, Walz B. cAMP potentiates InsP3-induced Ca2+ release from the endoplasmic reticulum in blowfly salivary glands. BMC PHYSIOLOGY 2008; 8:10. [PMID: 18492257 PMCID: PMC2408587 DOI: 10.1186/1472-6793-8-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/20/2008] [Indexed: 01/09/2023]
Abstract
Background Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER). Results Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration. Conclusion This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.
Collapse
Affiliation(s)
- Ruth Schmidt
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str, 24-25, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
19
|
Schewe B, Schmälzlin E, Walz B. Intracellular pH homeostasis and serotonin-induced pH changes inCalliphorasalivary glands: the contribution of V-ATPase and carbonic anhydrase. J Exp Biol 2008; 211:805-15. [DOI: 10.1242/jeb.002667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYBlowfly salivary gland cells have a vacuolar-type H+-ATPase(V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pHi) regulation,and we have localized CA activity by histochemistry. We show: (1) mean pHi in salivary gland cells is 7.5±0.3 pH units(N=96), higher than that expected from passive H+distribution; (2) low 5-HT concentrations (0.3–3 nmol l–1) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l–1, causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pHi; (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl–-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na+-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pHi regulation and 5-HT-induced outward H+pumping does not cause an alkalinization of pHi because of cytosolic H+ accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Biochemistry and Biology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- University of Potsdam, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Elmar Schmälzlin
- University of Potsdam, Department of Chemistry, Physical Chemistry, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- University of Potsdam, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Pizzo P, Pozzan T. Mitochondria–endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 2007; 17:511-7. [PMID: 17851078 DOI: 10.1016/j.tcb.2007.07.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/02/2007] [Accepted: 07/17/2007] [Indexed: 01/06/2023]
Abstract
Mitochondria and endoplasmic reticulum (ER) have different roles in living cells but they interact both physically and functionally. A key aspect of the mitochondria-ER relationship is the modulation of Ca(2+) signaling during cell activation, which thus affects a variety of physiological processes. We focus here on the molecular aspects that control the dynamics of the organelle-organelle interaction and their relationship with Ca(2+) signals, also discussing the consequences that these phenomena have, not only for cell physiology but also in the control of cell death.
Collapse
Affiliation(s)
- Paola Pizzo
- Department Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | |
Collapse
|
21
|
Goetz JG, Genty H, St-Pierre P, Dang T, Joshi B, Sauvé R, Vogl W, Nabi IR. Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. J Cell Sci 2007; 120:3553-64. [PMID: 17895372 DOI: 10.1242/jcs.03486] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The 3F3A monoclonal antibody to autocrine motility factor receptor (AMFR) labels mitochondria-associated smooth endoplasmic reticulum (ER) tubules. siRNA down-regulation of AMFR expression reduces mitochondria-associated 3F3A labelling. The 3F3A-labelled ER domain does not overlap with reticulon-labelled ER tubules, the nuclear membrane or perinuclear ER markers and only partially overlaps with the translocon component Sec61alpha. Upon overexpression of FLAG-tagged AMFR, 3F3A labelling is mitochondria associated, excluded from the perinuclear ER and co-distributes with reticulon. 3F3A labelling therefore defines a distinct mitochondria-associated ER domain. Elevation of free cytosolic Ca(2+) levels with ionomycin promotes dissociation of 3F3A-labelled tubules from mitochondria and, judged by electron microscopy, disrupts close contacts (<50 nm) between smooth ER tubules and mitochondria. The ER tubule-mitochondria association is similarly disrupted upon thapsigargin-induced release of ER Ca(2+) stores or purinergic receptor stimulation by ATP. The inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] receptor (IP3R) colocalises to 3F3A-labelled mitochondria-associated ER tubules, and conditions that induce ER tubule-mitochondria dissociation disrupt continuity between 3F3A- and IP3R-labelled ER domains. RAS-transformed NIH-3T3 cells have increased basal cytosolic Ca(2+) levels and show dissociation of the 3F3A-labelled, but not IP3R-labelled, ER from mitochondria. Our data indicate that regulation of the ER-mitochondria association by free cytosolic Ca(2+) is a characteristic of smooth ER domains and that multiple mechanisms regulate the interaction between these organelles.
