1
|
Pishchik VN, Vorob’ev NI, Provorov NA, Khomyakov YV. Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia Zambrano M, Ma JF, Kochian LV. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:398-410. [PMID: 24547775 DOI: 10.1111/tpj.12480] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 05/09/2023]
Abstract
The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate high levels of Zn and Cd in its leaves. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and tolerance mechanisms. It has also been well documented that certain ecotypes of N. caerulescens are much better Cd hyperaccumulators than others. However, there does not seem to be much ecotypic variation for Zn hyperaccumulation in N. caerulescens. In this study we employed a comparative transcriptomics approach to look at root and shoot gene expression in Ganges and Prayon plants in response to Cd stress to identify transporter genes that were more highly expressed in either the roots or shoots of the superior Cd accumulator, Ganges. Comparison of the transcriptomes from the two ecotypes of Noccaea caerulescens identified a number of genes that encoded metal transporters that were more highly expressed in the Ganges ecotype in response to Cd stress. Characterization of one of these transporters, NcNramp1, showed that it is involved in the influx of Cd across the endodermal plasma membrane and thus may play a key role in Cd flux into the stele and root-to-shoot Cd transport. NcNramp1 may be one of the main transporters involved in Cd hyperaccumulation in N. caerulescens and copy number variation appears to be the main reason for high NcNramp1 gene expression underlying the increased Cd accumulation in the Ganges ecotype.
Collapse
Affiliation(s)
- Matthew J Milner
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang C, Sale PWG, Doronila AI, Clark GJ, Livesay C, Tang C. Australian native plant species Carpobrotus rossii (Haw.) Schwantes shows the potential of cadmium phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9843-9851. [PMID: 24777324 DOI: 10.1007/s11356-014-2919-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20-320 mg kg(-1) Cd), Zn (150-2,400 mg kg(-1) Zn) or Cd + Zn (20 + 150, 40 + 300, 80 + 600 mg kg(-1)). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10% shoot biomass reduction was 115 μg g(-1) for Cd and 1,300 μg g(-1) for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg(-1) Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.
Collapse
Affiliation(s)
- Chengjun Zhang
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC, 3086, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Pollard AJ, Reeves RD, Baker AJM. Facultative hyperaccumulation of heavy metals and metalloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:8-17. [PMID: 24467891 DOI: 10.1016/j.plantsci.2013.11.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/15/2013] [Accepted: 11/16/2013] [Indexed: 05/20/2023]
Abstract
Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits.
Collapse
Affiliation(s)
- A Joseph Pollard
- Department of Biology, Furman University, Greenville SC 29613, USA.
| | | | - Alan J M Baker
- School of Botany, The University of Melbourne and Centre for Mined Land Rehabilitation, University of Queensland, Australia
| |
Collapse
|
5
|
Cai S, Xiong Z, Li L, Li M, Zhang L, Liu C, Xu Z. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:76-91. [PMID: 24233160 DOI: 10.1007/s10646-013-1153-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The present study aimed to test a hypothesis that acid invertases in root of metallophytes might play important roles in root growth under heavy metal stress. Plants of two contrasting populations, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), of metallophyte Elsholtzia haichowensis were treated with Cu in controlled experiments. The results showed that MP was Cu tolerant under 10 μM Cu2+ treatment. Cu treatment resulted in a higher root/shoot biomass ratio in MP compared to NMP. Scaling exponent in root/shoot allometric function in MP was lower than NMP. More complicated root architecture was observed in MP under Cu stress. Four full-length cDNAs (EhNcwINV, EhCcwINV, EhNvINV and EhCvINV) encoding cell wall and vacuolar invertases were cloned. Both of the transcript level and activity of the acid invertase in MP elevated under Cu treatment. There were positive correlations between root acid invertase transcript level, activity and root/shoot biomass ratio. The results indicated important roles of acid invertase in governing root growth under Cu stress. It also suggested that there was a possible interrelation between acid invertases and Cu tolerance mechanisms in MP of E. haichowensis.
