1
|
Diamond KM, Nishiura L, Sakihara T, Schoenfuss HL, Blob RW. When to Go Against the Flow: Examining Patterns of Performance Over Multiday Migration Events in the Hawaiian Stream Fish, 'O'opu Nōpili (Sicyopterus stimpsoni). Integr Comp Biol 2024; 64:496-505. [PMID: 38925645 DOI: 10.1093/icb/icae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Many animals migrate across regions of their geographic range as part of extended events, with groups of individuals proceeding through areas of travel on several successive days. Early migrating individuals may have an advantage over late migrating individuals by gaining early access to the resources at the eventual destination. For situations where early access to resources would provide an advantage, specific sets of locomotor traits might be found among individuals that are earlier migrators. We tested for associations between migration timing and traits related to escape responses, climbing, and morphology in the amphidromous Hawaiian stream goby, 'o'opu nōpili (Sicyopterus stimpsoni). In this species, juvenile fish migrate in pulses over several days immediately following flash floods. We collected daily measurements of escape responses and waterfall climbing from juvenile fish arriving at streams from the ocean. We found that escape performance showed mainly stochastic variation across migrating individuals tested on successive days. In contrast, some metrics of climbing performance decrease over successive pulses during a migration event. We also found more variation in body shape among fish from early pulses during migration events compared to later in pulses. These results could have implications for guiding conservation efforts, identifying critical time windows for protection as periods with the greatest likelihood of successful migrants.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Lance Nishiura
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Troy Sakihara
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Krings W, Konn-Vetterlein D, Hausdorf B, Gorb SN. Holding in the stream: convergent evolution of suckermouth structures in Loricariidae (Siluriformes). Front Zool 2023; 20:37. [PMID: 38037029 PMCID: PMC10691160 DOI: 10.1186/s12983-023-00516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Suckermouth armoured catfish (Loricariidae) are a highly speciose and diverse freshwater fish family, which bear upper and lower lips forming an oral disc. Its hierarchical organisation allows the attachment to various natural surfaces. The discs can possess papillae of different shapes, which are supplemented, in many taxa, by small horny projections, i.e. unculi. Although these attachment structures and their working mechanisms, which include adhesion and interlocking, are rather well investigated in some selected species, the loricariid oral disc is unfortunately understudied in the majority of species, especially with regard to comparative aspects of the diverse oral structures and their relationship to the ecology of different species. In the present paper, we investigated the papilla and unculi morphologies in 67 loricariid species, which inhabit different currents and substrates. We determined four papilla types and eight unculi types differing by forms and sizes. Ancestral state reconstructions strongly suggest convergent evolution of traits. There is no obvious correlation between habitat shifts and the evolution of specific character states. From handling the structures and from drying artefacts we could infer some information about their material properties. This, together with their shape, enabled us to carefully propose hypotheses about mechanisms of interactions of oral disc structures with natural substrates typical for respective fish species.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Liebigstraße 12, 04103, Leipzig, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Daniel Konn-Vetterlein
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Bernhard Hausdorf
- Department of Malacology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
3
|
Wang J, Wang S, Zheng L, Ren L. Adhesion Behavior in Fish: From Structures to Applications. Biomimetics (Basel) 2023; 8:534. [PMID: 37999175 PMCID: PMC10669881 DOI: 10.3390/biomimetics8070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
In nature, some fish can adhere tightly to the surface of stones, aquatic plants, and even other fish bodies. This adhesion behavior allows these fish to fix, eat, hide, and migrate in complex and variable aquatic environments. The adhesion function is realized by the special mouth and sucker tissue of fish. Inspired by adhesion fish, extensive research has recently been carried out. Therefore, this paper presents a brief overview to better explore underwater adhesion mechanisms and provide bionic applications. Firstly, the adhesion organs and structures of biological prototypes (e.g., clingfish, remora, Garra, suckermouth catfish, hill stream loach, and goby) are presented separately, and the underwater adhesion mechanisms are analyzed. Then, based on bionics, it is explained that the adhesion structures and components are designed and created for applications (e.g., flexible gripping adhesive discs and adhesive motion devices). Furthermore, we offer our perspectives on the limitations and future directions.
Collapse
Affiliation(s)
- Jinhao Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Shukun Wang
- School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
| | - Long Zheng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (J.W.); (L.R.)
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| |
Collapse
|
4
|
Palecek AM, Schoenfuss HL, Blob RW. Sucker Shapes, Skeletons and Bioinspiration: How Hard and Soft Tissue Morphology Generates Adhesive Performance in Waterfall Climbing Goby Fishes. Integr Comp Biol 2022; 62:934-944. [PMID: 35767861 DOI: 10.1093/icb/icac094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
Many teleost fishes, such as gobies, have fused their paired pelvic fins into an adhesive disc. Gobies can use their pelvic suckers to generate passive adhesive forces (as in engineered suction cups) and different species exhibit a range of adhesive performance, with some even able to climb waterfalls. Previous studies have documented that, in the Hawaiian Islands, species capable of climbing higher waterfalls produce the highest passive pull-off forces, and species found at higher elevation sites are likely to have more rounded suction discs than those found in the lowest stream segments. Morphology of the pelvic girdle also varies between species, with more robust skeletons in taxa with superior passive adhesion. To investigate what factors impact the passive adhesive performance of waterfall climbing gobies, we tested biomimetic suction cups designed with a range of shapes and embedded bioinspired "skeletons" based on micro-CT scans of goby pelvic girdles. We found that while the presence of an internal skeleton may provide some support against failure, the performance of suction cups may be more strongly affected by their external shape. Nonetheless, factors besides external shape and skeletal morphology may still have a stronger influence on sucker tenacity. Our results suggest that the relationship between suction disc morphology and adhesive performance may be influenced by a variety of physical factors, and live animal performance likely is further complicated by muscle activation and climbing behavior. These results have implications for the evolution of suction disc shape in adhesive fishes and for improving the design of biomimetic suction cups.