Collapse
Affiliation(s)
- Jacky G Goetz
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rüdiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M. Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 2007; 93:1847-57. [PMID: 17496042 PMCID: PMC1959544 DOI: 10.1529/biophysj.106.099879] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Collapse
Affiliation(s)
- S Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dupont G, Combettes L, Leybaert L. Calcium Dynamics: Spatio‐Temporal Organization from the Subcellular to the Organ Level. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:193-245. [PMID: 17560283 DOI: 10.1016/s0074-7696(07)61005-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many essential physiological processes are controlled by calcium. To ensure reliability and specificity, calcium signals are highly organized in time and space in the form of oscillations and waves. Interesting findings have been obtained at various scales, ranging from the stochastic opening of a single calcium channel to the intercellular calcium wave spreading through an entire organ. A detailed understanding of calcium dynamics thus requires a link between observations at different scales. It appears that some regulations such as calcium-induced calcium release or PLC activation by calcium, as well as the weak diffusibility of calcium ions play a role at all levels of organization in most cell types. To comprehend how calcium waves spread from one cell to another, specific gap-junctional coupling and paracrine signaling must also be taken into account. On the basis of a pluridisciplinar approach ranging from physics to physiology, a unified description of calcium dynamics is emerging, which could help understanding how such a small ion can mediate so many vital functions in living systems.
Collapse
Affiliation(s)
- Geneviève Dupont
- Theoretical Chronobiology Unit, Université Libre de Bruxelles, Faculté des Sciences, 1050 Brussels, Belgium
| | | | | |
Collapse
|
24
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|
25
|
Structure of Mitochondria and Activity of Their Respiratory Chain in Successive Generations of Yeast Cells Exposed to He-Ne Laser Light. BIOL BULL+ 2005. [DOI: 10.1007/s10525-005-0143-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. ACTA ACUST UNITED AC 2005; 125:427-40. [PMID: 15795312 PMCID: PMC2217508 DOI: 10.1085/jgp.200409232] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl− currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3−/−) mice, hypoxia-induced, but not submaximal noradrenaline–induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3−/− mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline–induced Ca2+ and contractile responses in PASMCs.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Neuroscience, and Neuropharmacology, Albany Medical College, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Campbell CL, Vandyke KA, Letchworth GJ, Drolet BS, Hanekamp T, Wilson WC. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). INSECT MOLECULAR BIOLOGY 2005; 14:121-136. [PMID: 15796745 DOI: 10.1111/j.1365-2583.2004.00537.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Numerous Culicoides spp. are important vectors of livestock or human disease pathogens. Transcriptome information from midguts and salivary glands of adult female Culicoides sonorensis provides new insight into vector biology. Of 1719 expressed sequence tags (ESTs) from adult serum-fed female midguts harvested within 5 h of feeding, twenty-eight clusters of serine proteases were derived. Four clusters encode putative iron binding proteins (FER1, FERL, PXDL1, PXDL2), and two clusters encode metalloendopeptidases (MDP6C, MDP6D) that probably function in bloodmeal catabolism. In addition, a diverse variety of housekeeping cDNAs were identified. Selected midgut protease transcripts were analysed by quantitative real-time PCR (q-PCR): TRY1_115 and MDP6C mRNAs were induced in adult female midguts upon feeding, whereas TRY1_156 and CHYM1 were abundant in midguts both before and immediately after feeding. Of 708 salivary gland ESTs analysed, clusters representing two new classes of protein families were identified: a new class of D7 proteins and a new class of Kunitz-type protease inhibitors. Additional cDNAs representing putative immunomodulatory proteins were also identified: 5' nucleotidases, antigen 5-related proteins, a hyaluronidase, a platelet-activating factor acetylhydrolase, mucins and several immune response cDNAs. Analysis by q-PCR showed that all D7 and Kunitz domain transcripts tested were highly enriched in female heads compared with other tissues and were generally absent from males. The mRNAs of two additional protease inhibitors, TFPI1 and TFPI2, were detected in salivary glands of paraffin-embedded females by in situ hybridization.