Collapse
|
6
|
Henson TM, Cory W, Rutter MT. Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS One 2013; 8:e63200. [PMID: 23667586 PMCID: PMC3646754 DOI: 10.1371/journal.pone.0063200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 04/03/2013] [Indexed: 11/24/2022] Open
Abstract
Plant populations may vary substantially in their tolerance for and accumulation of heavy metals, and assessment of this variability is important when selecting species to use in restoration or phytoremediation projects. We examined the population variation in cadmium tolerance and accumulation in a leguminous pioneer species native to the eastern United States, the partridge pea (Chamaecrista fasciculata). We assayed growth, reproduction and patterns of cadmium accumulation in six populations of C. fasciculata grown on a range of cadmium-contaminated soils. In general, C. fasciculata exhibited tolerance in low to moderate soil cadmium concentrations. Both tolerance and accumulation patterns varied across populations. C. fasciculata exhibited many characteristics of a hyperaccumulator species, with high cadmium uptake in shoots and roots. However, cadmium was excluded from extrafloral nectar. As a legume with tolerance for moderate cadmium contamination, C. fasciculata has potential for phytoremediation. However, our findings also indicate the importance of considering the effects of genetic variation on plant performance when screening plant populations for utilization in remediation and restoration activities. Also, there is potential for cadmium contamination to affect other species through contamination of leaves, fruits, flowers, pollen and root nodules.
Collapse
Affiliation(s)
- Tessa M. Henson
- Department of Biology, College of Charleston, Charleston, South Carolina, United States of America
| | - Wendy Cory
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina, United States of America
| | - Matthew T. Rutter
- Department of Biology, College of Charleston, Charleston, South Carolina, United States of America
| |
Collapse
|
7
|
Burrell AM, Hawkins AK, Pepper AE. Genetic analyses of nickel tolerance in a North American serpentine endemic plant, Caulanthus amplexicaulis var. barbarae (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:1875-1883. [PMID: 23125430 DOI: 10.3732/ajb.1200382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY The evolution of metal tolerance in plants is an important model for studies of adaptation to environment, population genetics, and speciation. Here, we investigated nickel tolerance in the North American serpentine endemic Caulanthus amplexicaulis var. barbarae in comparison with its nonserpentine sister taxon C. amplexicaulis var. amplexicaulis. We hypothesized that the serpentine endemic would have a heritable growth advantage on nickel-containing substrates. METHODS We employed an artificial growth assay to quantify biomass accumulation. Study plants were crossed to create an F(2:3) population that was used to determine the heritability of nickel tolerance and to map quantitative trait loci (QTL). Nickel accumulation in both laboratory populations and native specimens was examined using energy-dispersive x-ray fluorescence (EDXRF). KEY RESULTS The serpentine endemic had a dramatic growth advantage at concentrations of nickel >30 µmol/L. Caulanthus amplexicaulis var. barbarae and its nonserpentine sister taxon both accumulated nickel to substantial levels. Nickel tolerance was highly heritable (h(2) = 0.59) and not associated with accumulation. The QTL analyses identified two major loci for nickel tolerance, on linkage group 2 (LG2) and linkage group 9 (LG9). CONCLUSIONS In our study, nickel tolerance was determined by two major loci with large effects. At both loci, alleles from the serpentine parent conferred positive effects on nickel tolerance, suggesting that they are adaptive in the natural serpentine environment. The mechanism of nickel tolerance in the serpentine plant was not exclusion of nickel. Nickel tolerance may have an inducible component in C. amplexicaulis var. barbarae.
