1
|
Quinodoz M, Rutz S, Peter V, Garavelli L, Innes AM, Lehmann EF, Kellenberger S, Peng Z, Barone A, Campos-Xavier B, Unger S, Rivolta C, Dutzler R, Superti-Furga A. De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder. EMBO J 2025; 44:413-436. [PMID: 39623139 PMCID: PMC11729881 DOI: 10.1038/s44318-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones. The LRRC8C gene harbored de novo variants in both patients, located in a region of the gene encoding the boundary between the pore and a cytoplasmic domain, which is depleted of sequence variations in control subjects. When studied by cryo-EM, both LRRC8C mutant proteins assembled as their wild-type counterparts, but showed increased flexibility, suggesting a destabilization of subunit interactions. When co-expressed with the obligatory LRRC8A subunit, the mutants exhibited enhanced activation, resulting in channel activity even at isotonic conditions in which wild-type channels are closed. We conclude that structural perturbations of LRRC8C impair channel gating and constitute the mechanistic basis of the dominant gain-of-function effect of these pathogenic variants. The pleiotropic phenotype of this novel clinical entity associated with monoallelic LRRC8C variants indicates the fundamental roles of VRACs in different tissues and organs.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sonja Rutz
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Virginie Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123, Reggio Emilia, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T3B 6A8, Canada
| | - Elena F Lehmann
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Zhong Peng
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Angelica Barone
- Pediatric Onco-Hematology Unit, Children's Hospital, Parma University Hospital, Parma, Italy
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
- Genetica AG, Zurich and Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Raimund Dutzler
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland.
- Genetica AG, Zurich and Lausanne, Switzerland.
| |
Collapse
|
2
|
Bassler MC, Hiller J, Wackenhut F, Zur Oven-Krockhaus S, Frech P, Schmidt F, Kertzscher C, Rammler T, Ritz R, Braun K, Scheele M, Meixner AJ, Brecht M. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chem Biol 2024; 5:d4cb00107a. [PMID: 39421718 PMCID: PMC11474773 DOI: 10.1039/d4cb00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant primary brain tumors are a group of highly aggressive and often infiltrating tumors that lack adequate therapeutic treatments to achieve long time survival. Complete tumor removal is one precondition to reach this goal. A promising approach to optimize resection margins and eliminate remaining infiltrative so-called guerilla cells is photodynamic therapy (PDT) using organic photosensitizers that can pass the disrupted blood-brain-barrier and selectively accumulate in tumor tissue. Hypericin fulfills these conditions and additionally offers outstanding photophysical properties, making it an excellent choice as a photosensitizing molecule for PDT. However, the actual hypericin-induced PDT cell death mechanism is still under debate. In this work, hypericin-induced PDT was investigated by employing the three distinct fluorescent probes hypericin, resorufin and propidium iodide (PI) in fluorescence-lifetime imaging microscopy (FLIM). This approach enables visualizing the PDT-induced photodamaging and dying of single, living glioma cells, as an in vitro tumor model for glioblastoma. Hypericin PDT and FLIM image acquisition were simultaneously induced by 405 nm laser irradiation and sequences of FLIM images and fluorescence spectra were recorded to analyze the PDT progression. The reproducibly observed cellular changes provide insight into the mechanism of cell death during PDT and suggest that apoptosis is the initial mechanism followed by necrosis after continued irradiation. These new insights into the mechanism of hypericin PDT of single glioma cells may help to adjust irradiation doses and improve the implementation as a therapy for primary brain tumors.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jonas Hiller
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Frank Wackenhut
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| | - Sven Zur Oven-Krockhaus
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Philipp Frech
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Felix Schmidt
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christoph Kertzscher
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Tim Rammler
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Rainer Ritz
- Department of Neurosurgery, Schwarzwald-Baar Clinic 78052 Villingen-Schwenningen Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
3
|
Kim CW, Kim EJ, Woo MS, Cao DL, Cirunduzi AC, Ryu JH, Kong IK, Lee DK, Hong SG, Han J, Kang D. Downregulation of TASK-3 Channel Induces Senescence in Granulosa Cells of Bovine Cystic Ovarian Follicles. Int J Mol Sci 2024; 25:10199. [PMID: 39337686 PMCID: PMC11432027 DOI: 10.3390/ijms251810199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cysts are linked to hormone imbalances and altered gene expressions, but the connection between cysts and ion channel expression is understudied. This study explored the role of TWIK-related acid-sensitive K+ (TASK) channels in bovine ovarian cyst formation. The ovarian follicles were split into small (5 to 10 mm in diameter) and large (>25 mm in diameter) groups. Among the measured K+, Na+, and Cl- concentrations in follicular fluid (FF) obtained from small-sized follicles (SFs) and large-sized follicles (LFs), the K+ concentration was significantly lower in LFFF. Quantitative PCR, Western blot, and immunocytochemistry data revealed that TASK-3 expression levels significantly decreased by approximately 50% in LFs and granulosa cells obtained from LFs (LFGCs) compared to the corresponding controls. The TASK-3 protein was localized to the plasma membranes of GCs. The diameters of LFGCs were larger than those of SFGCs. The cell swelling response to exposure to a hypotonic solution (200 mOsm/L) was highly reduced in TASK-3-overexpressing cells compared to vector-transfected cells. TASK-3-knockdown cells showed arrested growth. Senescence markers were detected in LFGCs and TASK-3-knockdown cells. These findings suggest that reduced TASK-3 expression in LFs is associated with the inhibition of GC growth, leading to senescence and cyst formation.