Collapse
Affiliation(s)
- C L Campbell
- USDA, ARS, Arthropod-Borne Animal Diseases Research Laboratory, College of Agriculture, Department 3354, 1000 E. University, Laramie, WY 82071, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Fellner SK, Rybczynski R, Gilbert LI. Ca2+ signaling in prothoracicotropic hormone-stimulated prothoracic gland cells of Manduca sexta: evidence for mobilization and entry mechanisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:263-275. [PMID: 15763463 DOI: 10.1016/j.ibmb.2004.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 05/24/2023]
Abstract
Prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis in lepidopteran prothoracic glands (PGs), thus indirectly controlling molting and metamorphosis. PTTH triggers a signal transduction cascade in PGs that involves an early influx of Ca2+. Although the importance of Ca2+ has been long known, the mechanism(s) of PTTH-stimulated changes in cytoplasmic Ca2+ [Ca2+]i are not yet well understood. PGs from the fifth instar of Manduca sexta were exposed to PTTH in vitro. The resultant changes in [Ca2+]i were measured using ratiometric analysis of a fura-2 fluorescence signal in the presence and absence of inhibitors of specific cellular signaling mechanisms. The phospholipase C (PLC) inhibitor U-73122 nearly abolished the PTTH-stimulated increase in [Ca2+]i, as well as PTTH-stimulated ecdysteroidogenesis and extracellular-signal regulated kinase phosphorylation, thus establishing a role for PLC and implicating inositol trisphosphate (IP3) in PTTH signal transduction. Two antagonists of the IP3 receptor, 2-APB and TMB-8, likewise blocked the [Ca2+]i response by a mean of 92%. We describe for the first time the presence of Ca2+ oscillations in PTTH-stimulated cells in Ca2+-free medium. External Ca2+ entered PG cells via at least two routes: store-operated (capacitative) Ca2+ entry channels and L-type voltage-gated Ca2+ channels. We propose that PTTH initiates a transductory cascade typical of many G-protein coupled receptors, involving both Ca2+ mobilization and entry pathways.
Collapse
Affiliation(s)
- Susan K Fellner
- Department of Cell and Molecular Physiology (CB# 7545), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
29
|
Abstract
The integrity of mitochondrial function is fundamental to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. In this review, I consider recent developments in our knowledge of basic aspects of mitochondrial biology as an essential step in developing our understanding of the contributions of mitochondria to disease. The identification of novel mechanisms that govern mitochondrial biogenesis and replication, and the delicately poised signalling pathways that coordinate the mitochondrial and nuclear genomes are discussed. As fluorescence imaging has made the study of mitochondrial function within cells accessible, the application of that technology to the exploration of mitochondrial bioenergetics is reviewed. Mitochondrial calcium uptake plays a major role in influencing cell signalling and in the regulation of mitochondrial function, while excessive mitochondrial calcium accumulation has been extensively implicated in disease. Mitochondria are major producers of free radical species, possibly also of nitric oxide, and are also major targets of oxidative damage. Mechanisms of mitochondrial radical generation, targets of oxidative injury and the potential role of uncoupling proteins as regulators of radical generation are discussed. The role of mitochondria in apoptotic and necrotic cell death is seminal and is briefly reviewed. This background leads to a discussion of ways in which these processes combine to cause illness in the neurodegenerative diseases and in cardiac reperfusion injury. The demands of mitochondria and their complex integration into cell biology extends far beyond the provision of ATP, prompting a radical change in our perception of mitochondria and placing these organelles centre stage in many aspects of cell biology and medicine.
Collapse
Affiliation(s)
- Michael R Duchen
- Department of Physiology and Mitochondrial Biology Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
McCarron JG, Bradley KN, MacMillan D, Chalmers S, Muir TC. The sarcoplasmic reticulum, Ca2+ trapping, and wave mechanisms in smooth muscle. Physiology (Bethesda) 2004; 19:138-47. [PMID: 15143210 DOI: 10.1152/nips.01518.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sarcoplasmic reticulum (SR) and apposed regions of the sarcolemma passively trap Ca2+ entering the cell to limit the rise in cytoplasmic Ca2+ concentration without SR pump involvement. When "leaky," the SR facilitates Ca2+ entry to the cytoplasm. SR Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP(3)Rs) propagates as calcium waves; IP(3)Rs alone account for wave propagation.
Collapse
Affiliation(s)
- John G McCarron
- Institute of Biomedical and Life Sciences, Neuroscience and Biomedical Systems, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
31
|
Poburko D, Lee CH, van Breemen C. Vascular smooth muscle mitochondria at the cross roads of Ca2+ regulation. Cell Calcium 2004; 35:509-21. [PMID: 15110141 DOI: 10.1016/j.ceca.2004.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/25/2004] [Indexed: 11/22/2022]
Abstract
Mitochondria play an essential role in the regulation of vascular smooth muscle Ca(2+) signaling being simultaneously integrated in the regulation of ion channels and Ca(2+) transporters, oxygen radical production, metabolite recycling and intracellular redox potential. Mitochondria buffer Ca(2+) from cytoplasmic microdomains to alter the spatio-temporal pattern of Ca(2+) gradients following Ca(2+)-influx and Ca(2+)-release, and thus control site-specific, Ca(2+)-dependent ion channel activation and inactivation. The sub-cellular localization of mitochondria in conjunction with tissue-specific channel expression is fundamental to vascular heterogeneity. The mitochondrial electron transport chain recycles metabolic intermediates that modulate cellular redox potential and produces oxygen radicals in proportion to oxygen tension. Perturbation of specific complexes within the transport chain can affects NADH:NAD and ATP:ADP ratios and radical production, which can in turn influence second messenger metabolism, ion channel gating and Ca(2+)-transporter activity. Mitochondria thus provide the common ground for cross-talk between these regulatory systems that are mutually sensitive to one another. This cross-talk between signaling systems provides a means to render the physiological regulation of vascular tone responsive to complex stimulation by paracrine and endocrine factors, blood pressure and flow, tissue oxygenation and metabolic state.