Collapse
Affiliation(s)
- A Millie Burrell
- Department of Biology, Texas A&M University, TAMUS 3258, College Station, Texas 77843-3258, USA
| | | | | |
Collapse
|
8
|
Kulaeva OA, Tsyganov VE. Molecular-genetic basis of cadmium tolerance and accumulation in higher plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079059711050108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ci D, Jiang D, Dai T, Jing Q, Cao W. Variation in cadmium tolerance and accumulation and their relationship in wheat recombinant inbred lines at seedling stage. Biol Trace Elem Res 2011; 142:807-18. [PMID: 20809273 DOI: 10.1007/s12011-010-8812-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
In order to identify the variation of cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.), a study was conducted in hydroponic culture with or without Cd using recombinant inbred lines (RILs) consisting of 103 RILs derived from a cross of Chuan 35050 × Shannong 483 at seedling stage. The parameters of shoot height, secondary roots numbers, tiller numbers, shoot dry weights, root dry weights, and maximum efficiency of photosystem II photochemistry under dark-adopted conditions were measured. Cd-tolerant indexes were then calculated as relative the above traits under Cd stress to those under the control. Cd concentration in shoot or root was determined and Cd accumulation and translocation were calculated. Based on the Cd-tolerant indexes, membership function analysis was used to determine the variation of the above parameters. The results showed a continuous distribution among the RILs and then the RILs were divided into five groups according to their tolerance. Lines 76 and 17 were considered as the most Cd-tolerant lines while lines 103 and 51 were as the most Cd-sensitive lines. Meanwhile, lines 38 and 79 were with minimum Cd translocation ratio while lines 88 and 53 were with maximum Cd translocation ratio, respectively. The relationship between Cd tolerance and accumulation was not significant, indicating Cd tolerance and accumulation may be independent traits in the RILs. Thus, lines with high Cd tolerance and less Cd accumulation could be selected for wheat breeding.
Collapse
Affiliation(s)
- Dunwei Ci
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Frérot H. A challenge for hyperaccumulating plant models: 'cycling' as fast as Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 189:357-359. [PMID: 21175629 DOI: 10.1111/j.1469-8137.2010.03591.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Hélène Frérot
- Université Lille 1, GEPV, Bâtiment SN2, Villeneuve d'Ascq 59655, France.
| |
Collapse
|
12
|
Dessureault-Rompré J, Luster J, Schulin R, Tercier-Waeber ML, Nowack B. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1955-1962. [PMID: 19913965 DOI: 10.1016/j.envpol.2009.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 10/20/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
By using a rhizobox micro-suction cup technique we studied in-situ mobilization and complexation of Zn and Cd in the rhizosphere of non-hyperaccumulating Thlaspi perfoliatum and two different Thlaspi caerulescens ecotypes, one of them hyperaccumulating Zn, the other Zn and Cd. The dynamic fraction (free metal ions and small labile complexes) of Zn and Cd decreased with time in the rhizosphere solution of the respective hyperaccumulating T. caerulescens ecotypes, and at the end of the experiment, it was significantly smaller than in the other treatments. Furthermore, the rhizosphere solutions of the T. caerulescens ecotypes exhibited a higher UV absorptivity than the solution of the T. perfoliatum rhizosphere and the plant-free soil. Based on our findings we suggest that mobile and labile metal-dissolved soil organic matter complexes play a key role in the rapid replenishment of available metal pools in the rhizosphere of hyperaccumulating T. caerulescens ecotypes, postulated earlier.