Collapse
Affiliation(s)
- Chang-Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Eun-Jin Kim
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Seok Woo
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dang Long Cao
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Asifiwe Clarisse Cirunduzi
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seong-Geun Hong
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jaehee Han
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dawon Kang
- Department of Physiology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
4
|
Centrone M, Saltarella I, D'Agostino M, Ranieri M, Venneri M, Di Mise A, Simone L, Pisani F, Valenti G, Frassanito MA, Tamma G. RhoB plays a central role in hyperosmolarity-induced cell shrinkage in renal cells. J Cell Physiol 2024; 239:e31343. [PMID: 38946197 DOI: 10.1002/jcp.31343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D'Agostino
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri SPA SB IRCCS, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Francesco Pisani
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria A Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Clinical Pathology, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Takayama Y, Tominaga M. Interaction between TRP channels and anoctamins. Cell Calcium 2024; 121:102912. [PMID: 38823351 DOI: 10.1016/j.ceca.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
6
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
7
|
Azam I, Benson JD. Multiscale transport and 4D time-lapse imaging in precision-cut liver slices (PCLS). PeerJ 2024; 12:e16994. [PMID: 38426134 PMCID: PMC10903333 DOI: 10.7717/peerj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
9
|
Sato J, Nakano K, Miyazaki H. Decreased intracellular chloride enhances cell migration and invasion via activation of the ERK1/2 signaling pathway in DU145 human prostate carcinoma cells. Biochem Biophys Res Commun 2023; 685:149170. [PMID: 37924777 DOI: 10.1016/j.bbrc.2023.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Our previous study revealed that changes of the intracellular Cl- concentration ([Cl-]i) affected cell proliferation in cancer cells. However, the role of Cl- on cell migration and invasion in cancer cells remains unanalyzed. Therefore, the aim of the present study is to investigate whether changes of [Cl-]i affects cell migration and invasion of cancer cells. In human prostate cancer DU145 cells, cell migration and invasion were enhanced by culturing in the low Cl- medium (replacement of Cl- by NO3-). We also found that DU145 cells in the low Cl- condition caused significant transient ERK1/2 activation followed by an increase of MMP-1 mRNA levels. Inhibition of ERK1/2 activation in the low Cl- condition reduced enhancement of MMP-1 mRNA levels and decreased cell migration and invasion. These observations indicate that [Cl-]i plays important roles in metastatic function by regulating the ERK1/2 signaling pathway in human prostate cancer cells, and intracellular Cl- would be one of the key targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Junichi Sato
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Koya Nakano
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hiroaki Miyazaki
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
10
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
12
|
Giordano ME, Udayan G, Guascito MR, De Bartolomeo AR, Carlino A, Conte M, Contini D, Lionetto MG. Apoptotic volume decrease (AVD) in A 549 cells exposed to water-soluble fraction of particulate matter (PM 10). Front Physiol 2023; 14:1218687. [PMID: 37492639 PMCID: PMC10364053 DOI: 10.3389/fphys.2023.1218687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Exposure to atmospheric particulate matter (PM) is recognized as a human health risk factor of great concern. The present work aimed to study the cellular mechanisms underlying cytotoxic effects of airborne particulate matter <10 µm in size (PM10), sampled in an urban background site from January to May 2020, on A549 cells. In particular, the study addressed if PM10 exposure can be a main factor in the induction of the Apoptotic Volume Decrease (AVD), which is one of the first events of apoptosis, and if the generation of intracellular oxidative stress can be involved in the PM10 induction of apoptosis in A549 cells. The cytotoxicity of PM10 samples was measured by MTT test on cells exposed for 24 h to the PM10 aqueous extracts, cell volume changes were monitored by morphometric analysis of the cells, apoptosis appearance was detected by annexin V and the induction of intracellular oxidative stress was evaluated by the ROS sensitive CM-H2DCFDA fluorescent probe. The results showed cytotoxic effects ascribable to apoptotic death in A549 cells exposed for 24 h to aqueous extracts of airborne winter PM10 samples characterized by high PM10 value and organic carbon content. The detected reduced cell viability in winter samples ranged from 55% to 100%. Normotonic cell volume reduction (ranging from about 60% to 30% cell volume decrease) after PM10 exposure was already detectable after the first 30 min clearly indicating the ability of PM10, mainly arising from biomass burning, to induce Apoptotic Volume Decrease (AVD) in A549 cells. AVD was prevented by the pre-treatment with 0.5 mM SITS indicating the activation of Cl- efflux presumably through the activation of VRAC channels. The exposure of A549 cells to PM10 aqueous extracts was able to induce intracellular oxidative stress detected by using the ROS-sensitive probe CM-H2DCFDA. The PM10-induced oxidative stress was statistically significantly correlated with cell viability inhibition and with apoptotic cell shrinkage. It was already evident after 15 min exposure representing one of the first cellular effects caused by PM exposure. This result suggests the role of oxidative stress in the PM10 induction of AVD as one of the first steps in cytotoxicity.
Collapse
Affiliation(s)
- M E Giordano
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - G Udayan
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M R Guascito
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A R De Bartolomeo
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A Carlino
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M Conte
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
| | - D Contini
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce, Italy
| | - M G Lionetto
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
13
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
15
|
Vera-Zambrano A, Baena-Nuevo M, Rinné S, Villegas-Esguevillas M, Barreira B, Telli G, de Benito-Bueno A, Blázquez JA, Climent B, Pérez-Vizcaino F, Valenzuela C, Decher N, Gonzalez T, Cogolludo A. Sigma-1 receptor modulation fine-tunes K V1.5 channels and impacts pulmonary vascular function. Pharmacol Res 2023; 189:106684. [PMID: 36740150 DOI: 10.1016/j.phrs.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.
Collapse
Affiliation(s)
- Alba Vera-Zambrano
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain.
| | - Maria Baena-Nuevo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Marta Villegas-Esguevillas
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gokcen Telli
- Hacettepe University, Department of Pharmacology, Faculty of Pharmacy, Ankara, Turkey
| | | | | | - Belén Climent
- Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Teresa Gonzalez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
16
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
17
|
Hu M, Zhou N, Cai W, Xu H. Lysosomal solute and water transport. J Cell Biol 2022; 221:213536. [PMID: 36219209 PMCID: PMC9559593 DOI: 10.1083/jcb.202109133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lysosomes mediate hydrolase-catalyzed macromolecule degradation to produce building block catabolites for reuse. Lysosome function requires an osmo-sensing machinery that regulates osmolytes (ions and organic solutes) and water flux. During hypoosmotic stress or when undigested materials accumulate, lysosomes become swollen and hypo-functional. As a membranous organelle filled with cargo macromolecules, catabolites, ions, and hydrolases, the lysosome must have mechanisms that regulate its shape and size while coordinating content exchange. In this review, we discussed the mechanisms that regulate lysosomal fusion and fission as well as swelling and condensation, with a focus on solute and water transport mechanisms across lysosomal membranes. Lysosomal H+, Na+, K+, Ca2+, and Cl- channels and transporters sense trafficking and osmotic cues to regulate both solute flux and membrane trafficking. We also provide perspectives on how lysosomes may adjust the volume of themselves, the cytosol, and the cytoplasm through the control of lysosomal solute and water transport.
Collapse
Affiliation(s)
- Meiqin Hu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Nan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Weijie Cai
- Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China.,Department of Neurology, Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
18
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
19
|
Conrad C, Conway J, Polacheck WJ, Rizvi I, Scarcelli G. Water transport regulates nucleus volume, cell density, Young's modulus, and E-cadherin expression in tumor spheroids. Eur J Cell Biol 2022; 101:151278. [PMID: 36306595 DOI: 10.1016/j.ejcb.2022.151278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cell volume is maintained by the balance of water and solutes across the cell membrane and plays an important role in mechanics and biochemical signaling in cells. Here, we assess the relationship between cell volume, mechanical properties, and E-cadherin expression in three-dimensional cultures for ovarian cancer. To determine the effect of water transport in multi-cellular tumors, ovarian cancer spheroids were subjected to hypotonic and hypertonic shock using water and sucrose mixtures, respectively. Increased osmolality resulted in decreased nucleus volume, increased Young's modulus, and increased tumor cell density in ovarian cancer spheroids. Next, we looked at the reversibility of mechanics and morphology after 5 min of osmotic shock and found that spheroids had a robust ability to return to their original state. Finally, we quantified the size of E-cadherin clusters at cell-cell junctions and observed a significant increase in aggregate size following 30 min of hypertonic and hypotonic osmotic shocks. Yet, these effects were not apparent after 5 min of osmotic shock, illustrating a temporal difference between E-cadherin regulation and the immediate mechanical and morphology changes. Still, the osmotically induced E-cadherin aggregates which formed at the 30-minute timepoint was reversible when spheroids were replenished with isotonic medium. Altogether, this work demonstrated an important role of osmolality in transforming mechanical, morphology, and molecular states.
