1
|
Hunley C, Marucho M. Electrical Propagation of Condensed and Diffuse Ions Along Actin Filaments. J Comput Neurosci 2022; 50:91-107. [PMID: 34392446 PMCID: PMC8818025 DOI: 10.1007/s10827-021-00795-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023]
Abstract
In this article, we elucidate the roles of divalent ion condensation and highly polarized immobile water molecules on the propagation of ionic calcium waves along actin filaments. We introduced a novel electrical triple layer model and used a non-linear Debye-Huckel theory with a non-linear, dissipative, electrical transmission line model to characterize the physicochemical properties of each monomer in the filament. This characterization is carried out in terms of an electric circuit model containing monomeric flow resistances and ionic capacitances in both the condensed and diffuse layers. We considered resting and excited states of a neuron using representative mono and divalent electrolyte mixtures. Additionally, we used 0.05V and 0.15V voltage inputs to study ionic waves along actin filaments in voltage clamp experiments. Our results reveal that the physicochemical properties characterizing the condensed and diffuse layers lead to different electrical conductive mediums depending on the ionic species and the neuron state. This region specific propagation mechanism provides a more realistic avenue of delivery by way of cytoskeleton filaments for larger charged cationic species. A new direct path for transporting divalent ions might be crucial for many electrical processes found in localized neuron elements such as at mitochondria and dendritic spines.
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, 78249-5003, TX, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, 78249-5003, TX, USA.
| |
Collapse
|
2
|
Tiffner A, Hopl V, Schober R, Sallinger M, Grabmayr H, Höglinger C, Fahrner M, Lunz V, Maltan L, Frischauf I, Krivic D, Bhardwaj R, Schindl R, Hediger MA, Derler I. Orai1 Boosts SK3 Channel Activation. Cancers (Basel) 2021; 13:6357. [PMID: 34944977 PMCID: PMC8699475 DOI: 10.3390/cancers13246357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.
Collapse
Affiliation(s)
- Adéla Tiffner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Valentina Hopl
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Romana Schober
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias Sallinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Herwig Grabmayr
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Carmen Höglinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Marc Fahrner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Victoria Lunz
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Lena Maltan
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Irene Frischauf
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Denis Krivic
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| |
Collapse
|
3
|
Li Y, Yu X, Wang Y, Zheng X, Chu Q. Kaempferol-3- O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct 2021; 12:8351-8365. [PMID: 34338262 DOI: 10.1039/d1fo00581b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer has been threatening human health worldwide for a long time. However, the clinic therapies remain unsatisfactory. In this study, the anti-adenocarcinoma lung cancer A549 cell line abilities of Tetrastigma hemsleyanum tuber flavonoids (THTF) were evaluated in vivo, and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to detect the protein alterations in THTF-treated solid tumors. The differentially expressed proteins were related to the cytoskeleton and mostly accumulated in the calcium signaling pathway. The in vitro study illustrated that 80 μg mL-1 THTF significantly suppressed cellular viability to approximately 75% of the control. Further results suggested that kaempferol-3-O-rutinoside (K3R), the major component of THTF, effectively triggered cytoskeleton collapse, mitochondrial dysfunction and consequent calcium overload to achieve apoptosis, which remained consistent with proteomic results. This study uncovers a new mechanism for THTF anti-tumor ability, and suggests THTF and K3R as promising anti-cancer agents, providing new ideas and possible strategies for future anti-lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xin Yu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yaxuan Wang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Qiang Chu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China. and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
4
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
5
|
Bhargava R, Lehoux S, Maeda K, Tsokos MG, Krishfield S, Ellezian L, Pollak M, Stillman IE, Cummings RD, Tsokos GC. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 2021; 6:147789. [PMID: 33784256 PMCID: PMC8262331 DOI: 10.1172/jci.insight.147789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Lupus nephritis (LN) is a serious complication occurring in 50% of patients with systemic lupus erythematosus (SLE) for which there is a lack of biomarkers, a lack of specific medications, and a lack of a clear understanding of its pathogenesis. The expression of calcium/calmodulin kinase IV (CaMK4) is increased in podocytes of patients with LN and lupus-prone mice, and its podocyte-targeted inhibition averts the development of nephritis in mice. Nephrin is a key podocyte molecule essential for the maintenance of the glomerular slit diaphragm. Here, we show that the presence of fucose on N-glycans of IgG induces, whereas the presence of galactose ameliorates, podocyte injury through CaMK4 expression. Mechanistically, CaMK4 phosphorylates NF-κB, upregulates the transcriptional repressor SNAIL, and limits the expression of nephrin. In addition, we demonstrate that increased expression of CaMK4 in biopsy specimens and in urine podocytes from people with LN is linked to active kidney disease. Our data shed light on the role of IgG glycosylation in the development of podocyte injury and propose the development of “liquid kidney biopsy” approaches to diagnose LN.
Collapse
Affiliation(s)
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Beth Israel Deaconess Medical Center Glycomics Core, Boston, Massachusetts, USA
| | | | | | | | | | | | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Beth Israel Deaconess Medical Center Glycomics Core, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
7
|
Tabusi M, Thorsdottir S, Lysandrou M, Narciso AR, Minoia M, Srambickal CV, Widengren J, Henriques-Normark B, Iovino F. Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with β-actin. PLoS Pathog 2021; 17:e1009432. [PMID: 33760879 PMCID: PMC7990213 DOI: 10.1371/journal.ppat.1009432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein β-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal β-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of β-actin filaments, leading to more β-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of β-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against β-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.
