1
|
Fernandez CW, See CR. The pH influence on ectomycorrhizal nitrogen acquisition and decomposition. THE NEW PHYTOLOGIST 2025; 246:867-875. [PMID: 40065484 PMCID: PMC11982800 DOI: 10.1111/nph.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
In theory, ectomycorrhizal (EM) and saprotrophic fungi compete for nitrogen (N) found in soil organic matter. However, both positive and negative effects of EM fungi on decomposition have been observed across systems, with opposing implications for soil carbon (C) storage. The conditions driving the context dependency of fungal guild interactions remain poorly understood, which has limited our ability to predict the effects of EM fungi on biogeochemical cycling at regional and global spatial scales. To address this knowledge gap, we used a publicly available dataset of soil fungal communities to examine global patterns of relative EM and saprotrophic abundance and their influence on soil carbon and nutrient cycling. We demonstrate that EM fungal dominance and its effects on C and N cycling are predictable across the globe using only soil C : N stoichiometry, host tree functional group, and soil pH as predictors. We argue that because soil pH influences the availability and enzymatic catabolism of organic N, it determines the dominant N acquisition strategy of EM fungi, which in turn governs the directional effect of EM-saprotroph interactions on rates of organic matter decomposition in forests.
Collapse
Affiliation(s)
| | - Craig R. See
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt PaulMN55108USA
| |
Collapse
|
2
|
Zhao DX, Wei YL, You ZQ, Bai Z, Yuan HS. Host Developmental Stage and Vegetation Type Govern Root EcM Fungal Assembly in Temperate Forests. J Fungi (Basel) 2025; 11:307. [PMID: 40278127 PMCID: PMC12028295 DOI: 10.3390/jof11040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Ectomycorrhizal (EcM) fungi are critical mediators of forest succession, yet the relative contributions of stochastic (neutral) and deterministic (niche-based) processes in shaping their communities are still poorly understood. We investigated the assembly processes in root EcM fungal communities across juvenile and adult coniferous (Abies nephrolepis, Picea jezoensis, and Pinus koraiensis) and broadleaf (Acer mono, Betula platyphylla, and Quercus mongolica) tree species in northeastern China. Employing neutral theory modeling, alpha and beta diversity metrics, and a random forest analysis, we identified patterns of EcM fungal community assembly and the specific taxa associated with developmental stages of various hosts. Neutral processes contributed to the variation in fungal communities, with adult trees showing a higher explanation power (more than 33% of variation) compared to juvenile trees (less than 7% of variation), reflecting a successional shift in assembly mechanisms. Dispersal dynamics was pronounced in juveniles but diminished with host age. Additionally, alpha diversity increased with host age and was slightly moderated by host identity, while beta diversity reflected stronger effects of host age (PERMANOVA R2 = 0.057) than host identity (R2 = 0.033). Host age and identity further structured communities, with distinct taxa varying between juvenile vs. adult, and coniferous vs. broadleaf hosts. Our results demonstrate that host maturity drives a transition from deterministic to stochastic assembly, modulated by tree species identity, improving our understanding of plant-fungal dynamics during forest succession.
Collapse
Affiliation(s)
- Dong-Xue Zhao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Lian Wei
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zi-Qi You
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Bai
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
3
|
Izumi H. Abundances of ectomycorrhizal exploration types show the type-dependent temporal dynamics over the seasons-a controlled growth container experiment. Int Microbiol 2025; 28:633-641. [PMID: 39126446 DOI: 10.1007/s10123-024-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Ectomycorrhizas are ubiquitous symbiotic associations between host trees and soil fungi. While the seasonal changes of the taxonomic community structure of ectomycorrhizal fungi have been studied extensively, the temporal dynamics of ectomycorrhizal exploration types which have been proposed for elucidating the functional roles of ectomycorrhizas have not been fully examined. The purpose of the study is to test the hypothesis of whether the abundance of the exploration types in the hosts with different phenology shows different temporal patterns over the seasons. Two host species, deciduous Quercus acutissima and evergreen Q. glauca, were planted in growth containers with natural forest soils and were grown in single or combined species treatment, under similar environmental conditions and in shared soil spore banks of the ectomycorrhizal fungi. The ectomycorrhizal exploration types that occurred on these two host species in two different treatments were observed for two growing seasons. The observed exploration types, namely contact, short-distance, and long-distance type as well as the overall abundance of the ectomycorrhizas showed distinct temporal patterns although no specific response to the host seasonal phenology was found. The abundances of the contact type showed no relation to the seasons whereas those of the short- and the long-distance type increased with time. The formation of the long-distance type was strongly influenced by the host species treatments while that of the other two types was not so. Therefore, the different exploration types demonstrate distinct temporal patterns depending on the types but no specific seasonal responses.
Collapse
Affiliation(s)
- Hironari Izumi
- Microbial Ecology Unit, The Jurinji Buddhist Temple, 481 Oshiocho, Oharano, Nishikyo-Ku, Kyoto, 610-1133, Japan.