Collapse
|
13
|
Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P. Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. THE NEW PHYTOLOGIST 2009; 184:581-595. [PMID: 19761446 DOI: 10.1111/j.1469-8137.2009.02996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The purpose of this study was to investigate the relationship between the chemical form and localization of zinc (Zn) in plant leaves and their Zn accumulation capacity. An interspecific cross between Arabidopsis halleri sp. halleri and Arabidopsis lyrata sp. petrea segregating for Zn accumulation was used. Zinc (Zn) speciation and Zn distribution in the leaves of the parent plants and of selected F(1) and F(2) progenies were investigated by spectroscopic and microscopic techniques and chemical analyses. A correlation was observed between the proportion of Zn being in octahedral coordination complexed to organic acids and free in solution (Zn-OAs + Zn(aq)) and Zn content in the leaves. This pool varied between 40% and 80% of total leaf Zn depending on the plant studied. Elemental mapping of the leaves revealed different Zn partitioning between the veins and the leaf tissue. The vein : tissue fluorescence ratio was negatively correlated with Zn accumulation. The higher proportion of Zn-OAs + Zn(aq) and the depletion of the veins in the stronger accumulators are attributed to a higher xylem unloading and vacuolar sequestration in the leaf cells. Elemental distributions in the trichomes were also investigated, and results support the role of carboxyl and/or hydroxyl groups as major Zn ligands in these cells.
Collapse
Affiliation(s)
- Géraldine Sarret
- Environmental Geochemistry Group, LGIT, University J. Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | - Glenda Willems
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR 8016, CNRS, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Marie-Pierre Isaure
- Environmental Geochemistry Group, LGIT, University J. Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hélène Frérot
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR 8016, CNRS, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | - Sébastien Pairis
- Institut Néel CNRS-UJF, Dept Matière Condensée, Matériaux et Fonctions, Pôle Instrumentation, 25 av. des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France
| | - Nicolas Geoffroy
- Environmental Geochemistry Group, LGIT, University J. Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | - Alain Manceau
- Environmental Geochemistry Group, LGIT, University J. Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR 8016, CNRS, Université Lille 1, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
14
|
Zhang J, Hu M, Li JT, Guan JP, Yang B, Shu WS, Liao B. A transcriptional profile of metallophyte Viola baoshanensis involved in general and species-specific cadmium-defense mechanisms. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:862-870. [PMID: 19106016 DOI: 10.1016/j.jplph.2008.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 05/27/2023]
Abstract
Viola baoshanensis Shu, Liu et Lan is a newly identified metallophyte, and its defensive strategies against heavy metals are still unclear. In the present study, we firstly constructed a root cDNA library of the plant subjected to 300muM Cd for 48h by using suppression subtractive hybridization (SSH), and 43 unique cDNA fragments were further isolated from the library. Sequence homology analysis showed that half of the identified genes were involved in general stress defense, such as antioxidative enzymes, protein degradation and stress signal transduction. After RT-PCR and RACE analysis, a Cd-responsive gene Vb40 was identified, which could deduce a novel cysteine-rich mini-protein. Meanwhile, five cyclotide precursor genes (VbCP1-VbCP5) were also identified. The Vb40 and the VbCP1-VbCP5 were further investigated by yeast expression analysis, and they could improve copper (Cu) tolerance in hosted yeast, indicating that these species-specific genes possibly functioned in V. baoshanensis heavy metals tolerance. Our results suggested that heavy metal tolerance in V. baoshanensis relied on both general and species-specific defense.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510006, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. THE NEW PHYTOLOGIST 2009; 181:759-776. [PMID: 19192189 DOI: 10.1111/j.1469-8137.2008.02748.x] [Citation(s) in RCA: 489] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Metal hyperaccumulator plants accumulate and detoxify extraordinarily high concentrations of metal ions in their shoots. Metal hyperaccumulation is a fascinating phenomenon, which has interested scientists for over a century. Hyperaccumulators constitute an exceptional biological material for understanding mechanisms regulating plant metal homeostasis as well as plant adaptation to extreme metallic environments.Our understanding of metal hyperaccumulation physiology has recently increased as a result of the development of molecular tools. This review presents key aspects of our current understanding of plant metal – in particular cadmium (Cd),nickel (Ni) and zinc (Zn) – hyperaccumulation.