Collapse
Affiliation(s)
- A M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
6
|
Crawford CH, Webber-Schultz A, Hart PB, Randall ZS, Cerrato-Morales C, Kellogg AB, Amplo HE, Suvarnaraksha A, Page LM, Chakrabarty P, Flammang BE. They like to move it (move it): walking kinematics of balitorid loaches of Thailand. J Exp Biol 2022; 225:274826. [PMID: 35322854 DOI: 10.1242/jeb.242906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Balitorid loaches are a family of fishes that exhibit morphological adaptations to living in fast flowing water, including an enlarged sacral rib that creates a 'hip'-like skeletal connection between the pelvis and the axial skeleton. The presence of this sacral rib, the robustness of which varies across the family, is hypothesized to facilitate terrestrial locomotion seen in the family. Terrestrial locomotion in balitorids is unlike that of any known fish: the locomotion resembles that of terrestrial tetrapods. Emergence and convergence of terrestrial locomotion from water to land has been studied in fossils; however, studying balitorid walking provides a present-day natural laboratory to examine the convergent evolution of walking movements. We tested the hypothesis that balitorid species with more robust connections between the pelvic and axial skeleton (M3 morphotype) are more effective at walking than species with reduced connectivity (M1 morphotype). We predicted that robust connections would facilitate travel per step and increase mass support during movement. We collected high-speed video of walking in seven balitorid species to analyze kinematic variables. The connection between internal anatomy and locomotion on land are revealed herein with digitized video analysis, μCT scans, and in the context of the phylogenetic history of this family of fishes. Our species sampling covered the extremes of previously identified sacral rib morphotypes, M1 and M3. Although we hypothesized the robustness of the sacral rib to have a strong influence on walking performance, there was not a large reduction in walking ability in the species with the least modified rib (M1). Instead, walking kinematics varied between the two balitorid subfamilies with a generally more 'walk-like' behavior in the Balitorinae and more 'swim-like' behavior in the Homalopteroidinae. The type of terrestrial locomotion displayed in balitorids is unique among living fishes and aids in our understanding of the extent to which a sacral connection facilitates terrestrial walking.
Collapse
Affiliation(s)
- Callie H Crawford
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Amani Webber-Schultz
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Pamela B Hart
- Sam Noble Museum of Natural History, the University of Oklahoma, Norman, OK 73072, USA.,Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70802, USA
| | - Zachary S Randall
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Cristian Cerrato-Morales
- Department of Earth and Environmental Sciences, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA
| | - Audrey B Kellogg
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Haley E Amplo
- Department of Earth and Environmental Sciences, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA
| | - Apinun Suvarnaraksha
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Lawrence M Page
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Prosanta Chakrabarty
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70802, USA
| | - Brooke E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Assessing Occurrence and Biological Consequences of Contaminants of Emerging Concern on Oceanic Islands. WATER 2022. [DOI: 10.3390/w14030275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freshwater streams on oceanic islands serve critical ecological and economic functions. However, these are underrepresented in assessments of pollution from contaminants of emerging concern (CEC). Furthermore, freshwater streams and their endemic fauna often have characteristics that are distinct from those of continental streams and model species, calling extrapolations from studies of such systems into question for island streams. In the current study, we assessed the presence of CEC across three sampling events and five freshwater streams on the Island of Hawai’i. We also exposed juveniles of the native fish species Sicyopterus stimpsoni to a mixture of commonly co-occurring CEC for 96 h in static renewal experiments, testing for impacts of CEC in two ecologically relevant assays of functional performance. CEC from multiple sources were ubiquitous in Hawaiian streams, including human-use pharmaceuticals, agricultural herbicides, and industrial runoff. Concentrations of CEC were comparable to published studies from continental streams, exceeding total concentrations of 1000 ng/L for the eight quantified CEC in four samples, and approaching 2500 ng/L in one sample. Effects on exposed fish were subtle and limited to treatments with higher CEC concentrations but indicated potential impacts of CEC on locomotor performance. These results indicate that Hawaiian streams follow a global trend of widespread freshwater pollution by CEC that are accompanied by subtle effects on native fish species and highlight the need for the inclusion of endemic species and ecologically relevant assays when assessing the effects of contaminants in island habitats.
Collapse
|
8
|
Franklin PA, Baker CF, Reeve KA. A comparison of passage efficiency for native and exotic fish species over an artificial baffled ramp. JOURNAL OF FISH BIOLOGY 2021; 99:1928-1939. [PMID: 34480357 DOI: 10.1111/jfb.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
This study used an experimental approach to compare the passage success of native and exotic fish species from the temperate Southern Hemisphere over an artificial baffled fish ramp designed for overcoming low-head (≤1.0 m) fish migration barriers. Passage efficiency was, on average, lower for the exotic species [koi carp (Cyprinus carpio), rudd (Scardinius erythrophthalmus) and rainbow trout (Oncorhynchus mykiss)] compared to the native species [inanga (Galaxias maculatus), redfin bully (Gobiomorphus huttoni) and common bully (Gobiomorphus cotidianus)]. Nonetheless, there was considerable variation between individual species, with rainbow trout outperforming common bully and juvenile inanga, but koi carp and rudd failing to pass any of the ramps. The differences in predicted probability of passage success between the native and exotic fish species in this study were sufficient in some cases to indicate the potential for the baffled fish ramps to operate as a selective migration barrier. Nonetheless, further testing is required to validate these results across a broader range of conditions before deployment.
Collapse
Affiliation(s)
- Paul A Franklin
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Cindy F Baker
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Kathryn A Reeve
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| |
Collapse
|
9
|
Maie T, Blob RW. Adhesive force and endurance of the pelvic sucker across different modes of waterfall-climbing in gobiid fishes: Contrasting climbing mechanisms share aspects of ontogenetic change. ZOOLOGY 2021; 149:125969. [PMID: 34601374 DOI: 10.1016/j.zool.2021.125969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022]
Abstract
Waterfall-climbing gobiids from oceanic islands use a suction-based adhesive mechanism formed by fused pelvic fins (pelvic sucker) and exhibit rock-climbing behavior during upstream migration. Although adhesion is a common feature of locomotion in these fishes, two distinct climbing styles - powerburst climbing and inching - have evolved. We compared the performance of the pelvic sucker during climbing across a range of body sizes between two species that use these different styles, collecting new data from the powerburst climber Lentipes concolor, and comparing these to published data for the inching climber Sicyopterus japonicus. Suction force for adhesion generated during continuous climbing did not differ between the species, with similar mean safety factors of 2.5-3.0. However, L. concolor engaged its pelvic sucker for a significantly longer duration of time (approximately 34 % longer per climbing cycle) than S. japonicus during continuous climbing. During sustained adhesion, both species exhibited non-linear scaling of fatigue time, with intermediate-sized individuals (e.g., large juveniles to small adults) showing the greatest endurance. However, the two species exhibited strikingly different maxima and variability in the endurance of their pelvic suckers. Maximum time to fatigue in L. concolor was less than half that of S. japonicus, but L. concolor showed more than double the variability of S. japonicus in time to fatigue. Our comparisons of these species reveal that despite differences in several aspects of their adhesive performance, some features of sucker function remain similar across climbing styles, including several related to how performance changes through ontogeny.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biology, College of Arts and Sciences, University of Lynchburg, Hobbs Hall, 1501 Lakeside Drive, Lynchburg, VA, 24501, USA.