Collapse
Affiliation(s)
- Damon Poburko
- The Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
32
|
Abstract
Mitochondria have long been known to accumulate Ca2+; the apparent inconsistency between the low affinity of mitochondrial Ca2+ uptake mechanisms, the low concentration of global Ca2+ signals observed in cytoplasm, and the efficiency in intact cells of mitochondrial Ca2+ uptake led to the formulation of the "hotspot hypothesis." This hypothesis proposes that mitochondria preferentially accumulate Ca2+ at microdomains of elevated Ca2+ concentration ([Ca2+]) that exist near endoplasmic reticulum (ER) Ca2+ release sites and other Ca2+ channels. Physiological Ca2+ signals may affect mitochondrial function--both by stimulating key metabolic enzymes and, under some conditions, by promoting apoptosis. Mitochondria in turn may affect both Ca2+ release from the ER and capacitative Ca2+ entry across the plasma membrane, thereby shaping the size and duration of the intracellular Ca2+ signal. Interactions between mitochondria and the ER are critically dependent on the spatial localization of mitochondria within the cell. The molecular mechanisms that define the organization of mitochondria with regard to the ER and other Ca2+ sources, and the extent to which mitochondrial function varies among different cell types, are open questions whose answers remain to be determined.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy
| | | | | |
Collapse
|
33
|
Jenks BG, Roubos EW, Scheenen WJJM. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Gen Comp Endocrinol 2003; 131:209-19. [PMID: 12714002 DOI: 10.1016/s0016-6480(03)00120-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences and Institute of Cellular Signaling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
34
|
Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C. Spatiotemporal patterning of reactive oxygen production and Ca(2+) wave propagation in fucus rhizoid cells. THE PLANT CELL 2002; 14:2369-81. [PMID: 12368492 PMCID: PMC151223 DOI: 10.1105/tpc.003285] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Accepted: 06/26/2002] [Indexed: 05/17/2023]
Abstract
Both Ca(2+) and reactive oxygen species (ROS) play critical signaling roles in plant responses to biotic and abiotic stress. However, the positioning of Ca(2+) and ROS (in particular H(2)O(2)) after a stress stimulus and their subcellular interactions are poorly understood. Moreover, although information can be encoded in different patterns of cellular Ca(2+) signals, little is known about the subcellular spatiotemporal patterns of ROS production or their significance for downstream responses. Here, we show that ROS production in response to hyperosmotic stress in embryonic cells of the alga Fucus serratus consists of two distinct components. The first ROS component coincides closely with the origin of a Ca(2+) wave in the peripheral cytosol at the growing cell apex, has an extracellular origin, and is necessary for the Ca(2+) wave. Patch-clamp experiments show that a nonselective cation channel is stimulated by H(2)O(2) and may underlie the initial cytosolic Ca(2+) increase. Thus, the spatiotemporal pattern of the Ca(2+) wave is determined by peripheral ROS production. The second, later ROS component localizes to the mitochondria and is a direct consequence of the Ca(2+) wave. The first component, but not the second, is required for short-term adaptation to hyperosmotic stress. Our results highlight the role of ROS in the patterning of a Ca(2+) signal in addition to its function in regulating cell wall strength in the Fucus embryo.