Collapse
Affiliation(s)
- Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jessica Conway
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
20
|
Pochynyuk O, Palygin O. Unfulfilled Expectations Open New Horizons: What Have We Learned about Volume-Regulated Anion Channels in the Kidney? J Am Soc Nephrol 2022; 33:1437-1439. [PMID: 35840173 PMCID: PMC9342627 DOI: 10.1681/asn.2022050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleg Palygin
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
Romanova N, Schmitz J, Strakeljahn M, Grünberger A, Bahnemann J, Noll T. Single-Cell Analysis of CHO Cells Reveals Clonal Heterogeneity in Hyperosmolality-Induced Stress Response. Cells 2022; 11:1763. [PMID: 35681457 PMCID: PMC9179406 DOI: 10.3390/cells11111763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperosmolality can occur during industrial fed-batch cultivation processes of Chinese hamster ovary (CHO) cells as highly concentrated feed and base solutions are added to replenish nutrients and regulate pH values. Some effects of hyperosmolality, such as increased cell size and growth inhibition, have been elucidated by previous research, but the impact of hyperosmolality and the specific effects of the added osmotic-active reagents have rarely been disentangled. In this study, CHO cells were exposed to four osmotic conditions between 300 mOsm/kg (physiologic condition) and 530 mOsm/kg (extreme hyperosmolality) caused by the addition of either high-glucose-supplemented industrial feed or mannitol as an osmotic control. We present novel single-cell cultivation data revealing heterogeneity in mass gain and cell division in response to these treatments. Exposure to extreme mannitol-induced hyperosmolality and to high-glucose-oversupplemented feed causes cell cycle termination, mtDNA damage, and mitochondrial membrane depolarization, which hints at the onset of premature stress-induced senescence. Thus, this study shows that both mannitol-induced hyperosmolality (530 mOsm/kg) and glucose overfeeding induce severe negative effects on cell growth and mitochondrial activity; therefore, they need to be considered during process development for commercial production.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Marie Strakeljahn
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany;
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| |
Collapse
|
22
|
Sijben HJ, Dall’ Acqua L, Liu R, Jarret A, Christodoulaki E, Onstein S, Wolf G, Verburgt SJ, Le Dévédec SE, Wiedmer T, Superti-Furga G, IJzerman AP, Heitman LH. Impedance-Based Phenotypic Readout of Transporter Function: A Case for Glutamate Transporters. Front Pharmacol 2022; 13:872335. [PMID: 35677430 PMCID: PMC9169222 DOI: 10.3389/fphar.2022.872335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell’s physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.
Collapse
Affiliation(s)
- Hubert J. Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura Dall’ Acqua
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Abigail Jarret
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Simone J. Verburgt
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
- *Correspondence: Laura H. Heitman,
| |
Collapse
|
23
|
Spolaor S, Rovetta M, Nobile MS, Cazzaniga P, Tisi R, Besozzi D. Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci 2022; 9:856030. [PMID: 35664674 PMCID: PMC9158465 DOI: 10.3389/fmolb.2022.856030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in any eukaryotic organism, depend on various transporters and channels located on both the plasma and intracellular membranes. The activity of these proteins is regulated by a number of feedback mechanisms that act through the calmodulin-calcineurin pathway. When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic calcium transient, which seems to be conditioned by the opening of stretch-activated channels. To better understand the role of each channel and transporter involved in the generation and recovery of the calcium transient—and of their feedback regulations—we defined and analyzed a mathematical model of the calcium signaling response to HTS in yeast cells. The model was validated by comparing the simulation outcomes with calcium concentration variations before and during the HTS response, which were observed experimentally in both wild-type and mutant strains. Our results show that calcium normally enters the cell through the High Affinity Calcium influx System and mechanosensitive channels. The increase of the plasma membrane tension, caused by HTS, boosts the opening probability of mechanosensitive channels. This event causes a sudden calcium pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal, unless calcineurin is inhibited or removed. Our results also suggest that the mechanosensitive channels are subject to a calcium-dependent feedback inhibition, possibly involving calmodulin. Noteworthy, the model predictions are in accordance with literature results concerning some aspects of calcium homeostasis and signaling that were not specifically addressed within the model itself, suggesting that it actually depicts all the main cellular components and interactions that constitute the HTS calcium pathway, and thus can correctly reproduce the shaping of the calcium signature by calmodulin- and calcineurin-dependent complex regulations. The model predictions also allowed to provide an interpretation of different regulatory schemes involved in calcium handling in both wild-type and mutants yeast strains. The model could be easily extended to represent different calcium signals in other eukaryotic cells.