Collapse
Affiliation(s)
- Mahebali Tabusi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Lysandrou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ana Rita Narciso
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institutet, Stockholm University, Stockholm, Sweden
| | | | - Jerker Widengren
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
9
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
10
|
Srivastava N, Tauseef M, Amin R, Joshi B, Joshi JC, Kini V, Klomp J, Li W, Knezevic N, Barbera N, Siddiqui S, Obukhov A, Karginov A, Levitan I, Komarova Y, Mehta D. Noncanonical function of long myosin light chain kinase in increasing ER-PM junctions and augmentation of SOCE. FASEB J 2020; 34:12805-12819. [PMID: 32772419 PMCID: PMC7496663 DOI: 10.1096/fj.201902462rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| | - Ruhul Amin
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Vidisha Kini
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jennifer Klomp
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Weenan Li
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Nebojsa Knezevic
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Nicolas Barbera
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Shahid Siddiqui
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Alexander Obukhov
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Andrei Karginov
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Irena Levitan
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| |
Collapse
|
11
|
Patnaik SR, Zhang X, Biswas L, Akhtar S, Zhou X, Kusuluri DK, Reilly J, May-Simera H, Chalmers S, McCarron JG, Shu X. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget 2018; 9:23183-23197. [PMID: 29796181 PMCID: PMC5955404 DOI: 10.18632/oncotarget.25259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.
Collapse
Affiliation(s)
- Sarita Rani Patnaik
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| |
Collapse
|
12
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
13
|
Lopez JJ, Salido GM, Rosado JA. Cardiovascular and Hemostatic Disorders: SOCE and Ca 2+ Handling in Platelet Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:453-472. [PMID: 28900928 DOI: 10.1007/978-3-319-57732-6_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the Ca2+ entry mechanisms in platelets, store-operated Ca2+ entry (SOCE) plays a prominent role as it is necessary to achieve full activation of platelet functions and replenish intracellular Ca2+ stores. In platelets, as in other non-excitable cells, SOCE has been reported to involve the activation of plasma membrane channels by the ER Ca2+ sensor STIM1. Despite electrophysiological studies are not possible in human platelets, indirect analyses have revealed that the Ca2+-permeable channels involve Orai1 and, most likely, TRPC1 subunits. A relevant role for the latter has not been found in mouse platelets. There is a body of evidence revealing a number of abnormalities in SOCE or in its molecular regulators that result in qualitative platelet disorders and, as a consequence, altered platelet responsiveness upon stimulation with multiple physiological agonists. Platelet SOCE abnormalities include STIM1 and Orai1 mutations. This chapter summarizes the current knowledge in this field, as well as the disorders associated to platelet SOCE dysfunction.
Collapse
Affiliation(s)
- Jose J Lopez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
14
|
Kwon HW, Shin JH, Lim DH, Ok WJ, Nam GS, Kim MJ, Kwon HK, Noh JH, Lee JY, Kim HH, Kim JL, Park HJ. Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:508. [PMID: 27927214 PMCID: PMC5142411 DOI: 10.1186/s12906-016-1463-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND A species of the fungal genus Cordyceps has been used as a complementary and alternative medicine of traditional Chinese medicine, and its major component cordycepin and cordycepin-enriched WIB-801CE are known to have antiplatelet effects in vitro. However, it is unknown whether they have also endogenous antiplatelet and antithrombotic effects. In this study, to resolve these doubts, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from Cordyceps militaris-hypha, then evaluated its ex vivo, in vivo, and in vitro antiplatelet and antithrombotic effects. METHODS Ex vivo effects of WIB-801CE on collagen- and ADP-induced platelet aggregation, serotonin release, thromboxane A2 (TXA2) production and its associated activities of enzymes [cyclooxygenase-1 (COX-1), TXA2 synthase (TXAS)], arachidonic acid (AA) release and its associated phosphorylation of phospholipase Cβ3, phospholipase Cγ2 or cytosolic phospholipase A2, mitogen-activated protein kinase (MAPK) [p38 MAPK, extracellular signal-regulated kinase (ERK)], and blood coagulation time in rats were investigated. In vivo effects of WIB-801CE on collagen plus epinephrine-induced acute pulmonary thromboembolism, and tail bleeding time in mice were also inquired. In vitro effects of WIB-801CE on cytotoxicity, and fibrin clot retraction in human platelets, and nitric oxide (NO) production in RAW264.7 cells or free radical scavenging activity were studied. RESULTS Cordycepin-enriched WIB-801CE inhibited ex vivo platelet aggregation, TXA2 production, AA release, TXAS activity, serotonin release, and p38 MAPK and ERK2 phosphorylation in collagen- and ADP-activated rat platelets without affecting blood coagulation. Furthermore, WIB-801CE manifested in vivo inhibitory effect on collagen plus epinephrine-induced pulmonary thromboembolism mice model. WIB-801CE inhibited in vitro NO production and fibrin clot retraction, but elevated free radical scavenging activity without affecting cytotoxicity against human platelets. CONCLUSION WIB-801CE inhibited collagen- and ADP-induced platelet activation and its associated thrombus formation ex vivo and in vivo. These were resulted from down-regulation of TXA2 production and its related AA release and TXAS activity, and p38MAPK and ERK2 activation. These results suggest that WIB-801CE has therapeutic potential to treat platelet activation-mediated thrombotic diseases in vivo.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Jung-Hae Shin
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Deok Hwi Lim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Woo Jeong Ok
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Min Ji Kim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Ho-Kyun Kwon
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Jun-Hee Noh
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Je-Young Lee
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Hyun-Hong Kim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Jong-Lae Kim
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea.
| | - Hwa-Jin Park
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea.