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| |
Collapse
|
10
|
Forker GK, Schoenfuss HL, Blob RW, Diamond KM. Bendy to the bone: Links between vertebral morphology and waterfall climbing in amphidromous gobioid fishes. J Anat 2021; 239:747-754. [PMID: 33928628 PMCID: PMC8349408 DOI: 10.1111/joa.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Locomotor force production imposes strong demands on organismal form. Thus, the evolution of novel locomotor modes is often associated with morphological adaptations that help to meet those demands. In the goby lineage of fishes, most species are marine and use their fused pelvic fins to facilitate station holding in wave-swept environments. However, several groups of gobies have evolved an amphidromous lifecycle, in which larvae develop in the ocean but juveniles migrate to freshwater for their adult phase. In many of these species, the pelvic fins have been co-opted to aid in climbing waterfalls during upstream migrations to adult habitats. During horizontal swimming, forces are produced by axial musculature pulling on the vertebral column. However, during vertical climbing, gravity also exerts forces along the length of the vertebral column. In this study, we searched for novel aspects of vertebral column form that might be associated with the distinctive locomotor strategies of climbing gobies. We predicted that stiffness would vary along the length of the vertebral column due to competing demands for stability of the suction disk anteriorly and flexibility for axial thrust production posteriorly. We also predicted that derived, climbing goby species would require stiffer backbones to aid in vertical thrust production compared to non-climbing species. To test these predictions, we used microcomputed tomography scans to compare vertebral anatomy (centrum length, centrum width, and intervertebral space) along the vertebral column for five gobioid species that differ in climbing ability. Our results support our second prediction, that gobies are more flexible in the posterior portion of the body. However, the main variation in vertebral column form associated with climbing ability was the presence of larger intervertebral spaces in Sicyopterus stimpsoni, a species that uses a distinctive inching behavior to climb. These results build on past kinematic studies of goby climbing performance and lend insights into how the underlying vertebral structure of these fishes may enable their novel locomotion.
Collapse
Affiliation(s)
- Grace K. Forker
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- School of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSCUSA
| | - Kelly M. Diamond
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- Center for Developmental Biology and Regenerative MedicineSeattle Children’s Research InstituteSeattleWAUSA
| |
Collapse
|
11
|
Bressman NR, Morrison CH, Ashley-Ross MA. Reffling: A Novel Locomotor Behavior Used by Neotropical Armored Catfishes (Loricariidae) in Terrestrial Environments. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Lagarde R, Courret D, Grondin H, Faivre L, Ponton D. Climbing for dummies: recommendation for multi‐specific fishways for the conservation of tropical eels and gobies. Anim Conserv 2021. [DOI: 10.1111/acv.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R. Lagarde
- Université de Perpignan Via Domitia Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 Perpignan France
- CNRS Centre de Formation et de Recherche sur les Environnements Méditerranéens UMR 5110 Perpignan France
| | - D. Courret
- OFB DRAS Pôle R&D Ecohydraulique OFB‐IMFT‐Pprime Allée du professeur Camille Soula Toulouse France
| | | | - L. Faivre
- OCEA Consult’ Ravine des Cabris France
| | - D. Ponton
- ENTROPIE IRD Université de La Réunion CNRS Université de la Nouvelle‐Calédonie Ifremer c/o Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
13
|
Palecek AM, Schoenfuss HL, Blob RW. Sticking to it: testing passive pull-off forces in waterfall-climbing fishes across challenging substrates. J Exp Biol 2021; 224:jeb228718. [PMID: 33328291 DOI: 10.1242/jeb.228718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
The pelvic sucker of Hawaiian waterfall climbing gobies allows these fishes to attach to substrates while climbing waterfalls tens to hundreds of meters tall. Climbing ability varies by species and may be further modulated by the physical characteristics of the waterfall substrate. In this study, we investigated the influence of surface wettability (hydrophobic versus hydrophilic surface charges) and substrate roughness on the passive adhesive system of four species of gobies with different climbing abilities. Overall, passive adhesive performance varied by species and substrate, with the strongest climbers showing the highest shear pull-off forces, particularly on rough surfaces. Thus, differences in passive adhesive performance may help to explain the ability of some species to migrate further upstream than others and contribute to their ability to invade new habitats.
Collapse
Affiliation(s)
- Amanda M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
14
|
Redmann E, Sheikh A, Alqahtani A, McCarty-Glenn M, Syed S, Mehta RS, Ward AB. Terrestrial Locomotion in American Eels (Anguilla rostrata): How Substrate and Incline Affect Movement Patterns. Integr Comp Biol 2020; 60:180-189. [PMID: 32251499 DOI: 10.1093/icb/icaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fishes overcome a variety of challenges in order to invade the terrestrial environment. Terrestrial invasions by fish occur over a variety of environmental contexts. In order to advance their bodies on land, fishes capable of terrestrial excursions tend to use one of three different types of locomotor modes: axial-based, appendage-based, or axial-appendage-based. Elongate species with reduced appendages, such as the American eel, Anguilla rostrata, rely on axial based locomotion in water and on land. When eels move from water to land as part of their complex life cycle, they inevitably encounter a variety of substrates and must traverse variable degrees of incline. The aim of this study was to determine the effect of substrate and incline on the terrestrial locomotion of the American eel. In order to do this, eels were filmed from a dorsal view on three substrates and four inclines: sand, loose pebbles, and fixed (glued) pebbles at 0°, 5°, 10°, and 15°. We digitized 20 evenly spaced points along the body to examine the following characteristics of locomotion: velocity, distance ratio (DR), and wave parameters such as wave amplitude, frequency, and length and assessed whether substrate, incline, or body position affected these parameters. DR, our metric of movement efficiency, was highest on the flat sand condition and lowest on 15° pebble conditions. Efficiency also varied across the body. Velocity followed a similar pattern being highest on sand at 0° and lowest at the steepest inclines. Wave amplitude generally increased toward the tail but was similar across substrates and inclines. Wave frequency was relatively consistent across the body on both pebble substrates, but on sand, frequency was higher toward the head but decreased toward the tail. Wavelengths on sand were the longest at 0° near the head and shorter wavelengths were observed on steeper inclines. Both pebble substrates elicited lower wavelengths that were more similar across the body. Overall, A. rostrata were more effective in navigating compliant substrates but struggled at steeper inclines. Our findings provide insight into locomotor challenges that American eels may encounter as they move from and between bodies of water.