Collapse
Affiliation(s)
- Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| | - Christian Hermans
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine - CP242 - Bd du Triomphe, B-1050 Brussels, Belgium
| | - Henk Schat
- Institute of Molecular and Cellular Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Ebbs SD, Zambrano MC, Spiller SM, Newville M. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. THE NEW PHYTOLOGIST 2009; 181:626-36. [PMID: 19054336 DOI: 10.1111/j.1469-8137.2008.02693.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Differential sorption and transport characteristics of the leaf mesophyll layer of the Prayon and Ganges ecotypes of the hyperaccumulator Thlaspi caerulescens were examined. (109)Cd influx and efflux experiments were conducted with leaf sections, and X-ray absorption near edge structure (XANES) data were collected from leaves as a general comparison of in vivo cadmium (Cd) coordination. There were modest differences in cell wall sorption of Cd between ecotypes. There were obvious differences in time- and concentration-dependent Cd influx, including a greater V(MAX) for Prayon but a lower K(M) for Ganges for concentration-dependent Cd uptake and a notably greater Cd uptake by Ganges leaf sections at 1000 microm Cd. Leaf sections of Prayon had a greater Cd efflux than Ganges. The XANES spectra from the two ecotypes suggested differences in Cd coordination. The fundamental differences observed between the two ecotypes may reflect differential activity and/or expression of plasma membrane and tonoplast transporters. More detailed study of these transporters and the in vivo coordination of Cd are needed to determine the contribution of these processes to metal homeostasis and tolerance.
Collapse
Affiliation(s)
- Stephen D Ebbs
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, IL 62901-6509, USA.
| | | | | | | |
Collapse
|
17
|
Hassinen VH, Tuomainen M, Peräniemi S, Schat H, Kärenlampi SO, Tervahauta AI. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:187-96. [PMID: 19033549 PMCID: PMC3071770 DOI: 10.1093/jxb/ern287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 05/04/2023]
Abstract
To study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F(3) families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F(3) sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels. However, there was no co-segregation of TcMT2a or TcMT3 expression and Zn accumulation. To examine the functions of TcMTs in plants, TcMT2a and TcMT3 were ectopically expressed in Arabidopsis. The transformant lines had reduced root length in control medium but not at high metal concentrations, suggesting that the ectopically expressed proteins interfered with the physiological availability of essential metals under limited supply. The Arabidopsis transformant lines did not show increased tolerance to Cd, Cu, or Zn, nor increased Cd or Zn accumulation. Immunohistochemical analysis indicated that in roots, MT2 protein is localized in the epidermis and root hairs of both T. caerulescens and Arabidopsis thaliana. The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarily involved in Zn accumulation as such. However, the elevated expression levels in the metallicolous accessions suggests that they do contribute to the metal-adapted phenotype, possibly through improving Cu homeostasis at high Zn and Cd body burdens. Alternatively, they might function as hypostatic enhancers of Zn or Cd tolerance.
Collapse
Affiliation(s)
- V H Hassinen
- Department of Biosciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
18
|
Liu MQ, Yanai J, Jiang RF, Zhang F, McGrath SP, Zhao FJ. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? CHEMOSPHERE 2008; 71:1276-1283. [PMID: 18262587 DOI: 10.1016/j.chemosphere.2007.11.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/11/2007] [Accepted: 11/30/2007] [Indexed: 05/25/2023]
Abstract
The southern French (Ganges) ecotype of Thlaspi caerulescens J & C Presl is able to hyperaccumulate several thousand mg Cd kg(-1) shoot dry weight without suffering from phytotoxicity. We investigated the effect of Cd on growth and the activity of carbonic anhydrase (CA), a typical Zn-requiring enzyme, of T. caerulescens in soil and hydroponic experiments. In one of the hydroponic experiments, T. caerulescens was compared to the non-accumulator Thlaspi ferganense N. Busch. In the soil experiment, additions of Cd at 5-500 mg kg(-1) soil increased the growth of T. caerulescens significantly. In the hydroponic experiments, exposure to Cd at 1-50 microM for three weeks had no significant effect on the growth of T. caerulescens, but decreased the growth of T. ferganense markedly even at the lowest concentration of Cd (1muM). Cadmium exposure significantly increased the CA activity in T. caerulescens, but decreased it in T. ferganense. The CA activity in T. caerulescens correlated positively with the Cd concentration in the shoots up to 6000 mg kg(-1), even though shoot Zn concentration was decreased by the Cd treatments. For comparison, Cd treatments had no consistent effect on the activity of superoxide dismutase in T. caerulescens. The results suggest that Cd may play a physiological role in the Cd-hyperaccumulating ecotype of T. caerulescens by enhancing the activities of some enzymes such as CA. Further research is needed to establish whether a Cd-requiring CA exists in T. caerulescens.