| |
Collapse
|
15
|
Kissmehl R, Sehring IM, Wagner E, Plattner H. Immunolocalization of Actin in Paramecium Cells. J Histochem Cytochem 2016; 52:1543-59. [PMID: 15557210 DOI: 10.1369/jhc.4a6379.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structure-bound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several μm in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including “discoidal” vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
16
|
Albarran L, Lopez JJ, Woodard GE, Salido GM, Rosado JA. Store-operated Ca2+ Entry-associated Regulatory factor (SARAF) Plays an Important Role in the Regulation of Arachidonate-regulated Ca2+ (ARC) Channels. J Biol Chem 2016; 291:6982-8. [PMID: 26817842 DOI: 10.1074/jbc.m115.704940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 01/15/2023] Open
Abstract
The store-operated Ca(2+)entry-associated regulatory factor (SARAF) has recently been identified as a STIM1 regulatory protein that facilitates slow Ca(2+)-dependent inactivation of store-operated Ca(2+)entry (SOCE). Both the store-operated channels and the store-independent arachidonate-regulated Ca(2+)(ARC) channels are regulated by STIM1. In the present study, we show that, in addition to its location in the endoplasmic reticulum, SARAF is constitutively expressed in the plasma membrane, where it can interact with plasma membrane (PM)-resident ARC forming subunits in the neuroblastoma cell line SH-SY5Y. Using siRNA-based and overexpression approaches we report that SARAF negatively regulates store-independent Ca(2+)entry via the ARC channels. Arachidonic acid (AA) increases the association of PM-resident SARAF with Orai1. Finally, our results indicate that SARAF modulates the ability of AA to promote cell survival in neuroblastoma cells. In addition to revealing new insight into the biology of ARC channels in neuroblastoma cells, these findings provide evidence for an unprecedented location of SARAF in the plasma membrane.
Collapse
Affiliation(s)
- Letizia Albarran
- From the Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10003 Caceres, Spain and
| | - Jose J Lopez
- From the Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10003 Caceres, Spain and
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gines M Salido
- From the Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10003 Caceres, Spain and
| | - Juan A Rosado
- From the Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10003 Caceres, Spain and
| |
Collapse
|
17
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
18
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
19
|
Krutetskaya ZI, Milenina LS, Naumova AA, Butov SN, Antonov VG, Nozdrachev AD. Involvement of the Arp2/3 complex and WASP proteins in the effect of glutoxim and molixan on intracellular Ca(2+) concentration in macrophages. DOKL BIOCHEM BIOPHYS 2015; 464:279-82. [PMID: 26518547 DOI: 10.1134/s1607672955050013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/23/2022]
Abstract
The Fura-2AM fluorescent Ca(2+) probe was used to study the possibility that the Arp2/3 complex and WASP proteins are involved in the effects of glutoxim and molixan on the intracellular Ca(2+) concentration in macrophages. It has been demonstrated that preincubation of macrophages with inhibitors of the Arp2/3 complex or WASP proteins (CK-0944666 or wiskostatin, respectively) results in a significant suppression of Ca(2+)-responses induced by glutoxim or molixan. This suggests that polymerization of actin filaments is a process involved in the effect of glutoxim or molixan on intracellular Ca(2+) concentration in macrophages.
Collapse
Affiliation(s)
- Z I Krutetskaya
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - L S Milenina
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A A Naumova
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S N Butov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - V G Antonov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
20
|
Inhibitory Effects of Cytosolic Ca(2+) Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:764906. [PMID: 26355658 PMCID: PMC4556879 DOI: 10.1155/2015/764906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 01/21/2023]
Abstract
Intracellular Ca2+ ([Ca2+]i) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser1756) to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.
Collapse
|
21
|
Mishra A, Krishnan B, Raman R, Sharma Y. Ca2+ and βγ-crystallins: An affair that did not last? Biochim Biophys Acta Gen Subj 2015; 1860:299-303. [PMID: 26145580 DOI: 10.1016/j.bbagen.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND During the last three decades, lens β- and γ-crystallins have found a huge number of kin from numerous taxonomical sources. Most of these proteins from invertebrates and microbes have been demonstrated or predicted to bind Ca2+ involving a distinct double-clamp motif, which is largely degenerated in lens homologues. SCOPE OF REVIEW The various aspects of transformation of βγ-crystallins from a quintessential Ca2+-binding protein into a primarily structural molecule have been reviewed. MAJOR CONCLUSIONS In lens members of βγ-crystallins, the residues involved in Ca2+ binding have diverged considerably from the classical consensus with consequent reduction in their Ca2+-binding properties. This evolutionary change is congenial to their new role as robust constituents of lens. The exact functions of the residual affinity for Ca2+ are yet to be established. GENERAL SIGNIFICANCE This review highlights the significance of reduction in Ca2+-binding ability of the βγ-crystallins for lens physiology and why this residual affinity may be functionally important. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Amita Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Bal Krishnan
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Rajeev Raman
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
22
|
Golbach LA, Philippi JG, Cuppen JJ, Savelkoul HF, Verburg-van Kemenade BL. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields. Bioelectromagnetics 2015; 36:430-43. [DOI: 10.1002/bem.21924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Lieke A. Golbach
- Cell Biology and Immunology Group; Wageningen University; The Netherlands
| | - John G.M. Philippi
- Lab of Biophysics and Wageningen NMR Centre; Wageningen University; The Netherlands
| | | | | | | |
Collapse
|
23
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
24
|
Li J, Li Y, Zhang P, Niu H, Shi Y. Nicotinic acid modulates intracellular calcium concentration and disassembles the cytoskeleton. Mol Med Rep 2014; 10:2805-10. [PMID: 25241762 PMCID: PMC4227433 DOI: 10.3892/mmr.2014.2576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/19/2014] [Indexed: 11/16/2022] Open
Abstract
