1
|
Dong J, Huang H. Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:455-464. [PMID: 29405646 DOI: 10.1111/jipb.12640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 05/08/2023]
Abstract
The leaves of most higher plants are polar along their adaxial-abaxial axis, and the development of the adaxial domain (upper side) and the abaxial domain (lower side) makes the leaf a highly efficient photosynthetic organ. It has been proposed that a hypothetical signal transported from the shoot apical meristem (SAM) to the incipient leaf primordium, or conversely, the plant hormone auxin transported from the leaf primordium to the SAM, initiates leaf adaxial-abaxial patterning. This hypothetical signal has been referred to as the Sussex signal, because the research of Ian Sussex published in 1951 was the first to imply its existence. Recent results, however, have shown that auxin polar transport flanking the incipient leaf primordium, but not the Sussex signal, is the key to initiate leaf polarity. Here, we review the new findings and integrate them with other recently published results in the field of leaf development, mainly focusing on the early steps of leaf polarity establishment.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Paton KM, Anderson L, Flottat P, Cytrynbaum EN. A Model of Chloroplast Growth Regulation in Mesophyll Cells. Bull Math Biol 2015; 77:1653-67. [PMID: 26373557 DOI: 10.1007/s11538-015-0099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Abstract
Chloroplasts regulate their growth to optimize photosynthesis. Quantitative data show that the ratio of total chloroplast area to mesophyll cell area is constant across different cells within a single species and also across species. Wild-type chloroplasts exhibit little scatter around this trend; highly irregularly shaped mutant chloroplasts exhibit more scatter. Here we propose a model motivated by a bacterial quorum-sensing model consisting of a switch-like signaling network that turns off chloroplast growth. We calculated the dependence of the location of the relevant saddle-node bifurcation on the geometry of the chloroplasts. Our model exhibits a linear trend, with linearly growing scatter dependent on chloroplast shape, consistent with the data. When modeled chloroplasts are of a shape that grows with a constant area-to-volume ratio (disks, cylinders), we find a linear trend with minimal scatter. Chloroplasts with area and volume that do not grow proportionally (spheres) exhibit a linear trend with additional scatter.
Collapse
Affiliation(s)
- Kelly M Paton
- Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada
| | - Lisa Anderson
- Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada
| | - Pauline Flottat
- Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada
| | - Eric N Cytrynbaum
- Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada. .,Department of Mathematics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Braun DM, Ma Y, Inada N, Muszynski MG, Baker RF. tie-dyed1 Regulates carbohydrate accumulation in maize leaves. PLANT PHYSIOLOGY 2006; 142:1511-22. [PMID: 17071639 PMCID: PMC1676051 DOI: 10.1104/pp.106.090381] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Acquisition of cell identity requires communication among neighboring cells. To dissect the genetic pathways regulating cell signaling in later leaf development, a screen was performed to identify mutants with chloroplast pigmentation sectors that violate cell lineage boundaries in maize (Zea mays) leaves. We have characterized a recessive mutant, tie-dyed1 (tdy1), which develops stable, nonclonal variegated yellow and green leaf sectors. Sector formation requires high light, occurs during a limited developmental time, and is restricted to leaf blade tissue. Yellow tdy1 sectors accumulate excessive soluble sugars and starch, whereas green sectors appear unaffected. Significantly, starch accumulation precedes chlorosis in cells that will become a yellow sector. Retention of carbohydrates in tdy1 leaves is associated with a delay in reproductive maturity, decreased stature, and reduced yield. To explain the tdy1 sectoring pattern, we propose a threshold model that incorporates the light requirement and the hyperaccumulation of photoassimilates. A possible function consistent with this model is that TDY1 acts as a sugar sensor to regulate an inducible sugar export pathway as leaves develop under high light conditions.