Collapse
Affiliation(s)
- Mei-Qing Liu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
19
|
Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ. Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. THE NEW PHYTOLOGIST 2008; 178:315-325. [PMID: 18266619 DOI: 10.1111/j.1469-8137.2008.02376.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Efficient root-to-shoot translocation is a key trait of the zinc/cadmium hyperaccumulators Thlaspi caerulescens and Thlaspi praecox, but the extent of variation among different accessions and the underlying mechanisms remain unclear. Root-to-shoot translocation of Cd and Zn and apoplastic bypass flow were determined in 10 accessions of T. caerulescens and one of T. praecox, using radiolabels (109)Cd and (65)Zn. Two contrasting accessions (Pr and Ga) of T. caerulescens were further characterized for TcHMA4 expression and metal compartmentation in roots. Root-to-shoot translocation of (109)Cd and (65)Zn after 1 d exposure varied 4.4 to 5-fold among the 11 accessions, with a significant correlation between the two metals, but no significant correlation with uptake or the apoplastic bypass flow. The F(2) progeny from a cross between accessions from Prayon, Belgium (Pr) and Ganges, France (Ga) showed a continuous phenotype pattern and transgression. There was no significant difference in the TcHMA4 expression in roots between Pr and Ga. Compartmentation analysis showed a higher percentage of (109)Cd sequestered in the root vacuoles of Ga than Pr, the former being less efficient in translocation than the latter. Substantial natural variation exists in the root-to-shoot translocation of Cd and Zn, and root vacuolar sequestration may be an important factor related to this variation.
Collapse
Affiliation(s)
- J P Xing
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, People's Republic of China
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - R F Jiang
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | - D Ueno
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - J F Ma
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - H Schat
- Department of Ecology and Physiology of Plants, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - S P McGrath
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - F J Zhao
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
20
|
Tsyganov VE, Belimov AA, Borisov AY, Safronova VI, Georgi M, Dietz KJ, Tikhonovich IA. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. ANNALS OF BOTANY 2007; 99:227-37. [PMID: 17259229 PMCID: PMC2802999 DOI: 10.1093/aob/mcl261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/12/2006] [Accepted: 10/18/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. METHODS Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. KEY RESULTS The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. CONCLUSIONS The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.
Collapse
Affiliation(s)
- Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo 3, Pushkin 8, 196608, St Petersburg, Russian Federation
| | - Andrei A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo 3, Pushkin 8, 196608, St Petersburg, Russian Federation
| | - Alexey Y. Borisov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo 3, Pushkin 8, 196608, St Petersburg, Russian Federation
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo 3, Pushkin 8, 196608, St Petersburg, Russian Federation
| | - Manfred Georgi
- Department of Biochemistry and Physiology of Plants W5, Bielefeld University, University Str. 25, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants W5, Bielefeld University, University Str. 25, 33501, Bielefeld, Germany
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo 3, Pushkin 8, 196608, St Petersburg, Russian Federation
| |
Collapse
|
21
|
Abstract
Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
Collapse
Affiliation(s)
- Martin R Broadley
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Philip J White
- The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - John P Hammond
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Ivan Zelko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK 84538 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B2, SK 84215 Bratislava, Slovakia
| | - Alexander Lux
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK 84538 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B2, SK 84215 Bratislava, Slovakia
| |
Collapse
|
22
|
Basic N, Salamin N, Keller C, Galland N, Besnard G. Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. BIOCHEM SYST ECOL 2006. [DOI: 10.1016/j.bse.2006.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:907-20. [PMID: 16850314 DOI: 10.1007/s00122-006-0350-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 06/21/2006] [Indexed: 05/10/2023]
Abstract
Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).