Collapse
Affiliation(s)
- Erica Redmann
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Alina Sheikh
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Areej Alqahtani
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | | | - Shazrah Syed
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Rita S Mehta
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Andrea B Ward
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| |
Collapse
|
15
|
Blob RW, Baumann T, Diamond KM, Young VKH, Schoenfuss HL. Functional correlations of axial muscle fiber type proportions in the waterfall-climbing Hawaiian stream fish Sicyopterus stimpsoni. J Anat 2020; 236:1160-1166. [PMID: 32092791 PMCID: PMC7219618 DOI: 10.1111/joa.13169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/27/2022] Open
Abstract
Assessing the factors that contribute to successful locomotor performance can provide critical insight into how animals survive in challenging habitats. Locomotion is powered by muscles, so that differences in the relative proportions of red (slow-oxidative) vs. white (fast-glycolytic) fibers can have significant implications for locomotor performance. We compared the relative proportions of axial red muscle fibers between groups of juveniles of the amphidromous gobiid fish, Sicyopterus stimpsoni, from the Hawaiian Islands. Juveniles of this species migrate from the ocean into freshwater streams, navigating through a gauntlet of predators that require rapid escape responses, before reaching waterfalls which must be climbed (using a slow, inching behavior) to reach adult breeding habitats. We found that fish from Kaua'i have a smaller proportion of red fibers in their tail muscles than fish from Hawai'i, matching expectations based on the longer pre-waterfall stream reaches of Kaua'i that could increase exposure to predators, making reduction of red muscle and increases in white muscle advantageous. However, no difference in red muscle proportions was identified between fish that were either successful or unsuccessful in scaling model waterfalls during laboratory climbing trials, suggesting that proportions of red muscle are near a localized fitness peak among Hawaiian individuals.
Collapse
Affiliation(s)
- Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSCUSA
| | - Travis Baumann
- Aquatic Toxicology LaboratorySt. Cloud State UniversitySt. CloudMNUSA
| | | | | | | |
Collapse
|
16
|
Bressman NR, Armbruster JW, Lujan NK, Udoh I, Ashley‐Ross MA. Evolutionary optimization of an anatomical suction cup: Lip collagen content and its correlation with flow and substrate in Neotropical suckermouth catfishes (Loricarioidei). J Morphol 2020; 281:676-687. [DOI: 10.1002/jmor.21136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Noah R. Bressman
- Department of Biology Wake Forest University Winston‐Salem North Carolina USA
| | | | - Nathan K. Lujan
- Department of Ichthyology American Museum of Natural History, New York New York USA
| | - Imoh Udoh
- Department of Biology Wake Forest University Winston‐Salem North Carolina USA
| | | |
Collapse
|
17
|
Blob RW, Lagarde R, Diamond KM, Keeffe RM, Bertram RS, Ponton D, Schoenfuss HL. Functional Diversity of Evolutionary Novelties: Insights from Waterfall-Climbing Kinematics and Performance of Juvenile Gobiid Fishes. Integr Org Biol 2019; 1:obz029. [PMID: 33791543 PMCID: PMC7671142 DOI: 10.1093/iob/obz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The evolution of novel functional traits can contribute substantially to the diversification of lineages. Older functional traits might show greater variation than more recently evolved novelties, due to the accrual of evolutionary changes through time. However, functional complexity and many-to-one mapping of structure to function could complicate such expectations. In this context, we compared kinematics and performance across juveniles from multiple species for two styles of waterfall-climbing that are novel to gobiid fishes: ancestral “powerburst” climbing, and more recently evolved “inching”, which has been confirmed only among species of a single genus that is nested within the clade of powerburst climbers. Similar net climbing speeds across inching species seem, at first, to indicate that this more recently evolved mode of climbing exhibits less functional diversity. However, these similar net speeds arise through different pathways: Sicyopterus stimpsoni from Hawai’i move more slowly than S. lagocephalus from La Réunion, but may also spend more time moving. The production of similar performance between multiple functional pathways reflects a situation that resembles the phenomenon of many-to-one mapping of structure to function. Such similarity has the potential to mask appropriate interpretations of relative functional diversity between lineages, unless the mechanisms underlying performance are explored. More specifically, similarity in net performance between “powerburst” and “inching” styles indicates that selection on climbing performance was likely a limited factor in promoting the evolution of inching as a new mode of climbing. In this context, other processes (e.g., exaptation) might be implicated in the origin of this functional novelty.
Collapse
Affiliation(s)
- R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R Lagarde
- Hydrô Réunion, Z.I. Les Sables, 97427 Etang Salé, La Réunion, France.,Université de Perpignan Via Domitia - CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F 66860 Perpignan, France
| | - K M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R M Keeffe
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - R S Bertram
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, MN 29634, USA
| | - D Ponton
- ENTROPIE, IRD, Université de La Réunion, CNRS, Laboratoire d'Excellence CORAIL, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Route du port, Toliara, P 141, 601 B, Madagascar
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, MN 29634, USA
| |
Collapse
|
18
|
Bressman NR, Love JW, King TW, Horne CG, Ashley-Ross MA. Emersion and Terrestrial Locomotion of the Northern Snakehead ( Channa argus) on Multiple Substrates. Integr Org Biol 2019; 1:obz026. [PMID: 33791540 PMCID: PMC7671134 DOI: 10.1093/iob/obz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most fishes known for terrestrial locomotion are small and/or elongate. Northern snakeheads (Channa argus) are large, air-breathing piscivores anecdotally known for terrestrial behaviors. Our goals were to determine their environmental motivations for emersion, describe their terrestrial kinematics for fish 3.0-70.0 cm and compare kinematics among four substrates. For emersion experiments, C. argus was individually placed into aquatic containers with ramps extending through the surface of the water, and exposed to 15 ecologically-relevant environmental conditions. For kinematic experiments, fish were filmed moving on moist bench liner, grass, artificial turf, and a flat or tilted rubber boat deck. Videos were digitized for analysis in MATLAB and electromyography was used to measure muscular activity. Only the low pH (4.8), high salinity (30 ppt), and high dCO2 (10% seltzer solution) treatments elicited emersion responses. While extreme, these conditions do occur in some of their native Asian swamps. Northern snakeheads >4.5 cm used a unique form of axial-appendage-based terrestrial locomotion involving cyclic oscillations of the axial body, paired with near-simultaneous movements of both pectoral fins. Individuals ≤3.5 cm used tail-flip jumps to travel on land. Northern snakeheads also moved more quickly on complex, three-dimensional substrates (e.g., grass) than on smooth substrates (e.g., bench liner), and when moving downslope. Release of snakeheads onto land by humans or accidentally by predators may be more common than voluntary emersion, but because northern snakeheads can respire air, it may be necessary to factor in the ability to spread overland into the management of this invasive species.