Collapse
Affiliation(s)
- Simone Spolaor
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Mattia Rovetta
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Marco S. Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
| | - Paolo Cazzaniga
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| |
Collapse
|
24
|
Wang Z, Li Y, Zeng Z, Guo S, Chen W, Luo Y. Leucine-rich repeat containing 8A contributes to the expansion of The potential role of leucine-rich repeat-containing protein 8A in central nervous system: current situation and prospect. Neuroscience 2022; 488:122-131. [PMID: 35276302 DOI: 10.1016/j.neuroscience.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Cell swelling usually initiates the regulatory volume decrease (RVD) process mediated mainly by volume-regulated anion channels (VRACs), which are formed by multiple different leucine-rich repeat-containing protein 8 (LRRC8) family members. VRAC currents have been widely recorded in astrocytes, neurons and microglia in the brain, and VRACs have been suggested to be involved in the important pathogenesis of cell swelling-related central nervous system (CNS) diseases, such as ischemic stroke, epilepsy and epileptogenesis, glioblastoma (GBM), and so on. Recently, the increasing studies started to focus on LRRC8A (SWELL1), an obligatory subunit of VRAC indentified in 2014, which may be the key target to regulate the VRAC functions. After cerebral ischemia, the swollen astrocytes, neurons and microglia can activate LRRC8A-dependent VRACs, which may respectively promote the release of excitatory amino acids (EAA), interaction with ionotropic glutamate receptors, and regulating inflammation, suggesting the pleiotropic roles of LRRC8A in swollen brain cells. For the treatment of cell swelling-related CNS diseases, specific targeting LRRC8A may be a superior strategy to inhibit swollen-induced VRAC hyperactivity without blocking the normal VRAC function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
25
|
Kittl M, Winklmayr M, Preishuber-Pflügl J, Strobl V, Gaisberger M, Ritter M, Jakab M. Low pH Attenuates Apoptosis by Suppressing the Volume-Sensitive Outwardly Rectifying (VSOR) Chloride Current in Chondrocytes. Front Cell Dev Biol 2022; 9:804105. [PMID: 35186954 PMCID: PMC8847443 DOI: 10.3389/fcell.2021.804105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
In a variety of physiological and pathophysiological conditions, cells are exposed to acidic environments. Severe synovial fluid acidification also occurs in a progressive state of osteoarthritis (OA) affecting articular chondrocytes. In prior studies extracellular acidification has been shown to protect cells from apoptosis but the underlying mechanisms remain elusive. In the present study, we demonstrate that the inhibition of Cl− currents plays a significant role in the antiapoptotic effect of acidification in human articular chondrocytes. Drug-induced apoptosis was analyzed after exposure to staurosporine by caspase 3/7 activity and by annexin-V/7-actinomycin D (7-AAD) staining, followed by flow cytometry. Cell viability was assessed by resazurin, CellTiter-Glo and CellTiter-Fluor assays. Cl− currents and the mean cell volume were determined using the whole cell patch clamp technique and the Coulter method, respectively. The results reveal that in C28/I2 cells extracellular acidification decreases caspase 3/7 activity, enhances cell viability following staurosporine treatment and gradually deactivates the volume-sensitive outwardly rectifying (VSOR) Cl− current. Furthermore, the regulatory volume decrease (RVD) as well as the apoptotic volume decrease (ADV), which represents an early event during apoptosis, were absent under acidic conditions after hypotonicity-induced cell swelling and staurosporine-induced apoptosis, respectively. Like acidosis, the VSOR Cl− current inhibitor DIDS rescued chondrocytes from apoptotic cell death and suppressed AVD after induction of apoptosis with staurosporine. Similar to acidosis and DIDS, the VSOR channel blockers NPPB, niflumic acid (NFA) and DCPIB attenuated the staurosporine-induced AVD. NPPB and NFA also suppressed staurosporine-induced caspase 3/7 activation, while DCPIB and Tamoxifen showed cytotoxic effects per se. From these data, we conclude that the deactivation of VSOR Cl− currents impairs cell volume regulation under acidic conditions, which is likely to play an important role in the survivability of human articular chondrocytes.
Collapse
Affiliation(s)
- Michael Kittl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- *Correspondence: Michael Kittl,
| | - Martina Winklmayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Victoria Strobl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology, Pathophysiology and Biophysics—Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Jakab
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| |
Collapse
|
26
|
Yurinskaya VE, Vereninov AA. Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water/Ionic Balance Regulation Under Hyperosmolar Conditions: In Silico and Experimental Studies of Opposite RVI and AVD Responses of U937 Cells to Hyperosmolar Media. Front Cell Dev Biol 2022; 9:830563. [PMID: 35141234 PMCID: PMC8818862 DOI: 10.3389/fcell.2021.830563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022] Open
Abstract
Studying the transport of monovalent ions across the cell membrane in living cells is complicated by the strong interdependence of fluxes through parallel pathways and requires therefore computational analysis of the entire electrochemical system of the cell. Current paper shows how to calculate changes in the cell water balance and ion fluxes caused by changes in the membrane channels and transporters during a normal regulatory increase in cell volume in response to osmotic cell shrinkage (RVI) followed by a decrease in cell volume associated with apoptosis (AVD). Our recently developed software is used as a computational analysis tool and the established human lymphoid cells U937 are taken as an example of proliferating animal cells. It is found that, in contrast to countless statements in the literature that cell volume restoration requires the activation of certain ion channels and transporters, the cellular responses such as RVI and AVD can occur in an electrochemical system like U937 cells without any changes in the state of membrane channels or transporters. These responses depend on the types of chloride cotransporters in the membrane and differ in a hyperosmolar medium with additional sucrose and in a medium with additional NaCl. This finding is essential for the identification of the true changes in membrane channels and transporters responsible for RVI and AVD in living cells. It is determined which changes in membrane parameters predicted by computational analysis are consistent with experimental data obtained on living human lymphoid cells U937, Jurkat, and K562 and which are not. An essential part of the results is the developed software that allows researchers without programming experience to calculate the fluxes of monovalent ions via the main transmembrane pathways and electrochemical gradients that move ions across the membrane. The software is available for download. It is useful for studying the functional expression of the channels and transporters in living cells and understanding how the cell electrochemical system works.
Collapse
|
27
|
Esteki MH, Malandrino A, Alemrajabi AA, Sheridan GK, Charras G, Moeendarbary E. Poroelastic osmoregulation of living cell volume. iScience 2021; 24:103482. [PMID: 34927026 PMCID: PMC8649806 DOI: 10.1016/j.isci.2021.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Cells maintain their volume through fine intracellular osmolarity regulation. Osmotic challenges drive fluid into or out of cells causing swelling or shrinkage, respectively. The dynamics of cell volume changes depending on the rheology of the cellular constituents and on how fast the fluid permeates through the membrane and cytoplasm. We investigated whether and how poroelasticity can describe volume dynamics in response to osmotic shocks. We exposed cells to osmotic perturbations and used defocusing epifluorescence microscopy on membrane-attached fluorescent nanospheres to track volume dynamics with high spatiotemporal resolution. We found that a poroelastic model that considers both geometrical and pressurization rates captures fluid-cytoskeleton interactions, which are rate-limiting factors in controlling volume changes at short timescales. Linking cellular responses to osmotic shocks and cell mechanics through poroelasticity can predict the cell state in health, disease, or in response to novel therapeutics. Cell height changes can be finely captured by defocusing microscopy Water permeation and cellular deformability regulate dynamics of cell volume changes Poroelasticity describes the dynamics of cell volume changes The response of cell to hypo or hyperosmotic shocks are modeled by poroelasticity
Collapse
Affiliation(s)
- Mohammad Hadi Esteki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.,Department of Mechanical Engineering, University College London, London, UK
| | - Andrea Malandrino
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ali Akbar Alemrajabi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Sforna L, Michelucci A, Morena F, Argentati C, Franciolini F, Vassalli M, Martino S, Catacuzzeno L. Piezo1 controls cell volume and migration by modulating swelling-activated chloride current through Ca 2+ influx. J Cell Physiol 2021; 237:1857-1870. [PMID: 34913176 DOI: 10.1002/jcp.30656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
Regulatory volume decrease (RVD), a homeostatic process responsible for the re-establishment of the original cell volume upon swelling, is critical in controlling several functions, including migration. RVD is mainly sustained by the swelling-activated Cl- current (ICl,swell ), which can be modulated by cytoplasmic Ca2+ . Cell swelling also activates mechanosensitive channels, including the ubiquitously expressed Ca2+ -permeable channel Piezo1. We hypothesized that, by controlling cytoplasmic Ca2+ and in turn ICl,swell , Piezo1 is involved in the fine regulation of RVD and cell migration. We compared RVD and ICl,swell in wild-type (WT) HEK293T cells, which express endogenous levels of Piezo1, and in cells overexpressing (OVER) or knockout (KO) for Piezo1. Compared to WT, RVD was markedly increased in OVER, while virtually absent in KO cells. Consistently, ICl,swell amplitude was highest in OVER and lowest in KO cells, with WT cells displaying an intermediate level, suggesting a Ca2+ -dependent modulation of the current by Piezo1 channels. Indeed, in the absence of external Ca2+ , ICl,swell in both WT and OVER cells, as well as the RVD probed in OVER cells, were significantly lower than in the presence of Ca2+ and no longer different compared to KO cells. However, the Piezo-mediated Ca2+ influx was ineffective in enhancing ICl,swell in the absence of releasable Ca2+ from intracellular stores. The different expression levels of Piezo1 affected also cell migration which was strongly enhanced in OVER, while reduced in KO cells, as compared to WT. Taken together, our data indicate that Piezo1 controls RVD and migration in HEK293T cells by modulating ICl,swell through Ca2+ influx.