Nicotinic acid (NA), a member of the vitamin B family, is well known for its functions in the treatment and prevention of atherosclerosis due to decreasing plasma levels of low-density lipoprotein cholesterol. In recent years, the major side effect of NA, cutaneous flushing, has also attracted extensive attention. However, the effects of NA in other aspects of physiology or cell biology have remained elusive. The present study provided evidence that high concentrations of NA were able to first reduce and later elevate intracellular [Ca2+] in the NIH3T3 cell line. The reduction of the intracellular Ca2+ concentration was achieved within the initial 10 sec, and was preceded by a gradual elevation of intracellular [Ca2+]. Notably, marked accumulation of opaque materials in the perinuclear region was observed in NIH3T3 cells treated with 70 mM NA. Further analysis revealed that treatment with 70 mM NA for 1 h disassembled the microtubule and F-actin cytoskeleton systems and resulted in β-tubulin degradation in an ubiquitin-proteasome-dependent manner. These data indicated that high concentrations of NA disrupted cytoskeleton structures, which may have contributed to minus end (nucleus region) to plus end (cell membrane region)-directed transport processes and resulted in the deposition of material in the perinuclear region. Artificially increasing [Ca2+] adding CaCl2 to the culture media effected the disassembly of F-actin, while it had no apparent effect on microtubules. These results suggested that the disruption of the cytoskeleton systems was not entirely due to the NA-induced elevation of [Ca2+]. Finally, microinjection of NA into xenopus embryos blocked the transport of melanosomes to the peripheral cellular area. In conclusion, the present study indicated that NA disassembles F-actin and microtubule systems, thereby blocking cytoskeleton-dependent intracellular transport.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yanxi Li
- Laboratory of Developmental Diseases in Childhood of Education Ministry, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Penghui Zhang
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hua Niu
- Clinical Laboratory Centre, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yu Shi
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
25
|
Milenina LS, Krutetskaya ZI, Naumova AA, Krutetskaya NI, Butov SN, Antonov VG. Arp2/3 complex is involved in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
The Degree of Resistance of Erythrocyte Membrane Cytoskeletal Proteins to Supra-Physiologic Concentrations of Calcium: An In Vitro Study. J Membr Biol 2014; 247:695-701. [DOI: 10.1007/s00232-014-9689-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
27
|
Thapsigargin induces apoptosis by impairing cytoskeleton dynamics in human lung adenocarcinoma cells. ScientificWorldJournal 2014; 2014:619050. [PMID: 24605059 PMCID: PMC3926280 DOI: 10.1155/2014/619050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/10/2013] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was performed to investigate the effects of thapsigargin on apoptosis, actin cytoskeletal dynamics, and actin cytoskeletal proteins in human lung adenocarcinoma cell. Thapsigargin is a specific irreversible inhibitor of ER calcium-ATPase, which may promote ER stress by depletion of lumenal calcium stores and show potential to induce cell death. The effects of thapsigargin on the apoptosis in A549 cells were assayed by Hoechst staining. Moreover, the F-actin staining by Rhodamine-phalloidin and RhoA antibody for cytoskeleton organizations were applied to A549 cells. To confirm the impairment of cytoskeletal dynamics treated with thapsigargin, western blots were applied to analyze the protein levels of p-Cofilin-1 (Ser3), Cofilin-1, and pPaxillin (Tyr118), as well as RhoA and pS6 (S240/244). Results suggest that thapsigargin may induce cell death in A549 cells with a time- and dose-dependent manner. The F-actin fibers and RhoA signals are also reduced with a time- and dose-dependent manner by thapsigargin treatment. The phosphorylation forms of Cofilin-1 and paxillin are attenuated by 1 μM thapsigargin treatment for 24 h. These alternations may be caused by the inhibition of of mTORC1 activities (indicated by pS6 (Ser240/244)) and RhoA pathways after thapsigargin treatment. The present findings highlight important roles of calcium entry in cytoskeleton organization and apoptosis in human lung adenocarcinoma cells and will help to set a stage to the clinical treatment of cancer cell metastasis.
Collapse
|
28
|
Kim YC, Kim BG, Lee JH. Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 2012; 7:e35399. [PMID: 22623951 PMCID: PMC3356296 DOI: 10.1371/journal.pone.0035399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Thymosin β(10) (Tβ(10)) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10) diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10), that can overexpress the Tβ(10) gene in cancer cells. This was accomplished by replacing the native Tβ(10) gene promoter with the human TERT promoter in Ad.TERT.Tβ(10). We investigated the cancer suppression activity of Tβ(10) and found that Ad.TERT.Tβ(10) strikingly induced cancer-specific expression of Tβ(10) as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10) decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10) overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10) by Ad.TERT.Tβ(10) could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | | | | |
Collapse
|
29
|
A live cell micro-imaging technique to examine platelet calcium signaling dynamics under blood flow. Methods Mol Biol 2012; 788:73-89. [PMID: 22130701 DOI: 10.1007/978-1-61779-307-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The platelet is a specialized adhesive cell that plays a key role in thrombus formation under both physiological and pathological blood flow conditions. Platelet adhesion and activation are dynamic processes associated with rapid morphological and functional changes, with the earliest signaling events occurring over a subsecond time-scale. The relatively small size of platelets combined with the dynamic nature of platelet adhesion under blood flow means that the investigation of platelet signaling events requires techniques with both high spatial discrimination and rapid temporal resolution. Unraveling the complex signaling processes governing platelet adhesive function under conditions of hemodynamic shear stress has been a longstanding goal in platelet research and has been greatly influenced by the development and application of microimaging-based techniques. Advances in the area of epi-fluorescence and confocal-based platelet calcium (Ca(2+)) imaging have facilitated the in vitro and in vivo elucidation of the early signaling events regulating platelet adhesion and activation. These studies have identified distinct Ca(2+) signaling mechanisms that serve to dynamically regulate activation of the major platelet integrin α(IIb)β(3) and associated adhesion and aggregation processes under flow. This chapter describes in detail a ratiometric calcium imaging protocol and associated troubleshooting procedures developed in our laboratory to examine live platelet Ca(2+) signaling dynamics. This technique provides a method for high-resolution imaging of the Ca(2+) dynamics underpinning platelet adhesion and thrombus formation under conditions of pathophysiological shear stress.