Collapse
Affiliation(s)
- Susana M Coelho
- Marine Biological Association of the United Kingdom, Citadel Hill, PL1 2PB Plymouth, UK
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review examines polarized calcium and calmodulin signaling in exocrine epithelial cells. The calcium ion is a simple, evolutionarily ancient, and universal second messenger. In exocrine epithelial cells, it regulates essential functions such as exocytosis, fluid secretion, and gene expression. Exocrine cells are structurally polarized, with the apical region usually dedicated to secretion. Recent advances in technology, in particular the development of videoimaging and confocal microscopy, have led to the discovery of polarized, subcellular calcium signals in these cell types. The properties of a rich variety of local and global calcium signals have now been described in secretory epithelial cells. Secretagogues stimulate apical-to-basal waves of calcium in many exocrine cell types, but there are some interesting exceptions to this rule. The shapes of intracellular calcium signals are determined by the distribution of calcium-releasing channels and mechanisms that limit calcium elevation. Polarized distribution of calcium-handling mechanisms also leads to transcellular calcium transport in exocrine epithelial cells. This transport can deliver considerable amounts of calcium into secreted fluids. Multicellular polarized calcium signals can coordinate the activity of many individual cells in epithelial secretory tissue. Certain particularly sensitive cells serve as pacemakers for initiation of intercellular calcium waves. Many calcium signaling pathways involve activation of calmodulin. This ubiquitous protein regulates secretion in exocrine cells and also activates interesting feedback interactions with calcium channels and transporters. Very recently it became possible to directly study polarized calcium-calmodulin reactions and to visualize the process of hormone-induced redistribution of calmodulin in live cells. The structural and functional polarity of secretory epithelia alongside the polarity of its calcium and calmodulin signaling present an interesting lesson in tissue organization.
Collapse
Affiliation(s)
- Michael C Ashby
- Medical Research Council Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
36
|
Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:149-214. [PMID: 11336391 DOI: 10.1016/s0074-7696(01)05004-5] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The endoplasmic reticulum (ER) in animal cells is an extensive, morphologically continuous network of membrane tubules and flattened cisternae. The ER is a multifunctional organelle; the synthesis of membrane lipids, membrane and secretory proteins, and the regulation of intracellular calcium are prominent among its array of functions. Many of these functions are not homogeneously distributed throughout the ER but rather are confined to distinct ER subregions or domains. This review describes the structural and functional organization of the ER and highlights the dynamic properties of the ER network and the mechanisms that support the positioning of ER membranes within the cell. Furthermore, we outline processes involved in the establishment and maintenance of an anisotropic distribution of ER-resident proteins and, thus, in the organization of the ER into functionally and morphologically different subregions.
Collapse
Affiliation(s)
- O Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Germany
| | | |
Collapse
|
37
|
Abstract
While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) 'What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?' (ii) 'What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?' (iii) 'What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?' and finally (iv) 'What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?' These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3-gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close association with the NMDA receptor. Mitochondrial Ca2+ uptake in combination with NO production triggers the collapse of mitochondrial membrane potential, culminating in delayed cell death.
Collapse
Affiliation(s)
- M R Duchen
- Life Sciences Imaging Consortium and Mitochondrial Biology Group, Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Abstract
With this overview of the role of mitochondria in the realm of calcium signalling we have tried to provide a chronological perspective, from the very early days to the present. We have briefly sketched a timeline of the research on calcium and mitochondria during the course of the century. Particular attention is paid to recent developments which have contributed to a renewed interest in calcium handling by this organelle.
Collapse
Affiliation(s)
- T Pozzan
- Department of Biomedical Sciences and CNR Center for the Study of Biomembranes, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
39
|
Abstract
There is now a consensus that mitochondria take up and accumulate Ca(2+)during physiological [Ca(2+)](c)signalling. This contribution will consider some of the functional consequences of mitochondrial Ca(2+)uptake for cell physiology and pathophysiology. The ability to remove Ca(2+)from local cytosol enables mitochondria to regulate the [Ca(2+)] in microdomains close to IP3-sensitive Ca(2+)-release channels. The [Ca(2+)] sensitivity of these channels means that, by regulating local [Ca(2+)](c), mitochondrial Ca(2+)uptake modulates the rate and extent of propagation of [Ca(2+)](c)waves in a variety of cell types. The coincidence of mitochondrial Ca(2+)uptake with oxidative stress may open the mitochondrial permeability transition pore (mPTP). This is a catastrophic event for the cell that will initiate pathways to cell death either by necrotic or apoptotic pathways. A model is presented in which illumination of an intramitochondrial fluorophore is used to generate oxygen radical species within mitochondria. This causes mitochondrial Ca(2+)loading from SR and triggers mPTP opening. In cardiomyocytes, mPTP opening leads to ATP consumption by the mitochondrial ATPase and so results in ATP depletion, rigor and necrotic cell death. In central mammalian neurons exposed to glutamate, a cellular Ca(2+)overload coincident with NO production also causes loss of mitochondrial potential and cell death, but mPTP involvement has proven more difficult to demonstrate unequivocally.
Collapse
Affiliation(s)
- M R Duchen
- Mitochondrial Biology Group and Life Sciences Imaging Consortium, Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|