Collapse
Affiliation(s)
- Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonio Michelucci
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Center for the Cellular Microenvironment, School of Engineering, G12 8LT, Glasgow, UK
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,CEMIN, Center of Excellence on Nanostructured Innovative Materials, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Hollembeak JE, Model MA. Stability of Intracellular Protein Concentration under Extreme Osmotic Challenge. Cells 2021; 10:cells10123532. [PMID: 34944039 PMCID: PMC8700764 DOI: 10.3390/cells10123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cell volume (CV) regulation is typically studied in short-term experiments to avoid complications resulting from cell growth and division. By combining quantitative phase imaging (by transport-of-intensity equation) with CV measurements (by the exclusion of an external absorbing dye), we were able to monitor the intracellular protein concentration (PC) in HeLa and 3T3 cells for up to 48 h. Long-term PC remained stable in solutions with osmolarities ranging from one-third to almost twice the normal. When cells were subjected to extreme hypoosmolarity (one-quarter of normal), their PC did not decrease as one might expect, but increased; a similar dehydration response was observed at high concentrations of ionophore gramicidin. Highly dilute media, or even moderately dilute in the presence of cytochalasin, caused segregation of water into large protein-free vacuoles, while the surrounding cytoplasm remained at normal density. These results suggest that: (1) dehydration is a standard cellular response to severe stress; (2) the cytoplasm resists prolonged dilution. In an attempt to investigate the mechanism behind the homeostasis of PC, we tested the inhibitors of the protein kinase complex mTOR and the volume-regulated anion channels (VRAC). The initial results did not fully elucidate whether these elements are directly involved in PC maintenance.
Collapse
|
30
|
Studying cell volume beyond cell volume. CURRENT TOPICS IN MEMBRANES 2021; 88:165-188. [PMID: 34862025 DOI: 10.1016/bs.ctm.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first part of the paper describes two simple microscopic techniques that we use in our laboratory. One measures cell volumes in adherent cultures and the other measures cell dry mass; both measurements are done on the same instrument (a standard bright-field transmission microscope with only one or two narrow-band color filters added) and on the same cells. The reason for combining cell volume with dry mass is that the ratio of the two-dry mass concentration (MC)-is an important and insufficiently utilized biological parameter. We then describe a few applications of MC. The available experimental data strongly suggest its critical role in biological processes, including cell volume regulation. For example, most eukaryotic cells have surprisingly similar values of MC. Moreover, MC (and not cell volume) is tightly controlled in growing cell cultures at highly variable external osmolarities. We review the results showing that elevation of MC is a direct cause of shrinkage-induced apoptosis. Also, by focusing on MC, one can study heterogenous processes, such as necrotic swelling, or discriminate between apoptotic dehydration and the loss of cell fragments.
Collapse
|
31
|
Noda Y, Sasaki S. Updates and Perspectives on Aquaporin-2 and Water Balance Disorders. Int J Mol Sci 2021; 22:ijms222312950. [PMID: 34884753 PMCID: PMC8657825 DOI: 10.3390/ijms222312950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Ensuring the proper amount of water inside the body is essential for survival. One of the key factors in the maintenance of body water balance is water reabsorption in the collecting ducts of the kidney, a process that is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and impermeable to ions or other small molecules. Impairments of AQP2 result in various water balance disorders, including nephrogenic diabetes insipidus (NDI), which is a disease characterized by a massive loss of water through the kidney and consequent severe dehydration. Dysregulation of AQP2 is also a cause of water retention with hyponatremia in heart failure, hepatic cirrhosis, and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Antidiuretic hormone vasopressin is an upstream regulator of AQP2. Its binding to the vasopressin V2 receptor promotes AQP2 targeting to the apical membrane and thus enables water reabsorption. Tolvaptan, a vasopressin V2 receptor antagonist, is effective and widely used for water retention with hyponatremia. However, there are no studies showing improvement in hard outcomes or long-term prognosis. A possible reason is that vasopressin receptors have many downstream effects other than AQP2 function. It is expected that the development of drugs that directly target AQP2 may result in increased treatment specificity and effectiveness for water balance disorders. This review summarizes recent progress in studies of AQP2 and drug development challenges for water balance disorders.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Nephrology, Nitobe Memorial Nakano General Hospital, Tokyo 164-8607, Japan
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Correspondence: ; Tel.: +81-3-3382-1231; Fax: +81-3-3382-1588
| | - Sei Sasaki
- Department of Nephrology, Cellular and Structural Physiology Laboratory, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| |
Collapse
|
32
|
Li XY, Lv XF, Huang CC, Sun L, Ma MM, Liu C, Guan YY. LRRC8A is essential for volume-regulated anion channel in smooth muscle cells contributing to cerebrovascular remodeling during hypertension. Cell Prolif 2021; 54:e13146. [PMID: 34725866 PMCID: PMC8666279 DOI: 10.1111/cpr.13146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Recent studies revealed LRRC8A to be an essential component of volume‐regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A‐dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension. Materials and Methods siRNA‐mediated knockdown and adenovirus‐mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle–specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling. Results LRRC8A is essential for volume‐regulated chloride current (ICl, Vol) in BASMCs. Overexpression of LRRC8A induced a voltage‐dependent Cl− current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K‐p85/AKT axis. Smooth muscle‐specific upregulation of LRRC8A aggravated Angiotensin II‐induced cerebrovascular remodeling in mice. Conclusions LRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Cui Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Yang Q, Kajimoto S, Kobayashi Y, Hiramatsu H, Nakabayashi T. Regulation of Cell Volume by Nanosecond Pulsed Electric Fields. J Phys Chem B 2021; 125:10692-10700. [PMID: 34519209 DOI: 10.1021/acs.jpcb.1c06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulation of cells by nanosecond pulsed electric fields (nsPEFs) has attracted attention as a technology for medical applications such as cancer treatment. nsPEFs have been shown to affect intracellular environments without significant damage to cell membranes; however, the mechanism underlying the effect of nsPEFs on cells remains unclear. In this study, we constructed electrodes for applying nsPEFs and analyzed the change in volume of a single cell due to nsPEFs using fluorescence and Raman microscopy. It was shown that the direction of the change depended on the applied electric field; expansion due to the influx of water was observed at high electric field, and cell shrinkage was observed at low electric field. The change in cell volume was correlated to the change in the intracellular Ca2+ concentration, and nsPEFs-induced shrinking was not observed when the Ca2+-free medium was used. This result suggests that the cell shrinkage is related to the regulatory volume decrease where the cell adjusts the increase in intracellular Ca2+ concentration, inducing the efflux of ions and water from the cell.