Collapse
Affiliation(s)
- N R Bressman
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - J W Love
- Maryland Department of Natural Resources, Annapolis, MD 21401, USA
| | - T W King
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - C G Horne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - M A Ashley-Ross
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
19
|
Diamond KM, Lagarde R, Schoenfuss HL, Walker JA, Ponton D, Blob RW. Relationship of escape performance with predator regime and ontogeny in fishes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - RaphaëL Lagarde
- Hydrô Réunion, Z.I des Sables, Etang Salé, La Réunion, France
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
20
|
Functional convergence and phenotypic divergence in two specialist species of pine-associated ladybirds. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
|
22
|
Locomotor flexibility of Polypterus senegalus across various aquatic and terrestrial substrates. ZOOLOGY 2016; 119:447-454. [DOI: 10.1016/j.zool.2016.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 01/25/2023]
|
23
|
Alda F, Gagne RB, Walter RP, Hogan JD, Moody KN, Zink F, McIntyre PB, Gilliam JF, Blum MJ. Colonization and demographic expansion of freshwater fauna across the Hawaiian archipelago. J Evol Biol 2016; 29:2054-2069. [DOI: 10.1111/jeb.12929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022]
Affiliation(s)
- F. Alda
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
- Tulane-Xavier Center for Bioenvironmental Research; Tulane University; New Orleans LA USA
| | - R. B. Gagne
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
| | - R. P. Walter
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
- Department of Biological Science; California State University, Fullerton; Fullerton CA USA
| | - J. D. Hogan
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
- Department of Life Sciences; Texas A & M University - Corpus Christi; Corpus Christi TX USA
| | - K. N. Moody
- Tulane-Xavier Center for Bioenvironmental Research; Tulane University; New Orleans LA USA
- Department of Biological Sciences; Clemson University; Clemson SC USA
| | - F. Zink
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
| | - P. B. McIntyre
- Center for Limnology; University of Wisconsin-Madison; Madison WI USA
| | - J. F. Gilliam
- Department of Biological Sciences; North Carolina State University; Raleigh NC USA
| | - M. J. Blum
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
- Tulane-Xavier Center for Bioenvironmental Research; Tulane University; New Orleans LA USA
| |
Collapse
|
24
|
Flammang BE, Suvarnaraksha A, Markiewicz J, Soares D. Tetrapod-like pelvic girdle in a walking cavefish. Sci Rep 2016; 6:23711. [PMID: 27010864 PMCID: PMC4806330 DOI: 10.1038/srep23711] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
Fishes have adapted a number of different behaviors to move out of the water, but none have been described as being able to walk on land with a tetrapod-like gait. Here we show that the blind cavefish Cryptotora thamicola walks and climbs waterfalls with a salamander-like diagonal-couplets lateral sequence gait and has evolved a robust pelvic girdle that shares morphological features associated with terrestrial vertebrates. In all other fishes, the pelvic bones are suspended in a muscular sling or loosely attached to the pectoral girdle anteriorly. In contrast, the pelvic girdle of Cryptotora is a large, broad puboischiadic plate that is joined to the iliac process of a hypertrophied sacral rib; fusion of these bones in tetrapods creates an acetabulum. The vertebral column in the sacral area has large anterior and posterior zygapophyses, transverse processes, and broad neural spines, all of which are associated with terrestrial organisms. The diagonal-couplet lateral sequence gait was accomplished by rotation of the pectoral and pelvic girdles creating a standing wave of the axial body. These findings are significant because they represent the first example of behavioural and morphological adaptation in an extant fish that converges on the tetrapodal walking behaviour and morphology.
Collapse
Affiliation(s)
- Brooke E. Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Apinun Suvarnaraksha
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Julie Markiewicz
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
25
|
Time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (Gobiidiae: Sicydiinae) during cranial metamorphosis at the time of river recruitment. Arch Oral Biol 2016; 66:8-14. [PMID: 26872096 DOI: 10.1016/j.archoralbio.2016.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The present study was aimed at elucidating the time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (S. japonicus) during cranial metamorphosis at the time of river recruitment. DESIGN Fishes were caught at the post-larval stage at a river mouth and maintained for 7 days in a water tank. Each of 10 specimens was evaluated every day for 7 days by using microcomputed tomography, scanning electron microscopy, and light microscopy with peculiar attention to the development of the upper jaw teeth. RESULTS Fishes caught at the river mouth were mostly transparent, with a rostral terminal mouth, and no teeth could be found in either the upper or lower jaw. At 2 days after collection, the mouth position changed from terminal to subterminal, resulting from a change in head shape. The initial eruption of first functional teeth was detected at the anterior two-thirds region of each upper jaw. These teeth erupted in adjacent positions, most had a tricuspid crown, and they represented miniature versions of adult teeth. At 5 days, the position of the mouth became further relocated from terminal rostral to ventral. The number of erupted teeth increased, followed by spreading of them anteriorly and posteriorly. At 7 days, they formed a single row of close-set tricuspid teeth along the entire length of each upper jaw. CONCLUSIONS The present study demonstrated that even under laboratory conditions a rapid and drastic cranial metamorphosis took place within a week after the time of collection of post-larval S. japonicus from a river. The eruption of first functional teeth in the upper jaw of S. japonicus, which teeth are adapted to scraping algae off the substrate, was initially detected at 2 days after collection, and first functional dentition of the upper jaw was set up within 7 days after it.