Collapse
Affiliation(s)
- David M Braun
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
4
|
Mitchell PL, Sheehy JE. Supercharging rice photosynthesis to increase yield. THE NEW PHYTOLOGIST 2006; 171:688-93. [PMID: 16918541 DOI: 10.1111/j.1469-8137.2006.01855.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
5
|
Pérez-Pérez JM, Serrano-Cartagena J, Micol JL. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 2002; 162:893-915. [PMID: 12399398 PMCID: PMC1462278 DOI: 10.1093/genetics/162.2.893] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To ascertain whether intraspecific variability might be a source of information as regards the genetic controls underlying plant leaf morphogenesis, we analyzed variations in the architecture of vegetative leaves in a large sample of Arabidopsis thaliana natural races. A total of 188 accessions from the Arabidopsis Information Service collection were grown and qualitatively classified into 14 phenotypic classes, which were defined according to petiole length, marginal configuration, and overall lamina shape. Accessions displaying extreme and opposite variations in the above-mentioned leaf architectural traits were crossed and their F(2) progeny was found to be not classifiable into discrete phenotypic classes. Furthermore, the leaf trait-based classification was not correlated with estimates on the genetic distances between the accessions being crossed, calculated after determining variations in repeat number at 22 microsatellite loci. Since these results suggested that intraspecific variability in A. thaliana leaf morphology arises from an accumulation of mutations at quantitative trait loci (QTL), we studied a mapping population of recombinant inbred lines (RILs) derived from a Landsberg erecta-0 x Columbia-4 cross. A total of 100 RILs were grown and the third and seventh leaves of 15 individuals from each RIL were collected and morphometrically analyzed. We identified a total of 16 and 13 QTL harboring naturally occurring alleles that contribute to natural variations in the architecture of juvenile and adult leaves, respectively. Our QTL mapping results confirmed the multifactorial nature of the observed natural variations in leaf architecture.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
6
|
Cribb L, Hall LN, Langdale JA. Four mutant alleles elucidate the role of the G2 protein in the development of C(4) and C(3) photosynthesizing maize tissues. Genetics 2001; 159:787-97. [PMID: 11606553 PMCID: PMC1461819 DOI: 10.1093/genetics/159.2.787] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maize leaf blades differentiate dimorphic photosynthetic cell types, the bundle sheath and mesophyll, between which the reactions of C(4) photosynthesis are partitioned. Leaf-like organs of maize such as husk leaves, however, develop a C(3) pattern of differentiation whereby ribulose bisphosphate carboxylase (RuBPCase) accumulates in all photosynthetic cell types. The Golden2 (G2) gene has previously been shown to play a role in bundle sheath cell differentiation in C(4) leaf blades and to play a less well-defined role in C(3) maize tissues. To further analyze G2 gene function in maize, four g2 mutations have been characterized. Three of these mutations were induced by the transposable element Spm. In g2-bsd1-m1 and g2-bsd1-s1, the element is inserted in the second intron and in g2-pg14 the element is inserted in the promoter. In the fourth case, g2-R, four amino acid changes and premature polyadenylation of the G2 transcript are observed. The phenotypes conditioned by these four mutations demonstrate that the primary role of G2 in C(4) leaf blades is to promote bundle sheath cell chloroplast development. C(4) photosynthetic enzymes can accumulate in both bundle sheath and mesophyll cells in the absence of G2. In C(3) tissue, however, G2 influences both chloroplast differentiation and photosynthetic enzyme accumulation patterns. On the basis of the phenotypic data obtained, a model that postulates how G2 acts to facilitate C(4) and C(3) patterns of tissue development is proposed.
Collapse
Affiliation(s)
- L Cribb
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | |
Collapse
|
7
|
Serrano-Cartagena J, Candela H, Robles P, Ponce MR, Pérez-Pérez JM, Piqueras P, Micol JL. Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis. Genetics 2000; 156:1363-77. [PMID: 11063708 PMCID: PMC1461319 DOI: 10.1093/genetics/156.3.1363] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an attempt to identify genes involved in the control of leaf morphogenesis, we have studied 13 Arabidopsis thaliana mutants with curled, involute leaves, a phenotype herein referred to as Incurvata (Icu), which were isolated by G. Röbbelen and belong to the Arabidopsis Information Service Form Mutants collection. The Icu phenotype was inherited as a single recessive trait in 10 mutants, with semidominance in 2 mutants and with complete dominance in the remaining 1. Complementation analyses indicated that the studied mutations correspond to five genes, representative alleles of which were mapped relative to polymorphic microsatellites. Although most double-mutant combinations displayed additivity of the Icu phenotypes, those of icu1 icu2 and icu3 icu4 double mutants were interpreted as synergistic, which suggests that the five genes studied represent three independent genetic operations that are at work for the leaf to acquire its final form at full expansion. We have shown that icu1 mutations are alleles of the Polycomb group gene CURLY LEAF (CLF) and that the leaf phenotype of the icu2 mutant is suppressed in an agamous background, as is known for clf mutants. In addition, we have tested by means of multiplex RT-PCR the transcription of several floral genes in Icu leaves. Ectopic expression of AGAMOUS and APETALA3 was observed in clf and icu2, but not in icu3, icu4, and icu5 mutants. Taken together, these results suggest that CLF and ICU2 play related roles, the latter being a candidate to belong to the Polycomb group of regulatory genes. We propose that, as flowers evolved, a new major class of genes, including CLF and ICU2, may have been recruited to prevent the expression of floral homeotic genes in the leaves.