Collapse
Affiliation(s)
- Qi Yang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Kobayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Ye X, Liu X, Wei W, Yu H, Jin X, Yu J, Li C, Xu B, Guo X, Mao J. Volume-activated chloride channels contribute to lipopolysaccharide plus nigericin-induced pyroptosis in bone marrow-derived macrophages. Biochem Pharmacol 2021; 193:114791. [PMID: 34582774 DOI: 10.1016/j.bcp.2021.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
The representative morphological features of pyroptosis are excessive cell swelling and subsequent membrane rupture. However, the mechanism underlying the cell's inherent inability to regulate volume during the progression of pyroptosis is poorly understood. In the current study, we found that both volume-activated chloride currents (Icl, vol) and the regulatory volume decrease (RVD) were markedly decreased in bone marrow-derived macrophages (BMDMs) undergoing pyroptosis induced by lipopolysaccharides (LPS) and nigericin. The inhibition of ICl, vol and RVD by the chloride channel blockers, tamoxifen or DCPIB, led to the emergence of pyroptosis-like phenotypes such as activated-caspase-1, pyroptotic-body-like bubbles, and a fried-egg-like appearance. Moreover, the expression of the volume-activated chloride channel (VRAC) constituent protein Leucine-Rich Repeat-Containing 8A (LRRC8A) was significantly down-regulated in pyroptotic BMDMs treated with LPS and nigericin. The silencing of LRRC8A expression by small interfering RNA (si)-LRRC8A transfection not only reduced ICl, vol and RVD, but also caused BMDMs to show pyroptosis-like manifestations such as activated-caspase-1, membrane bubbles, and have a fried-egg-like appearance. These results reveal a new mechanism for the loss of volume regulation in the process of pyroptotic cell swelling and strongly suggest that a functional deficiency of VRAC/LRRC8A plays a key role in this disorder.
Collapse
Affiliation(s)
- Xiaomin Ye
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyong Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenjun Wei
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiping Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinwei Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunmei Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, PR China.
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
35
|
Ritter M, Mongin AA, Valenti G, Okada Y. Editorial: Ion and Water Transport in Cell Death. Front Cell Dev Biol 2021; 9:757033. [PMID: 34568348 PMCID: PMC8458750 DOI: 10.3389/fcell.2021.757033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Kathmandu University, Dhulikhel, Nepal.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Hamed M, Osman AGM, Badrey AEA, Soliman HAM, Sayed AEDH. Microplastics-Induced Eryptosis and Poikilocytosis in Early-Juvenile Nile Tilapia ( Oreochromis niloticus). Front Physiol 2021; 12:742922. [PMID: 34650449 PMCID: PMC8507840 DOI: 10.3389/fphys.2021.742922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
This study aims to assess the impact of microplastics (MPs) on erythrocytes using eryptosis (apoptosis) and an erythron profile (poikilocytosis and nuclear abnormalities), considered to be novel biomarkers in Nile tilapia (Oreochromis niloticus). In this study, four groups of fish were used: The first was the control group. In the second group, 1 mg/L of MPs was introduced to the samples. The third group was exposed to 10 mg/L of MPs. Finally, the fourth group was exposed to 100 mg/L of MPs for 15 days, following 15 days of recovery. The fish treated with MPs experienced an immense rise in the eryptosis percentage, poikilocytosis, and nuclear abnormalities of red blood cells (RBCs) compared with the control group in a concentration-dependent manner. Poikilocytosis of MP-exposed groups included sickle cell shape, schistocyte, elliptocyte, acanthocyte, and other shapes. Nuclear abnormalities of the MPs-exposed groups included micronuclei, binucleated erythrocytes, notched, lobed, blebbed, and hemolyzed nuclei. After the recovery period, a greater percentage of eryptosis, poikilocytotic cells, and nuclear abnormalities in RBCs were still evident in the groups exposed to MPs when crosschecked with the control group. The results show concerning facts regarding the toxicity of MPs in tilapia.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | - Alaa G. M. Osman
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | - Ahmed E. A. Badrey
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | | | | |
Collapse
|
37
|
Yang Y, Wang Z, Wang J, Lyu F, Xu K, Mu W. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:919-938. [PMID: 33860915 DOI: 10.1007/s10695-021-00947-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Hypoxia is one of the most significant threats to biodiversity in aquatic systems. The ability of high-latitude fish to tolerate hypoxia with histological and physiological responses is mostly unknown. We address this knowledge gap by investigating the effects of exposures to different oxygen levels using Phoxinus lagowskii (a high-latitude, cold-water fish) as a model. Fish were exposed to different oxygen levels (0.5 mg/L and 3 mg/L) for 24 h. The loss of equilibrium (LOE), an indicator of acute hypoxia tolerance, was 0.21 ± 0.01 mg/L, revealing the ability of fish to tolerate low-oxygen conditions. We sought to determine if, in P. lagowskii, the histology of gills and liver, blood indicators, enzyme activities of carbohydrate and lipid metabolism, and antioxidants changed to relieve stress in response to acute hypoxia. Notably, changes in vigorous jumping behavior under low oxygen revealed the exceptional hypoxia acclimation response compared with other low-latitude fish. A decrease in blood parameters, including RBC, WBC, and Hb, as well as an increase in MCV was observed compared to the controls. The increased total area in lamella and decreased ILCM volume in P. lagowskii gills were detected in the present study. Our results also showed the size of vacuoles in the livers of the hypoxic fish shrunk. Interestingly, an increase in the enzyme activity of lipid metabolism but not glucose metabolism was observed in the groups exposed to hypoxia at 6 h and 24 h. After combining histology and physiology results, our findings provide evidence that lipid metabolism plays a crucial role in enhancing hypoxia acclimation in P. lagowskii. Additionally, SOD activity significantly increased during hypoxia, suggesting the presence of an antioxidant response of P. lagowskii during hypoxia. High expression levels of lipogenesis and lipolysis-related genes were detected in the 6 h 3 mg/L and 24 h 3 mg/L hypoxia group. Enhanced expression of lipid-metabolism genes (ALS4, PGC-1, and FASN) was detected during hypoxia exposure. Together, these data suggest that P. lagowskii's ability to tolerate hypoxic events is likely mediated by a comprehensive strategy.