Collapse
|
26
|
Ward AB, Costa A, Monroe SL, Aluck RJ, Mehta RS. Locomotion in elongate fishes: A contact sport. ZOOLOGY 2015; 118:312-9. [PMID: 26165693 DOI: 10.1016/j.zool.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022]
Abstract
Despite the physical differences between water and air, a number of fish lineages are known to make terrestrial excursions on land. Many of these fishes exhibit an elongate body plan. Elongation of the body can occur in several ways, the most common of which is increasing the number of vertebrae in one or both regions of the axial skeleton--precaudal and/or caudal. Elongate species are often found in three-dimensionally complex habitats. It has been hypothesized that elongate fishes use this structure to their locomotor advantage. In this study, we consider how elongation and differences in vertebral regionalization correspond with the use of wooden pegs, which are provided as analogs to vertically oriented substrate, structures that protrude above the ground. We compare aquatic and terrestrial locomotor behaviors of Polypterus senegalus, Erpetoichthys calabaricus, and Gymnallabes typus as they move through a peg array. When considering axial elongation we find that the highly elongate species, E. calabaricus and G. typus, contact more pegs but on average move slower in both environments than P. senegalus. When considering axial regionalization, we find that the precaudally elongate species, P. senegalus and E. calabaricus, differ in the patterns of peg contact between the two environments whereas the caudally elongate species, G. typus, exhibits similar peg contact between the two environments. Our study highlights the importance of incorporating body shape and vertebral regionalization to understand how elongate fishes move in water and on land.
Collapse
Affiliation(s)
- Andrea B Ward
- Department of Biology, Adelphi University, 1 South Avenue, Garden City, NY 11530, USA.
| | - Alyssa Costa
- Department of Biology, Adelphi University, 1 South Avenue, Garden City, NY 11530, USA
| | - Stephanie L Monroe
- Department of Biology, Adelphi University, 1 South Avenue, Garden City, NY 11530, USA
| | - Robert J Aluck
- Department of Biology, Adelphi University, 1 South Avenue, Garden City, NY 11530, USA
| | - Rita S Mehta
- University of California Santa Cruz, Ecology and Evolutionary Biology Department, 100 Shaffer Road, Santa Cruz, CA 95062, USA
| |
Collapse
|
27
|
Artzrouni M, Teichert N, Mara T. A Leslie matrix model for Sicyopterus lagocephalus in La Réunion: sensitivity, uncertainty and research prioritization. Math Biosci 2014; 256:18-27. [PMID: 25128334 DOI: 10.1016/j.mbs.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
We propose a Leslie matrix model for the population dynamics of Sicyopterus lagocephalus in La Réunion. In order to capture both the amphidromous and the seasonal natures of the species' life history the model has four stages (sea+three river sites) and is cyclical with a 12 month period. Baseline parameters (age-specific fecundity, spatial dispersion patterns and survival rates) were chosen in such a way that the dominant eigenvalue of the year-on-year projection matrix is 1. Large uncertainties on the parameter values preclude the use of the model for management purpose. A sensitivity/uncertainty analysis sheds light on the parameters that cause much of the output to vary and that are poorly known: the life expectancy in rivers and the mortality both at river mouths and during the drift of larvae to sea. The aim is to help policymakers and researchers prioritize data acquisition efforts. The ultimate goal is a sustainable management of Sicyopterus lagocephalus in La Réunion.
Collapse
Affiliation(s)
- Marc Artzrouni
- Department of Mathematics (UMR CNRS 5142), University of Pau, France
| | - Nils Teichert
- Association Réunionnaise de Développement de l'Aquaculture, ZI Les Sables - BP 16, 97427 Etang-Salé, La Réunion, France
| | - Thierry Mara
- Department of Physics (EA 4518), University of La Réunion, 97715 Saint-Denis, France
| |
Collapse
|
28
|
Pace CM, Gibb AC. Sustained periodic terrestrial locomotion in air-breathing fishes. JOURNAL OF FISH BIOLOGY 2014; 84:639-660. [PMID: 24502775 DOI: 10.1111/jfb.12318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes.
Collapse
Affiliation(s)
- C M Pace
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ 86011, U.S.A
| | | |
Collapse
|
29
|
Schoenfuss HL, Maie T, Moody KN, Lesteberg KE, Blob RW, Schoenfuss TC. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni. PLoS One 2013; 8:e84851. [PMID: 24386424 PMCID: PMC3873996 DOI: 10.1371/journal.pone.0084851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.
Collapse
Affiliation(s)
- Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristine N. Moody
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kelsey E. Lesteberg
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tonya C. Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
30
|
Holitzki TM, MacKenzie RA, Wiegner TN, McDermid KJ. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1367-1383. [PMID: 24147409 DOI: 10.1890/12-0529.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.
Collapse
Affiliation(s)
- Tara M Holitzki
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA.
| | | | | | | |
Collapse
|
31
|
Gibb AC, Ashley-Ross MA, Hsieh ST. Thrash, Flip, or Jump: The Behavioral and Functional Continuum of Terrestrial Locomotion in Teleost Fishes. Integr Comp Biol 2013; 53:295-306. [DOI: 10.1093/icb/ict052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Ashley-Ross MA, Hsieh ST, Gibb AC, Blob RW. Vertebrate Land Invasions-Past, Present, and Future: An Introduction to the Symposium. Integr Comp Biol 2013; 53:192-6. [DOI: 10.1093/icb/ict048] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Evolutionary novelty versus exaptation: oral kinematics in feeding versus climbing in the waterfall-climbing Hawaiian Goby Sicyopterus stimpsoni. PLoS One 2013; 8:e53274. [PMID: 23308184 PMCID: PMC3537660 DOI: 10.1371/journal.pone.0053274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 11/21/2022] Open
Abstract
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an “inching” behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai’i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.