Collapse
Affiliation(s)
- J Serrano-Cartagena
- División de Genética, Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants.
Collapse
Affiliation(s)
- G Berná
- División de Genética, Universidad Miguel Hernández, 03550 Alicante, Spain
| | | | | |
Collapse
|
9
|
Abstract
A single plant produces several different types of leaves or leaf-like organs during its life span. This phenomenon, which is termed heteroblasty, is an invariant feature of shoot development but is also regulated by environmental factors that affect the physiology of the plant. Invariant patterns of heteroblastic development reflect global changes in the developmental status of the shoot, such as the progression from embryogenesis through juvenile and adult phases of vegetative development, culminating in the production of reproductive structures. Genes that regulate these phase-specific aspects of leaf identity have been identified by mutational analysis in both maize and Arabidopsis. These mutations have revealed that leaf production is regulated independently of leaf identity, implying that the identity of a leaf at a particular position on the shoot may depend on when the leaf was initiated in relation to a temporal program of shoot development.
Collapse
Affiliation(s)
- R A Kerstetter
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA.
| | | |
Collapse
|
10
|
Candela H, Martínez-Laborda A, Micol JL. Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol 1999; 205:205-16. [PMID: 9882508 DOI: 10.1006/dbio.1998.9111] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Branching net-like structures are a trait common to most multicellular organisms. However, our knowledge is still poor when it comes to the genetic operations at work in pattern formation of complex network structures such as the vasculature of plants and animals. In order to initiate a causal analysis of venation pattern formation in dicotyledonous plant leaves, we have first studied its developmental profile in vegetative leaves of a wild-type strain of the model organism Arabidopsis thaliana. As landmarks of the complexity of the venation pattern, we have defined three main developmental parameters, which have been quantitatively followed in time: the ratios of (a) the length and (b) the number of branchpoints of the vein network with the surface of the lamina, which decrease in parallel as the leaf grows, only small differences existing between successive leaves, and (c) the number of hydathodes per leaf, which increases both during leaf expansion and from juvenile to adult rosette leaves. We next searched for natural variations in the first vegetative leaves of 266 ecotypes, finding only 2 which showed a venation pattern unequivocally different from that of the rest, Ba-1 and Ei-5, the latter displaying an extremely simple pattern that we have called Hemivenata. This phenotype, which is inherited as a monogenic recessive trait, is visible both in leaves and in cotyledons and seems to arise from a perturbation in an early acting patterning mechanism. Finally, we have screened for mutants with abnormal venation pattern but normally shaped leaves, concluding that such a phenotype is rare, since only one recessive mutation was obtained, extrahydathodes, characterized by the presence of an increased number of hydathodes per leaf.
Collapse
Affiliation(s)
- H Candela
- División de Genética, Universidad Miguel Hernández, Campus de San Juan, Alicante, 03550, Spain
| | | | | |
Collapse
|
11
|
|
12
|
Abstract
The past year has seen significant advances in our understanding of the mechanisms that regulate cellular differentiation in the leaf. It has been suggested that a common developmental pathway involving MYB-like transcription factors is responsible for distinguishing between cellular identities in the epidermis and that nuclear-cytoplasmic partitioning of the GLABRA2 homeodomain protein plays a role in determining trichome cell fate. With respect to the differentiation of subepidermal cell types, molecular links have been made between auxin physiology and vascular development, and between plastid function and photosynthetic cell type development.
Collapse
Affiliation(s)
- J A Langdale
- Department of Plant Sciences University of Oxford South Parks Road Oxford OX1 3RB.
| |
Collapse
|
13
|
Abstract
The past year has seen major advances in our understanding of the mechanisms through which leaf pattern is elaborated. It has been suggested that developmental subcompartments are delimited within the leaf and that homeobox genes are involved in specifying these domains in compound leaves. Importantly, peptide signaling has emerged as a novel component of leaf developmental pathways.
Collapse
Affiliation(s)
- M Tsiantis
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | | |
Collapse
|
14
|
Affiliation(s)
- E M Meyerowitz
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|