Collapse
Affiliation(s)
- Yuting Yang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jing Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fengming Lyu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kexin Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
38
|
Okada Y, Sato-Numata K, Sabirov RZ, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death. Front Cell Dev Biol 2021; 9:702317. [PMID: 34307382 PMCID: PMC8299559 DOI: 10.3389/fcell.2021.702317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
For survival and functions of animal cells, cell volume regulation (CVR) is essential. Major hallmarks of necrotic and apoptotic cell death are persistent cell swelling and shrinkage, and thus they are termed the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. A number of ubiquitously expressed anion and cation channels play essential roles not only in CVR but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels, and several types of TRP cation channels including TRPM2 and TRPM7. In the Part 1, we described the roles of swelling-activated VSOR/VRAC anion channels. Here, the Part 2 focuses on the roles of the acid-sensitive outwardly rectifying (ASOR) anion channel, also called the proton-activated chloride (PAC) anion channel, which is activated by extracellular protons in a manner sharply dependent on ambient temperature. First, we summarize phenotypical properties, the molecular identity, and the three-dimensional structure of ASOR/PAC. Second, we highlight the unique roles of ASOR/PAC in CVR dysfunction and in the induction of or protection from acidotoxic cell death under acidosis and ischemic conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Sato-Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
39
|
Chen D, Liu S, Chen D, Liu J, Wu J, Wang H, Su Y, Kwak G, Zuo X, Rao D, Cui H, Shu C, Suk JS. A Two‐Pronged Pulmonary Gene Delivery Strategy: A Surface‐Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Ophthalmology Johns Hopkins University Baltimore MD USA
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing PR China
| | - Dinghao Chen
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Jinhao Liu
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Jerry Wu
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Yun Su
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Ophthalmology Johns Hopkins University Baltimore MD USA
| | - Gijung Kwak
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Ophthalmology Johns Hopkins University Baltimore MD USA
| | - Xinyuan Zuo
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Divya Rao
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing PR China
| | - Jung Soo Suk
- The Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Johns Hopkins Baltimore MD USA
- Department of Ophthalmology Johns Hopkins University Baltimore MD USA
- Department of Chemical and Biomolecular Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD USA
| |
Collapse
|
40
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
41
|
Yamagishi A, Ito F, Nakamura C. Study on Cancer Cell Invasiveness via Application of Mechanical Force to Induce Chloride Ion Efflux. Anal Chem 2021; 93:9032-9035. [PMID: 34152726 DOI: 10.1021/acs.analchem.1c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloride channels regulate cell volume by an efflux of chloride ions in response to osmotic stresses. These have been shown to play a role in cancer invasion. However, their function in cancer metastasis remains unclear. As the internal environment of the human body is rarely exposed to osmotic stress, we presumed that Cl- efflux in cancer cells is induced by mechanical stress caused by their crowded environment and invasion of their narrow interstitial spaces. In this study, we recruited atomic force microscopy to apply mechanical stress to mouse or human breast cancer cells with varying degrees of malignancy and examined their Cl- efflux by N-ethoxycarbonylmethyl-6-methoxyquinolinium bromide (MQAE), which is quenched via collision with Cl- ions. We found that intracellular MQAE fluorescence intensity increased immediately after cell compression, demonstrating induction of Cl- efflux by mechanical force. Furthermore, Cl- efflux ability showed correlation with the cancer metastatic potential. These results suggested that mechanical stress induced Cl- efflux may serve as a potential reporter for estimating the invasion ability of cancer cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Fumie Ito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Chikashi Nakamura
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
42
|
Chen D, Liu S, Chen D, Liu J, Wu J, Wang H, Su Y, Kwak G, Zuo X, Rao D, Cui H, Shu C, Suk JS. A Two-Pronged Pulmonary Gene Delivery Strategy: A Surface-Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angew Chem Int Ed Engl 2021; 60:15225-15229. [PMID: 33855792 PMCID: PMC8238871 DOI: 10.1002/anie.202101732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Inhaled gene therapy poses a unique potential of curing chronic lung diseases, which are currently managed primarily by symptomatic treatments. However, it has been challenging to achieve therapeutically relevant gene transfer efficacy in the lung due to the presence of numerous biological delivery barriers. Here, we introduce a simple approach that overcomes both extracellular and cellular barriers to enhance gene transfer efficacy in the lung in vivo. We endowed tetra(piperazino)fullerene epoxide (TPFE)‐based nanoparticles with non‐adhesive surface polyethylene glycol (PEG) coatings, thereby enabling the nanoparticles to cross the airway mucus gel layer and avoid phagocytic uptake by alveolar macrophages. In parallel, we utilized a hypotonic vehicle to facilitate endocytic uptake of the PEGylated nanoparticles by lung parenchymal cells via the osmotically driven regulatory volume decrease (RVD) mechanism. We demonstrate that this two‐pronged delivery strategy provides safe, wide‐spread and high‐level transgene expression in the lungs of both healthy mice and mice with chronic lung diseases characterized by reinforced delivery barriers.
Collapse
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, PR China
| | - Dinghao Chen
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jinhao Liu
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Wu
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Su
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Gijung Kwak
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyuan Zuo
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Divya Rao
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, PR China
| | - Jung Soo Suk
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Johns Hopkins, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
43
|
Du H, Ye C, Wu D, Zang YY, Zhang L, Chen C, He XY, Yang JJ, Hu P, Xu Z, Wan G, Shi YS. The Cation Channel TMEM63B Is an Osmosensor Required for Hearing. Cell Rep 2021; 31:107596. [PMID: 32375046 DOI: 10.1016/j.celrep.2020.107596] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023] Open
Abstract
Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Dan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Linqing Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Xue-Yan He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Healthcare Hospital, Nanjing 210004, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Healthcare Hospital, Nanjing 210004, China
| | - Guoqiang Wan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210032, China.
| |
Collapse
|
44
|
Lamotte G. Central pontine myelinolysis secondary to rapid correction of hyponatremia historical perspective with Doctor Robert Laureno. Neurol Sci 2021; 42:3479-3483. [PMID: 33950364 DOI: 10.1007/s10072-021-05301-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Central pontine myelinolysis (CPM) is a neurological disorder characterized by damage to the myelin and oligodendrocytes in the pons. This review focuses on the history of CPM and the discovery of its association with the treatment of hyponatremia. METHODS The author reviewed original publications regarding CPM, hyponatremia, and the treatment of hyponatremia. The author interviewed Dr. Robert Laureno who was a pioneer in CPM research with his animal work in dogs. RESULTS Animal models demonstrated the role of the rapid correction of hyponatremia as causative of pontine and extrapontine myelinolytic lesions. Nevertheless, the importance of the speed of correction was widely denied. There were years of debates and only slow changes in expert guidelines. CONCLUSION CPM occurs as a consequence of a rapid rise in serum sodium in individuals with chronic hyponatremia. It is recommended to increase plasma sodium concentration by no more than 8 to 10 mmol/L per 24 h in chronic hyponatremia.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| |
Collapse
|
45
|
Alhuthali S, Kotidis P, Kontoravdi C. Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation. Int J Mol Sci 2021; 22:ijms22073290. [PMID: 33804825 PMCID: PMC8037477 DOI: 10.3390/ijms22073290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg-1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg-1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.