Collapse
|
34
|
Maie T, Schoenfuss HL, Blob RW. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes. J Exp Biol 2012; 215:3925-36. [DOI: 10.1242/jeb.072967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, St Cloud State University, 273 Wick Science Building, 720 Fourth Avenue South, St Cloud, MN 56301, USA
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| |
Collapse
|
35
|
Leonard G, Maie T, Moody KN, Schrank GD, Blob RW, Schoenfuss HL. Finding paradise: cues directing the migration of the waterfall climbing Hawaiian gobioid Sicyopterus stimpsoni. JOURNAL OF FISH BIOLOGY 2012; 81:903-920. [PMID: 22803741 DOI: 10.1111/j.1095-8649.2012.03352.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A series of waterfall-climbing trials were conducted to identify cues that direct the climbing of juvenile Sicyopterus stimpsoni. In the first experiment, whether climbing juveniles preferentially ascend water sources with conspecifics or whether the presence of just stream water is sufficient to attract fish to ascend a climbing path were assessed. In the second experiment, whether climbing juveniles create a trail of mucus that facilitates the ability of conspecifics to follow their lead was determined. The results indicate that juvenile S. stimpsoni are less likely to climb in waters devoid of organic cues but are strongly attracted to stream water with or without the odour of conspecifics. Once climbing, performance did not differ for juveniles climbing in differing water choices, suggesting an all-or-nothing commitment once climbing commences. Climbing S. stimpsoni did produce a mucous trail while climbing that was associated with a mucous gland that dramatically increases in size just prior to juveniles gaining the ability to climb. The trail was not followed closely by subsequent juveniles traversing the same channel, however, suggesting only weak trail-following in waterfall climbing S. stimpsoni. Previous genetic studies suggest that juvenile S. stimpsoni do not home to natal streams in the face of strong near-shore oceanic currents. Instead, these fish appear primarily to rely on cues that suggest the presence of organic growth in streams, a factor that may indicate suitable habitat in an ever-changing stream environment but which may also be vulnerable to interference through human activity.
Collapse
Affiliation(s)
- G Leonard
- Aquatic Toxicology Laboratory, Saint Cloud State University, St. Cloud, MN 56301, USA
| | | | | | | | | | | |
Collapse
|
36
|
Liermann CR, Nilsson C, Robertson J, Ng RY. Implications of Dam Obstruction for Global Freshwater Fish Diversity. Bioscience 2012. [DOI: 10.1525/bio.2012.62.6.5] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior. ZOOLOGY 2011; 114:340-7. [DOI: 10.1016/j.zool.2011.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/22/2011] [Accepted: 05/14/2011] [Indexed: 11/17/2022]
|
38
|
Sheffield KM, Butcher MT, Shugart SK, Gander JC, Blob RW. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications. ACTA ACUST UNITED AC 2011; 214:2616-30. [PMID: 21753056 DOI: 10.1242/jeb.048801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal elements are usually able to withstand several times their usual load before they yield, and this ratio is known as the bone's safety factor. Limited studies on amphibians and non-avian reptiles have shown that they have much higher limb bone safety factors than birds and mammals. It has been hypothesized that this difference is related to the difference in posture between upright birds and mammals and sprawling ectotherms; however, limb bone loading data from a wider range of sprawling species are needed in order to determine whether the higher safety factors seen in amphibians and non-avian reptiles are ancestral or derived conditions. Tegus (family Teiidae) are an ideal lineage with which to expand sampling of limb bone loading mechanics for sprawling taxa, particularly for lizards, because they are from a different clade than previously sampled iguanas and exhibit different foraging and locomotor habits (actively foraging carnivore versus burst-activity herbivore). We evaluated the mechanics of locomotor loading for the femur of the Argentine black and white tegu (Tupinambus merianae) using three-dimensional measurements of the ground reaction force and hindlimb kinematics, in vivo bone strains and femoral mechanical properties. Peak bending stresses experienced by the femur were low (tensile: 10.4 ± 1.1 MPa; compressive: -17.4 ± 0.9 MPa) and comparable to those in other reptiles, with moderate shear stresses and strains also present. Analyses of peak femoral stresses and strains led to estimated safety factor ranges of 8.8-18.6 in bending and 7.8-17.5 in torsion, both substantially higher than typical for birds and mammals but similar to other sprawling tetrapods. These results broaden the range of reptilian and amphibian taxa in which high femoral safety factors have been evaluated and further indicate a trend for the independent evolution of lower limb bone safety factors in endothermic taxa.
Collapse
Affiliation(s)
- K Megan Sheffield
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
39
|
Sheffield KM, Blob RW. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion. ACTA ACUST UNITED AC 2011; 214:2603-15. [PMID: 21753055 DOI: 10.1242/jeb.048736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salamanders are often used as representatives of the basal tetrapod body plan in functional studies, but little is known about the loads experienced by their limb bones during locomotion. Although salamanders' slow walking speeds might lead to low locomotor forces and limb bone stresses similar to those of non-avian reptiles, their highly sprawled posture combined with relatively small limb bones could produce elevated limb bone stresses closer to those of avian and mammalian species. This study evaluates the loads on the femur of the tiger salamander (Ambystoma tigrinum) during terrestrial locomotion using three-dimensional measurements of the ground reaction force (GRF) and hindlimb kinematics, as well as anatomical measurements of the femur and hindlimb muscles. At peak stress (29.8 ± 2.0% stance), the net GRF magnitude averaged 0.42 body weights and was directed nearly vertically for the middle 20-40% of the contact interval, essentially perpendicular to the femur. Although torsional shear stresses were significant (4.1 ± 0.3 MPa), bending stresses experienced by the femur were low compared with other vertebrate lineages (tensile: 14.9 ± 0.8 MPa; compressive: -18.9 ± 1.0 MPa), and mechanical property tests indicated yield strengths that were fairly standard for tetrapods (157.1 ± 3.7 MPa). Femoral bending safety factors (10.5) were considerably higher than values typical for birds and mammals, and closer to the elevated values calculated for reptilian species. These results suggest that high limb bone safety factors may have an ancient evolutionary history, though the underlying cause of high safety factors (e.g. low limb bone loads, high bone strength or a combination of the two) may vary among lineages.
Collapse
Affiliation(s)
- K Megan Sheffield
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
40
|
Zhu Q, Moser M, Kemp P. Numerical analysis of a unique mode of locomotion: vertical climbing by Pacific lamprey. BIOINSPIRATION & BIOMIMETICS 2011; 6:016005. [PMID: 21273687 DOI: 10.1088/1748-3182/6/1/016005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pacific lampreys are capable of climbing vertical wetted surfaces through a two-phase (bending and stretching) locomotion mode using the oral disc for adherence. We investigate the physical mechanism and performance of this process by using a continuous beam model. Two mechanisms, one akin to the jumping process and the other related to the fast stretching of the body, have been identified. This locomotion mode may inspire biomimetic designs of anguilliform swimming devices capable of overcoming steep obstacles. By using a genetic algorithm simulation we identify the combination of kinematic parameters corresponding to optimal efficiency (defined as the gravitational potential energy gained in each climbing step divided by the energy spent to activate the motion). These parameters are similar to laboratory observations of lamprey motion, suggesting that this type of locomotion has been optimized for maximum efficiency through evolution.