Collapse
|
30
|
Galluzzi L, Chiarantini L, Pantucci E, Curci R, Merikhi J, Hummel H, Bachmann PK, Manuali E, Pezzotti G, Magnani M. Development of a multilevel approach for the evaluation of nanomaterials' toxicity. Nanomedicine (Lond) 2011; 7:393-409. [PMID: 22047028 DOI: 10.2217/nnm.11.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop a multilevel approach that includes different toxicity tests and gene-expression studies for toxicity evaluation of engineered nanomaterials developed for biomedical applications. MATERIALS & METHODS K-562, MCF-7 and U-937 human-derived cell lines were used as models for in vitro toxicity tests. These tests included viability assays (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium [MTS] assay); evaluation of apoptosis/necrosis by propidium iodide staining and DNA laddering assay; evaluation of mitochondrial toxicity (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethyl-benzimidazolcarbocyanine iodide [JC-1] assay); transmission electron microscopy analysis and gene expression analysis by DNA microarray. For in vivo toxicity evaluation, Swiss mice were used for monitoring acute or chronic effects. Two superparamagnetic contrast agents approved for human use (Resovist and Primovist) and two new lanthanide-based luminescent nanoparticles were tested. RESULTS & DISCUSSION The nanomaterials approved for human use did not show significant toxicities in our assays. Toxicity studies performed on lanthanide-based nanoparticles (EDTA120 and EDTA120D) complexed with the chelating agent EDTA revealed that these nanomaterials induced necrosis in U-937 and K-562 cells while no toxicity was observed in MCF-7 cells. Moreover, no in vivo effects have been observed. The comparative analysis of the nanomaterials and their separated components showed that the toxicity in U-937 and K-562 cells was mainly due to the presence of EDTA. CONCLUSION The multilevel approach proved to be useful for nanomaterial toxicity characterization. In particular, for the lanthanide-based nanoparticles tested in this work, the EDTA was identified as the main cause of the toxicity in vitro, suggesting a possible applicability of these nanoparticle suspensions for in vivo optical imaging.
Collapse
Affiliation(s)
- Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino (PU), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rosado J. Acidic Ca2+ stores in platelets. Cell Calcium 2011; 50:168-74. [DOI: 10.1016/j.ceca.2010.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 02/06/2023]
|
32
|
Galán C, Dionisio N, Smani T, Salido GM, Rosado JA. The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 2011; 82:400-10. [PMID: 21640715 DOI: 10.1016/j.bcp.2011.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/15/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major pathway for Ca(2+) influx in non-excitable cells. Recent studies favour a conformational coupling mechanism between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and Ca(2+) permeable channels in the plasma membrane to explain SOCE. Previous studies have reported a role for the cytoskeleton modulating the activation of SOCE; therefore, here we have investigated whether the interaction between STIM1 and the Ca(2+) permeable channels is modulated by the actin or microtubular network. In HEK-293 cells, treatment with the microtubular disrupter colchicine enhanced both the activation of SOCE and the association between STIM1 and Orai1 or TRPC1 induced by thapsigargin (TG). Conversely, stabilization of the microtubules by paclitaxel attenuated TG-evoked activation of SOCE and the interaction between STIM1 and the Ca(2+) channels Orai1 and TRPC1, altogether suggesting that the microtubules act as a negative regulator of SOCE. Stabilization of the cortical actin filament layer results in inhibition of TG-evoked both association between STIM1, Orai1 and TRPC1 and SOCE. Interestingly, disruption of the actin filament network by cytochalasin D did not significantly modify TG-evoked association between STIM1 and Orai1 or TRPC1 but enhanced TG-stimulated SOCE. Finally, inhibition of calmodulin by calmidazolium enhances TG-evoked SOCE and disruption of the actin cytoskeleton results in inhibition of TG-evoked association of calmodulin with Orai1 and TRPC1. Thus, we demonstrate that the cytoskeleton plays an essential role in the regulation of SOCE through the modulation of the interaction between their main molecular components.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
33
|
Krutetskaya ZI, Lebedev OE, Kurilova LS, Antonov VG, Nozdrachev AD. Involvement of actin filaments in the effect of the oxidized glutathione and drug glutoxim on the intracellular Ca(2+) concentration in macrophages. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 436:16-9. [PMID: 21374004 DOI: 10.1134/s0012496611010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Indexed: 11/23/2022]
|
34
|
Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T. Annexin A6-Linking Ca(2+) signaling with cholesterol transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:935-47. [PMID: 20888375 DOI: 10.1016/j.bbamcr.2010.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/17/2022]
Abstract
Annexin A6 (AnxA6) belongs to a conserved family of Ca(2+)-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA(2)) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca(2+)-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca(2+)-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang ZY, Han YF, Huang X, Lu HL, Guo X, Kim YC, Xu WX. Actin microfilament involved in regulation of pacemaking activity in cultured interstitial cells of Cajal from murine intestine. J Membr Biol 2010; 234:217-25. [PMID: 20349180 DOI: 10.1007/s00232-010-9248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/27/2022]
Abstract
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 +/- 160.33 pA and 11.73 +/- 0.79 cycles/min to 233.12 +/- 92.00 pA and 10.29 +/- 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 +/- 0.08 (DeltaF/F0) and 2.75 +/- 0.17 cycles/min to 0.02 +/- 0.01 (DeltaF/F0) and 1.20 +/- 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 +/- 282.82 pA and 13.93 +/- 1.00 cycles/min to 1234.34 +/- 607.83 pA and 14.68 +/- 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 +/- 0.01 (DeltaF/F0) and 2.27 +/- 0.18 cycles/min to 0.43 +/- 0.03 (DeltaF/F0) and 2.87 +/- 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP(3) receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP(3)-induced calcium release signaling pathway.