Collapse
|
46
|
Shiozaki A, Marunaka Y, Otsuji E. Roles of Ion and Water Channels in the Cell Death and Survival of Upper Gastrointestinal Tract Cancers. Front Cell Dev Biol 2021; 9:616933. [PMID: 33777930 PMCID: PMC7991738 DOI: 10.3389/fcell.2021.616933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ion and water channels were recently shown to be involved in cancer cell functions, and various transporter types have been detected in upper gastrointestinal tract (UGI) cancers. Current information on the expression and roles of these channels and transporters in the death and survival of UGI cancer cells was reviewed herein, and the potential of their regulation for cancer management was investigated. Esophageal cancer (EC) and gastric cancer (GC) cells and tissues express many different types of ion channels, including voltage-gated K+, Cl-, and Ca2+, and transient receptor potential (TRP) channels, which regulate the progression of cancer. Aquaporin (AQP) 1, 3, and 5 are water channels that contribute to the progression of esophageal squamous cell carcinoma (ESCC) and GC. Intracellular pH regulators, including the anion exchanger (AE), sodium hydrogen exchanger (NHE), and vacuolar H+-ATPases (V-ATPase), also play roles in the functions of UGI cancer cells. We have previously conducted gene expression profiling and revealed that the regulatory mechanisms underlying apoptosis in ESCC cells involved various types of Cl- channels, Ca2+ channels, water channels, and pH regulators (Shimizu et al., 2014; Ariyoshi et al., 2017; Shiozaki et al., 2017, 2018a; Kobayashi et al., 2018; Yamazato et al., 2018; Konishi et al., 2019; Kudou et al., 2019; Katsurahara et al., 2020, 2021; Matsumoto et al., 2021; Mitsuda et al., 2021). We have also previously demonstrated the clinicopathological and prognostic significance of their expression in ESCC patients, and shown that their pharmacological blockage and gene silencing had an impact on carcinogenesis, indicating their potential as targets for the treatment of UGI cancers. A more detailed understanding of the molecular regulatory mechanisms underlying cell death and survival of UGI cancers may result in the application of cellular physiological methods as novel therapeutic approaches.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
47
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
48
|
Božič B, Zemljič Jokhadar Š, Kristanc L, Gomišček G. Cell Volume Changes and Membrane Ruptures Induced by Hypotonic Electrolyte and Sugar Solutions. Front Physiol 2020; 11:582781. [PMID: 33364974 PMCID: PMC7750460 DOI: 10.3389/fphys.2020.582781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
The cell volume changes induced by hypotonic electrolyte and sucrose solutions were studied in Chinese-hamster-ovary epithelial cells. The effects in the solutions with osmolarities between 32 and 315 mosM/L and distilled water were analyzed using bright-field and fluorescence confocal microscopy. The changes of the cell volume, accompanied by the detachment of cells, the formation of blebs, and the occurrence of almost spherical vesicle-like cells (“cell-vesicles”), showed significant differences in the long-time responses of the cells in the electrolyte solutions compared with the sucrose-containing solutions. A theoretical model based on different permeabilities of ions and sucrose molecules and on the action of Na+/K+-ATPase pumps is applied. It is consistent with the observed temporal behavior of the cells’ volume and the occurrence of tension-induced membrane ruptures and explains lower long-time responses of the cells in the sucrose solutions.
Collapse
Affiliation(s)
- Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Gomišček
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
49
|
Swelling-activated ClC-3 activity regulates prostaglandin E 2 release in human OUMS-27 chondrocytes. Biochem Biophys Res Commun 2020; 537:29-35. [PMID: 33383561 DOI: 10.1016/j.bbrc.2020.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.
Collapse
|
50
|
Costa R, Remigante A, Civello DA, Bernardinelli E, Szabó Z, Morabito R, Marino A, Sarikas A, Patsch W, Paulmichl M, Janáky T, Miseta A, Nagy T, Dossena S. O-GlcNAcylation Suppresses the Ion Current IClswell by Preventing the Binding of the Protein ICln to α-Integrin. Front Cell Dev Biol 2020; 8:607080. [PMID: 33330510 PMCID: PMC7717961 DOI: 10.3389/fcell.2020.607080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that controls a variety of cellular processes, is chronically elevated in diabetes mellitus, and may contribute to the progression of diabetic complications, including diabetic nephropathy. Our previous work showed that increases in the O-GlcNAcylation of cellular proteins impair the homeostatic reaction of the regulatory volume decrease (RVD) after cell swelling by an unknown mechanism. The activation of the swelling-induced chloride current IClswell is a key step in RVD, and ICln, a ubiquitous protein involved in the activation of IClswell, is O-GlcNAcylated. Here, we show that experimentally increased O-GlcNAcylation of cellular proteins inhibited the endogenous as well as the ICln-induced IClswell current and prevented RVD in a human renal cell line, while decreases in O-GlcNAcylation augmented the current magnitude. In parallel, increases or decreases in O-GlcNAcylation, respectively, weakened or stabilized the binding of ICln to the intracellular domain of α-integrin, a process that is essential for the activation of IClswell. Mutation of the putative YinOYang site at Ser67 rendered the ICln-induced IClswell current unresponsive to O-GlcNAc variations, and the ICln interaction with α-integrin insensitive to O-GlcNAcylation. In addition, exposure of cells to a hypotonic solution reduced the O-GlcNAcylation of cellular proteins. Together, these findings show that O-GlcNAcylation affects RVD by influencing IClswell and further indicate that hypotonicity may activate IClswell by reducing the O-GlcNAcylation of ICln at Ser67, therefore permitting its binding to α-integrin. We propose that disturbances in the regulation of cellular volume may contribute to disease in settings of chronically elevated O-GlcNAcylation, including diabetic nephropathy.
Collapse
Affiliation(s)
- Roberta Costa
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Alessia Remigante
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide A Civello
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Zoltán Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Department of Personalized Medicine, Humanomed, Klagenfurt, Austria
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|