Collapse
Affiliation(s)
- Q Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, USA.
| | | | | |
Collapse
|
41
|
Yamanoue Y, Setiamarga DHE, Matsuura K. Pelvic fins in teleosts: structure, function and evolution. JOURNAL OF FISH BIOLOGY 2010; 77:1173-1208. [PMID: 21039499 DOI: 10.1111/j.1095-8649.2010.02674.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pelvic fins of teleosts are paired appendages that are considered to be homologous to the hind limbs of tetrapods. Because they are less important for swimming, their morphology and function can be flexibly modified, and such modifications have probably facilitated the adaptations of teleosts to various environments. Recently, among these modifications, pelvic-fin loss has gained attention in evolutionary developmental biology. Pelvic-fin loss, however, has only been investigated in a few model species, and various biological aspects of pelvic fins in teleosts in general remain poorly understood. This review summarizes the current state of knowledge regarding pelvic fins, such as their structure, function and evolution, to elucidate their contribution to the considerable diversity of teleosts. This information could be invaluable for future investigations into various aspects of pelvic fins, which will provide clues to understanding the evolution, diversity and adaptations of teleosts.
Collapse
Affiliation(s)
- Y Yamanoue
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | | | | |
Collapse
|
42
|
Blob RW, Kawano SM, Moody KN, Bridges WC, Maie T, Ptacek MB, Julius ML, Schoenfuss HL. Morphological Selection and the Evaluation of Potential Tradeoffs Between Escape from Predators and the Climbing of Waterfalls in the Hawaiian Stream Goby Sicyopterus stimpsoni. Integr Comp Biol 2010; 50:1185-99. [DOI: 10.1093/icb/icq070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Maie T, Schoenfuss HL, Blob RW. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance. J Morphol 2009; 270:976-83. [PMID: 19274745 DOI: 10.1002/jmor.10737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross-sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many-to-one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | |
Collapse
|
44
|
Maie T, Wilson MP, Schoenfuss HL, Blob RW. Feeding kinematics and performance of Hawaiian stream gobies, Awaous guamensis and Lentipes concolor: linkage of functional morphology and ecology. J Morphol 2009; 270:344-56. [PMID: 19107821 DOI: 10.1002/jmor.10695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Distributions of Hawaiian stream fishes are typically interrupted by waterfalls that divide streams into multiple segments. Larvae hatch upstream, are flushed into the ocean, and must climb these waterfalls to reach adult habitats when returning back to freshwater as part of an amphidromous life cycle. Stream surveys and studies of climbing performance show that Lentipes concolor Gill can reach fast-flowing upper stream segments but that Awaous guamensis Valenciennes reaches only slower, lower stream segments. Gut content analyses for these two species indicate considerable overlap in diet, suggesting that feeding kinematics and performance of these two species might be comparable. Alternatively, feeding kinematics and performance of these species might be expected to differ in relation to the different flow regimes in their habitat (feeding in faster stream currents for L. concolor versus in slower currents for A. guamensis). To test these alternative hypotheses, we compared food capturing kinematics and performance during suction feeding behaviors of A. guamensis and L. concolor using morphological data and high-speed video. Lentipes concolor showed both a significantly larger gape angle and faster jaw opening than A. guamensis. Geometric models calculated that despite the inverse relationship of gape size and suction pressure generation, the fast jaw motions of L. concolor allow it to achieve higher pressure differentials than A. guamensis. Such elevated suction pressure would enhance the ability of L. concolor to successfully capture food in the fast stream reaches it typically inhabits. Differences in jaw morphology may contribute to these differences in performance, as the lever ratio for jaw opening is about 10% lower in L. concolor compared with A. guamensis, suiting the jaws of L. concolor better for fast opening.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | | | |
Collapse
|
45
|
Kemp PS, Tsuzaki T, Moser ML. Linking behaviour and performance: intermittent locomotion in a climbing fish. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.2008.00525.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Abstract
New lamprey-friendly fishways feature inclined ramps that facilitate passage of Pacific lampreys ( Lampetra tridentata (Richardson, 1836)) over Bonneville Dam on the Columbia River, USA. We observed the lampreys moving against water at two flow volumes and on two ramps of 45° and 18° angles relative to horizontal. We documented climbing movements using high-speed video (125 frames/s). Lampreys advanced on the ramps by repeated cycles of attaching to the ramps by their sucker mouths (resting phase), bending their bodies into a W shape (stage II), and then, rapidly straightening the body to propel themselves up the ramp, with simultaneous brief (20–140 ms) release of suction (stage III). We inferred that lampreys were using burst swimming to propel themselves up the ramp, because we observed inflection points in the body curvature traveling toward the posterior of the body and the center of mass moving up, during stage III. This climbing behavior is not described for any other fish species. Vertical motion, relative to the ground, during each cycle of movement was greatest in the 45° ramp – low water flow volume treatment (mean of 0.07 L/cycle), but the movement upstream along the ramp plane was greatest on the 18° ramp, regardless of flow volume. These findings can be used to develop ramp designs that maximize lamprey climbing performance.
Collapse
Affiliation(s)
- U. G. Reinhardt
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - L. Eidietis
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - S. E. Friedl
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - M. L. Moser
- Biology Department Eastern Michigan University, 316 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Department of Curriculum and Teaching, W1032 Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
- Zoology Department, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
47
|
Dial KP, Greene E, Irschick DJ. Allometry of behavior. Trends Ecol Evol 2008; 23:394-401. [DOI: 10.1016/j.tree.2008.03.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/22/2008] [Accepted: 03/04/2008] [Indexed: 11/26/2022]
|
48
|
Blob RW, Bridges WC, Ptacek MB, Maie T, Cediel RA, Bertolas MM, Julius ML, Schoenfuss HL. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni. Integr Comp Biol 2008. [DOI: 10.1093/icb/icn086 10.1093/icb/icp111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Blob RW, Bridges WC, Ptacek MB, Maie T, Cediel RA, Bertolas MM, Julius ML, Schoenfuss HL. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni. Integr Comp Biol 2008; 48:734-49. [DOI: 10.1093/icb/icn086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Muscle fiber type distribution in climbing Hawaiian gobioid fishes: Ontogeny and correlations with locomotor performance. ZOOLOGY 2008; 111:114-22. [DOI: 10.1016/j.zool.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/08/2007] [Accepted: 06/09/2007] [Indexed: 11/23/2022]
|