Collapse
Affiliation(s)
- A X Deniau
- Ecology and Physiology of Plants, Vrije Universiteit Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Basic N, Besnard G. Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. JOURNAL OF PLANT RESEARCH 2006; 119:479-87. [PMID: 16896532 DOI: 10.1007/s10265-006-0011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 05/12/2006] [Indexed: 05/11/2023]
Abstract
Genetic polymorphism was investigated in Thlaspi caerulescens J. & C. Presl at 15 gene regions, of which seven have been identified to putatively play a role in heavy-metal tolerance or hyperaccumulation. Single nucleotide and length polymorphisms were assessed at four cleaved amplified polymorphic sequences (CAPS) and 11 simple sequence repeat (microsatellite) loci, respectively. The utility of these loci for genetic studies in T. caerulescens was measured among seven natural populations (135 individuals). Fourteen loci rendered polymorphism, and the number of alleles per locus varied from 2 to 5 and 1 to 27 for CAPS and microsatellites, respectively. Up to 12 alleles per locus were detected in a population. The global observed heterozygosity per population varied between 0.01 and 0.31. Additionally, cross-species/genera amplification of loci was investigated on eight other Brassicaceae (five individuals per population). Overall, 70% of the cross-species/genera amplifications were successful, and among them, more than 40% provided intraspecific polymorphisms within a single population. This indicates that such markers may, as well, allow comparative population genetic or mapping studies between and within several Brassicaceae, particularly for genes involved in traits such as heavy-metal tolerance and/or hyperaccumulation.
Collapse
Affiliation(s)
- N Basic
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | | |
Collapse
|
25
|
Basic N, Keller C, Fontanillas P, Vittoz P, Besnard G, Galland N. Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:64-72. [PMID: 16435270 DOI: 10.1055/s-2005-872892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
During the last decade, the metal hyperaccumulating plants have attracted considerable attention because of their potential use in decontamination of heavy metal contaminated soils. However, in most species, little is known regarding the function, the ecological and the evolutionary significances of hyperaccumulation. In our study, we investigated the parameters influencing the Cd concentration in plants as well as the biological implications of Cd hyperaccumulation in nine natural populations of Thlaspi caerulescens. First, we showed that Cd concentration in the plant was positively correlated with plant Zn, Fe, and Cu concentrations. This suggested that the physiological and/or molecular mechanisms for uptake, transport and/or accumulation of these four heavy metals interact with each other. Second, we specified a measure of Cd hyperaccumulation capacity by populations and showed that T. caerulescens plants originating from populations with high Cd hyperaccumulation capacity had better growth, by developing more and bigger leaves, taller stems, and produced more fruits and heavier seeds. These results suggest a tolerance/disposal role of Cd hyperaccumulation in this species.
Collapse
Affiliation(s)
- N Basic
- Department of Ecology and Evolution, University of Lausanne, Biology Building, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Assunção AGL, Pieper B, Vromans J, Lindhout P, Aarts MGM, Schat H. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. THE NEW PHYTOLOGIST 2006; 170:21-32. [PMID: 16539600 DOI: 10.1111/j.1469-8137.2005.01631.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.