Collapse
Affiliation(s)
- Zuo Yu Wang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rebres RA, Moon C, Decamp D, Lin KM, Fraser ID, Milne SB, Roach TIA, Brown HA, Seaman WE. Clostridium difficile toxin B differentially affects GPCR-stimulated Ca2+ responses in macrophages: independent roles for Rho and PLA2. J Leukoc Biol 2010; 87:1041-57. [PMID: 20200401 DOI: 10.1189/jlb.1108708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clostridium difficile toxins cause acute colitis by disrupting the enterocyte barrier and promoting inflammation. ToxB from C. difficile inactivates Rho family GTPases and causes release of cytokines and eicosanoids by macrophages. We studied the effects of ToxB on GPCR signaling in murine RAW264.7 macrophages and found that ToxB elevated Ca(2+) responses to Galphai-linked receptors, including the C5aR, but reduced responses to Galphaq-linked receptors, including the UDP receptors. Other Rho inhibitors also reduced UDP Ca(2+) responses, but they did not affect C5a responses, suggesting that ToxB inhibited UDP responses by inhibiting Rho but enhanced C5a responses by other mechanisms. By using PLCbeta isoform-deficient BMDM, we found that ToxB inhibited Ca(2+) signaling through PLCbeta4 but enhanced signaling through PLCbeta3. Effects of ToxB on GPCR Ca(2+) responses correlated with GPCR use of PLCbeta3 versus PLCbeta4. ToxB inhibited UDP Ca(2+) signaling without reducing InsP3 production or the sensitivity of cellular Ca(2+) stores to exogenous InsP3, suggesting that ToxB impairs UDP signaling at the level of InsP3/Ca(2+)coupling. In contrast, ToxB elevated InsP3 production by C5a, and the enhancement of Ca(2+) signaling by C5a was prevented by inhibition of PLA(2) or 5-LOX but not COX, implicating LTs but not prostanoids in the mechanism. In sum, ToxB has opposing, independently regulated effects on Ca(2+) signaling by different GPCR-linked PLCbeta isoforms in macrophages.
Collapse
Affiliation(s)
- Robert A Rebres
- Alliance for Cellular Signaling at Northern California Institute for Research and Education, VA Medical Center, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu H, O'Mullane LM, Cummins MM, Campbell CR, Hosoda Y, Poronnik P, Dinudom A, Cook DI. Negative regulation of Ca(2+) influx during P2Y(2) purinergic receptor activation is mediated by Gbetagamma-subunits. Cell Calcium 2010; 47:55-64. [PMID: 20056275 DOI: 10.1016/j.ceca.2009.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/03/2009] [Accepted: 11/11/2009] [Indexed: 12/01/2022]
Abstract
We have previously reported that P2Y(2) purinoceptors and muscarinic M(3) receptors trigger Ca(2+) responses in HT-29 cells that differ in their timecourse, the Ca(2+) response to P2Y(2) receptor activation being marked by a more rapid decline of intracellular Ca(2+) concentration ([Ca(2+)](i)) after the peak response and that this rapid decline of [Ca(2+)](i) was slowed in cells expressing heterologous beta-adrenergic receptor kinase (betaARK). In the present study, we demonstrate that, during P2Y(2) receptor activation, betaARK expression increases the rate of Gd(3+)-sensitive Mn(2+) influx, a measure of the rate of store-operated Ca(2+) entry from the extracellular space, during P2Y(2) activation and that this effect of betaARK is mimicked by exogenous alpha-subunits of G(q), G(11) and G(i2). The effect of betaARK on the rate of Mn(2+) influx is thus attributable to its ability to scavenge G protein betagamma-subunits released during activation of P2Y(2) receptor. We further find that the effect of betaARK on the rate of Mn(2+) influx during P2Y(2) receptor activation can be overcome by arachidonic acid. In addition, the UTP-induced Mn(2+) influx rate was significantly increased by inhibitors of phospholipase A(2) (PLA(2)) and an siRNA directed against PLA(2)beta, but not by an siRNA directed against PLA(2)alpha or by inhibitors of arachidonic acid metabolism. These findings provide evidence for the existence of a P2Y(2) receptor-activated signalling system that acts in parallel with depletion of intracellular Ca(2+) stores to inhibit Ca(2+) influx across the cell membrane. This signalling process is mediated via Gbetagamma and involves PLA(2)beta and arachidonic acid.
Collapse
Affiliation(s)
- Haibi Hu
- The University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Plasma membrane calcium pump and sodium–calcium exchanger in maintenance and control of calcium concentrations in platelets. Biochem Biophys Res Commun 2010; 392:41-6. [DOI: 10.1016/j.bbrc.2009.12.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
|
39
|
Store-operated calcium entry channels in pulmonary endothelium: the emerging story of TRPCS and Orai1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:137-54. [PMID: 20204728 DOI: 10.1007/978-1-60761-500-2_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of diverse origin utilize shifts in cytosolic calcium concentrations as intracellular signals to elicit physiological responses. In endothelium, inflammatory first messengers increase cytosolic calcium as a signal to disrupt cell-cell borders and produce inter-cellular gaps. Calcium influx across the plasma membrane is required to initiate barrier disruption, although the calcium entry mechanism responsible for this effect remains poorly understood. This chapter highlights recent efforts to define the molecular anatomy of the ion channel responsible for triggering endothelial cell gap formation. Resolving the identity and function of this calcium channel will pave the way for new anti-inflammatory therapeutic targets.
Collapse
|
40
|
Titushkin IA, Rao VS, Pickard WF, Moros EG, Shafirstein G, Cho MR. Altered Calcium Dynamics Mediates P19-Derived Neuron-Like Cell Responses to Millimeter-Wave Radiation. Radiat Res 2009; 172:725-36. [DOI: 10.1667/rr1760.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
|
42
|
Monastyrskaya K, Babiychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 2009; 66:2623-42. [PMID: 19381436 PMCID: PMC11115530 DOI: 10.1007/s00018-009-0027-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | | | | |
Collapse
|
43
|
Jardín I, López JJ, Redondo PC, Salido GM, Rosado JA. Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1614-22. [PMID: 19631699 DOI: 10.1016/j.bbamcr.2009.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 01/06/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major mechanism for Ca(2+) influx in platelets and other cells activated by a reduction in Ca(2+) concentration in the intracellular stores. SOCE has been reported to be regulated by extracellular Ca(2+), although the underlying mechanism remains unclear. Here we have examined the involvement of plasma membrane-located STIM1 (PM-STIM1) in the regulation of SOCE by extracellular Ca(2+). Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn(2+) entry, which was inhibited by extracellular Ca(2+) in a concentration-dependent manner. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 25-139 of PM-STIM1 that contains the Ca(2+)-binding domain, prevented the inactivation of Ca(2+) entry induced by extracellular Ca(2+). TG induced translocation of STIM1 to the plasma membrane (PM), an event that was found to be Ca(2+)-dependent. In addition, TG stimulated association of PM-STIM1 with Orai1, an event that was not prevented by stabilization of the membrane cytoskeleton using jasplakinolide. These findings suggest that PM-STIM1 is important for the inactivation of SOCE by extracellular Ca(2+), an event that is likely to be mediated by interaction with Orai1.
Collapse
Affiliation(s)
- Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
44
|
Harper MT, Sage SO. Actin polymerisation regulates thrombin-evoked Ca2+signalling after activation of PAR-4 but not PAR-1 in human platelets. Platelets 2009; 17:134-42. [PMID: 16702038 DOI: 10.1080/09537100500441218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The role of actin polymerisation in regulating thrombin-evoked Ca(2+) signalling was investigated in human platelets. We have previously reported that cytochalasin D (Cyt D) inhibits thapsigargin-evoked store-operated Ca(2+) entry (SOCE), which is believed to contribute a major component of thrombin-evoked Ca(2+) entry in platelets. In contrast, Cyt D increased thrombin-evoked Ca(2+) entry to 147.5 +/- 9.2% and Sr(2+) entry to 134.2 +/- 6.4% of control. Similar results were obtained with latrunculin A. This potentiation was not affected if protein kinase C was inhibited using Ro-31-8220, suggesting that it did not involve PKC-dependent non-capacitative Ca(2+) entry. Ca(2+) entry evoked by the PAR-4 agonist, AYPGKF, was increased to 133.7 +/- 12.8% of control by Cyt D, whereas Ca(2+) signalling evoked by the PAR-1 agonist, SFLLRN, was unaffected. The PAR-4 antagonist, tcY-NH(2), abolished the effect of Cyt D on thrombin-evoked Ca(2+) entry. Biotinylation of cell-surface proteins showed that PAR-4 was internalised after stimulation by thrombin. Cyt D reduced this internalisation. These data suggest that Cyt D prevents the internalisation of PAR-4, which may lead to prolonged signalling from this receptor. This may mask a direct effect of Cyt D on the activation of SOCE after the activation of PAR-4.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Physiology, University of Cambridge, Downing Street, Cambridge, UK.
| | | |
Collapse
|
45
|
Russa AD, Ishikita N, Masu K, Akutsu H, Saino T, Satoh YI. Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. ACTA ACUST UNITED AC 2009; 71:249-63. [PMID: 19359807 DOI: 10.1679/aohc.71.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of the intracellular calcium ion concentration ([Ca(2+)](i)) is critical, because calcium signaling controls diverse and vital cellular processes such as secretion, proliferation, division, gene transcription, and apoptosis. Store-operated calcium entry (SOCE) is the main mechanism through which non-excitable cells replenish and thus maintain this delicate balance. There is limited evidence which indicates that SOCE may be inhibited during mitosis, and the mechanisms leading to the presumed inhibition has not been elucidated. In the present study, we examined and compared the [Ca(2+)](i) dynamics of COS-7 cells in mitotic and non-mitotic phases with special reference paid to SOCE. Laser scanning confocal microscopy to monitor [Ca(2+)](i) dynamics revealed that SOCE was progressively inhibited in mitosis and became virtually absent during the metaphase. We used various cytoskeletal modifying drugs and immunofluorescence to assess the contribution of microtubule and actin filaments in SOCE signaling. Nocodazole treatment caused microtubule reorganization and retraction from the cell periphery that mimicked the natural mitotic microtubule remodeling that was also accompanied by SOCE inhibition. Short exposure to paclitaxel, a microtubule-stabilizing drug, bolstered SOCE, whereas long exposure resulted in microtubule disruption and SOCE inhibition. Actin-modifying drugs did not affect SOCE. These findings indicate that mitotic microtubule remodeling plays a significant role in the inhibition of SOCE during mitosis.