Collapse
Affiliation(s)
- Ana G L Assunção
- Institute of Ecological Sciences, Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Jiang RF, Ma DY, Zhao FJ, McGrath SP. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). THE NEW PHYTOLOGIST 2005; 167:805-14. [PMID: 16101917 DOI: 10.1111/j.1469-8137.2005.01452.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal hyperaccumulation has been proposed as a plant defensive strategy. Here, we investigated whether cadmium (Cd) hyperaccumulation protected Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). Two ecotypes differing in Cd accumulation, Ganges (high) and Prayon (low), were grown in compost amended with 0-1000 mg Cd kg(-1) in two experiments under glasshouse conditions. F2 and F3 plants from the Prayon x Ganges crosses were grown with 5 mg Cd kg(-1). Plants were naturally colonized by thrips and the leaf feeding damage index (LFDI) was assessed. The LFDI decreased significantly with increasing Cd in both ecotypes, and correlated with shoot Cd concentration in a log-linear fashion. Prayon was more attractive to thrips than Ganges, but the ecotypic difference in the LFDI was largely accounted for by the shoot Cd concentration. In the F2 and F3 plants, the LFDI correlated significantly and negatively with shoot Cd, but not with shoot zinc (Zn) or sulphur (S) concentrations. We conclude that Cd hyperaccumulation deters thrips from feeding on T. caerulescens leaves, which may offer an adaptive benefit to the plant.
Collapse
Affiliation(s)
- R F Jiang
- Key Laboratory of Plant Nutrition and Nutrient Cycling of Ministry of Agriculture, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
28
|
Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. PLANTA 2005; 221:928-36. [PMID: 15883836 DOI: 10.1007/s00425-005-1491-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/20/2005] [Indexed: 05/02/2023]
Abstract
Thlaspi caerulescens (Ganges ecotype) is a known Cd hyperaccumulator, however, the ligands which coordinate to Cd ions in the leaves have not been identified. In the present study, the chemical form of Cd was investigated by using 113Cd-nuclear magnetic resonance (NMR) spectroscopy. Plants were grown hydroponically with a highly enriched 113Cd stable isotope. Measurements of 113Cd-NMR with intact leaves showed a signal at the chemical shift of around -16 ppm. Crude leaf sap also gave a similar chemical shift. Purification by gel filtration (Sephadex G-10), followed by cationic and anionic exchange chromatography, showed that Cd occurred only in the anionic fraction, which gave the same chemical shift as intact leaves. Further purification of the anionic fraction, combined with 113Cd- and 1H-NMR studies, revealed that only the fraction containing malate showed a chemical shift similar to the intact leaves. These results indicate that Cd was coordinated mainly with malate in the leaves of T. caerulescens. The malate concentration in the leaves was not affected by increasing Cd concentration in the solution, suggesting that malate synthesis is not induced by Cd. Because the Cd-malate complex is relatively weak, we suggest that the complex forms inside the vacuoles as a result of an efficient tonoplast transport of Cd and a constitutively high concentration of malate in the vacuoles, and that the formation of the Cd-malate complex may lead to a decrease of subsequent Cd efflux to the cytoplasm.
Collapse
Affiliation(s)
- Daisei Ueno
- Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun,, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Environmental pollution with metals and xenobiotics is a global problem, and the development of phytoremediation technologies for the plant-based clean-up of contaminated soils is therefore of significant interest. Phytoremediation technologies are currently available for only a small subset of pollution problems, such as arsenic. Arsenic removal employs naturally selected hyperaccumulator ferns, which accumulate very high concentrations of arsenic specifically in above-ground tissues. Elegant two-gene transgenic approaches have been designed for the development of mercury or arsenic phytoremediation technologies. In a plant that naturally hyperaccumulates zinc in leaves, approximately ten key metal homeostasis genes are expressed at very high levels. This outlines the extent of change in gene activities needed in the engineering of transgenic plants for soil clean-up. Further analysis and discovery of genes for phytoremediation will benefit from the recent development of segregating populations for a genetic analysis of naturally selected metal hyperaccumulation in plants, and from comprehensive ionomics data--multi-element concentration profiles from a large number of Arabidopsis mutants.
Collapse
Affiliation(s)
- Ute Krämer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.
| |
Collapse
|