Collapse
Affiliation(s)
- Afadhali Denis Russa
- Department of Anatomy (Cell Biology Group), Iwate Medical University School of Medicine, Uchimaru, Morioka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Monastyrskaya K, Babiychuk EB, Hostettler A, Wood P, Grewal T, Draeger A. Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical actin cytoskeleton. J Biol Chem 2009; 284:17227-17242. [PMID: 19386597 DOI: 10.1074/jbc.m109.004457] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The annexins are a family of Ca(2+)- and phospholipid-binding proteins, which interact with membranes upon increase of [Ca(2+)](i) or during cytoplasmic acidification. The transient nature of the membrane binding of annexins complicates the study of their influence on intracellular processes. To address the function of annexins at the plasma membrane (PM), we fused fluorescent protein-tagged annexins A6, A1, and A2 with H- and K-Ras membrane anchors. Stable PM localization of membrane-anchored annexin A6 significantly decreased the store-operated Ca(2+) entry (SOCE), but did not influence the rates of Ca(2+) extrusion. This attenuation was specific for annexin A6 because PM-anchored annexins A1 and A2 did not alter SOCE. Membrane association of annexin A6 was necessary for a measurable decrease of SOCE, because cytoplasmic annexin A6 had no effect on Ca(2+) entry as long as [Ca(2+)](i) was below the threshold of annexin A6-membrane translocation. However, when [Ca(2+)](i) reached the levels necessary for the Ca(2+)-dependent PM association of ectopically expressed wild-type annexin A6, SOCE was also inhibited. Conversely, knockdown of the endogenous annexin A6 in HEK293 cells resulted in an elevated Ca(2+) entry. Constitutive PM localization of annexin A6 caused a rearrangement and accumulation of F-actin at the PM, indicating a stabilized cortical cytoskeleton. Consistent with these findings, disruption of the actin cytoskeleton using latrunculin A abolished the inhibitory effect of PM-anchored annexin A6 on SOCE. In agreement with the inhibitory effect of annexin A6 on SOCE, constitutive PM localization of annexin A6 inhibited cell proliferation. Taken together, our results implicate annexin A6 in the actin-dependent regulation of Ca(2+) entry, with consequences for the rates of cell proliferation.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | - Eduard B Babiychuk
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Andrea Hostettler
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Peta Wood
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Annette Draeger
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| |
Collapse
|
47
|
Lopez JJ, Salido GM, Pariente JA, Rosado JA. Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 2008; 6:1780-8. [PMID: 18665919 DOI: 10.1111/j.1538-7836.2008.03111.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thrombin is a physiological platelet agonist that activates apoptotic events, including cytochrome c release and phosphatidylserine exposure; however, the mechanisms underlying these events remain unclear. OBJECTIVES The present study is aimed to investigate whether thrombin induces activation and mitochondrial translocation of Bid, Bax and Bak. METHODS Changes in the mitochondrial membrane potential were registered using the dye JC-1; Bid, Bax and Bak translocation to the mitochondria was detected by immunoprecipitation and Western blotting in samples from mitochondrial and cytosolic fractions. RESULTS Treatment of platelets with thrombin or ADP induces activation and mitochondrial association of active Bid, Bax and Bak. Translocation of Bid and Bax to the mitochondria was reduced by cytochalasin D, latrunculin A or jasplakinolide. Platelet exposure to exogenous H(2)O(2) (10 microm) results in activation of Bid and Bax, which was found to be similar to the effect of thrombin. Thrombin evokes mitochondrial membrane depolarization, which is attenuated by catalase. CONCLUSION Our results indicate that thrombin induces activation and mitochondrial translocation of Bid, Bax and Bak, which is likely to be one of the apoptotic events in human platelets.
Collapse
Affiliation(s)
- J J Lopez
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
48
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 2008; 283:25296-25304. [PMID: 18644792 DOI: 10.1074/jbc.m802904200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - José J Lopez
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - Gines M Salido
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain.
| |
Collapse
|
49
|
El Haouari M, Rosado JA. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol Dis 2008; 41:119-23. [PMID: 18387322 DOI: 10.1016/j.bcmd.2008.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
Abstract
The hyperactivation of platelets is involved in the cardiovascular complications associated with type 2 diabetes mellitus. Altered platelet behavior contributes to the angiopathies associated with diabetes. A number of mechanisms involved in platelet activation are altered in diabetes. Platelets from type 2 diabetic patients show an enhanced endogenous reactive oxygen species production and a reduced antioxidant capability, which increase the activity of several tyrosine kinases, such as the Bruton's tyrosine kinase, MAP kinases or proteins of the SRC family. Oxidative stress is also involved in the abnormal intracellular calcium homeostasis observed in platelets from type 2 diabetics, including an enhanced resting cytosolic calcium concentration and calcium release and entry in response to agonists. Moreover, diabetes alters the bioavailability of nitric oxide in platelets. Basal nitric oxide synthase activity is reduced in homogenates of platelets obtained from patients with type 2 diabetes mellitus. The study of these abnormalities might be helpful in the development of new pharmacological strategies to reduce platelet activation in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Laboratoire de Physiologie et d'Ethnopharmacologie, Département de Biologie, Université Mohamed 1er, Faculté des Sciences, Bd. Mohamed VI, BP 717, Oujda 60000, Morocco
| | | |
Collapse
|
50
|
Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci 2008; 82:977-82. [PMID: 18433795 DOI: 10.1016/j.lfs.2008.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/19/2008] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Cinnamtannin B-1 is a naturally occurring trimeric A-type proanthocyanidin, present in a limited number of plants, which exhibits a large number of cellular actions mostly derived from its antioxidant properties. Cinnamtannin B-1 modulates several biological processes such as changes in cytosolic free Ca(2+) concentration, endogenous reactive oxygen species generation, protein tyrosine phosphorylation and platelet aggregation. Proanthocyanidins, such as cinnamtannin B-1, have been reported to exert antitumoral activity mediated by a selective proapoptotic action in a number of tumoral cell lines associated with antiapoptotic activity in normal cells. The opposite effects of proanthocyanidins in normal and tumoral cells suggest that these compounds might be the base for therapeutic strategies directed selectively against tumoral cells. In addition, cinnamtannin B-1 shows antithrombotic actions through inhibition, in platelets, of endogenous ROS generation, Ca(2+) mobilization and, subsequently, aggregation. This has been reported to be especially relevant in platelets from diabetic patients, where cinnamtannin B-1 reverses both platelet hypersensitivity and hyperactivity. Considering the large number of cellular effects of cinnamtannin B-1 the development of therapeutic strategies for thrombotic disorders or certain types of cancer deserves further studies. This review summarizes the current knowledge on the actions and relevance of the signalling pathways modulated by cinnamtannin B-1.
Collapse
|