| |
Collapse
|
4
|
Kennedy PG, Nieves DJ, Walther KP, Matney S, Ronold EK. High overlap in the richness and composition of ectomycorrhizal fungal communities associated with Corylus shrubs and co-occurring Quercus and Pinus trees. Mycologia 2025; 117:201-212. [PMID: 39889239 DOI: 10.1080/00275514.2024.2445110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/13/2024] [Indexed: 02/02/2025]
Abstract
Despite being present in many North American forest understories, the ectomycorrhizal (ECM) fungal communities associated with Corylus shrubs have received no prior study. To address this knowledge gap, we characterized the ECM fungal communities on roots of Corylus shrubs as well as co-occurring Quercus and Pinus trees in Minnesota, USA. ECM-colonized root tips from pairs of Corylus shrubs and four ECM tree species, Quercus macrocarpa, Quercus ellipsoidalis, Pinus strobus, and Pinus resinosa, growing in close proximity (<1 m), were sampled at the Cedar Creek Ecosystem Science Reserve. ECM fungal communities were assessed using high-throughput sequencing of the ITS2 region. ECM fungal operational taxonomic unit (OTU) richness was equivalent among the two Quercus species and their associated Corylus shrubs, but significantly higher on P. strobus-associated Corylus shrubs compared with P. strobus, P. resinosa, and P. resinosa-associated Corylus shrubs. ECM fungal community composition on Corylus shrubs largely mirrored that on each of the Quercus and Pinus species, although the two Pinus communities were significantly different from each other. Further, the same ECM fungal OTUs were commonly encountered on paired Corylus-tree host samples, suggesting a high potential for co-colonization by the same fungal individuals. Collectively, these results support the growing consensus that woody understory plants often associate with similar ECM fungal communities as co-occurring tree hosts regardless of phylogenetic relatedness.
Collapse
Affiliation(s)
- Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Minneapolis, Minnesota 55108, USA
| | - Dyonishia J Nieves
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | | | - Soren Matney
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Minneapolis, Minnesota 55108, USA
| | | |
Collapse
|
5
|
Zhao DX, Bai Z, Yuan YW, Li SA, Wei YL, Yuan HS. Ectomycorrhizal fungal community varies across broadleaf species and developmental stages. Sci Rep 2025; 15:6955. [PMID: 40011535 PMCID: PMC11865525 DOI: 10.1038/s41598-025-91411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Ectomycorrhizal fungi (EMF) play pivotal roles in determining temperate forest ecosystem processes. We tracked root EMF community succession across saplings, juveniles, and adults of three temperate broadleaf trees (Acer mono, Betula platyphylla, and Quercus mongolica) in Northeast China. Adult stages showed higher alpha diversity but lower community dissimilarity compared to earlier stages. In particular, the EMF alpha diversity of Quercus mongolica marginally increased along with host developmental stages and ranked as sapling < juvenile < adult. Unlike those of Acer mono and Quercus mongolica, the EMF community composition of Betula platyphylla showed greater variation between the sapling and juvenile stages than between the sapling and adult stages. Cooccurrence networks revealed increasing interconnectivity with host maturity, dominated by positive correlations (> 99%). LEfSe was employed to identify stage- and/or host-specific EMF indicators. This study highlighted the assembly of EMF community during the development of broadleaf trees in temperate forests, thereby advancing understanding of the succession and coevolution of symbiotic relationships.
Collapse
Affiliation(s)
- Dong-Xue Zhao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Bai
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
| | - Yi-Wei Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Si-Ao Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Lian Wei
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China.
| |
Collapse
|
6
|
Kou Y, Ding J, Yin H. Temperature governs the community assembly of root-associated ectomycorrhizal fungi in alpine forests on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176820. [PMID: 39396791 DOI: 10.1016/j.scitotenv.2024.176820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Unraveling the assembly processes of ectomycorrhizal (ECM) fungal communities in changing environments is crucial for forecasting the impacts of climate change on forests. However, the assembly processes and key drivers of root-associated ECM fungal communities in alpine coniferous forests remain poorly understood. To address this knowledge gap, we conducted sampling in 65 monodominant alpine coniferous forests, which encompass 11 plant species belonging to three genera (Abies, Pinus, and Picea) within the Pinaceae family, all located on the Qinghai-Tibetan Plateau. We employed a combination of null model and multivariate analyses to elucidate the drivers and assembly processes of ECM fungal communities. Our results revealed significant variation in the composition and diversity of root-associated ECM fungal communities among Abies, Pinus, and Picea, indicating specific preferences for ECM fungi among Pinaceae genera. Importantly, mean annual temperature (MAT) emerged as the primary driver of these variations and regulated the assembly processes within the community of root-associated ECM fungi. As MAT temperature, the α-diversity of these fungi significantly decreased, suggesting that increased temperature may reduce the species diversity of root-associated ECM fungi in alpine forests. Furthermore, stochastic processes, such as dispersal limitation and drift, became more influential as MAT increased. Conversely, the role of deterministic processes, particularly heterogeneous selection, in shaping the ECM fungal community assembly weakened with increasing MAT. This study provides novel theoretical insights into the processes of ECM fungal community assembly in alpine forests, emphasizing the pivotal role of temperature in regulating the assembly processes and compositional dynamics of root-associated ECM fungal communities in these unique environments.
Collapse
Affiliation(s)
- Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Junxiang Ding
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Chen M, Yang J, Xue C, Tu T, Su Z, Feng H, Shi M, Zeng G, Zhang D, Qian X. Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession. Appl Microbiol Biotechnol 2024; 108:99. [PMID: 38204135 PMCID: PMC10781812 DOI: 10.1007/s00253-023-12992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.
Collapse
Affiliation(s)
- Meirong Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Yang
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Chunquan Xue
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China.
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyao Su
- South China Agriculture University, Guangzhou, China
| | - Hanhua Feng
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gui Zeng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Bâ AM, Séne S, Manokari M, Galardis MMB, Sylla SN, Selosse MA, Shekhawat MS. Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes. MYCORRHIZA 2024; 34:375-389. [PMID: 39367926 PMCID: PMC11604829 DOI: 10.1007/s00572-024-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.
Collapse
Affiliation(s)
- A M Bâ
- Laboratoire de Biologie et Physiologie Végétales, Université des Antilles, Guadeloupe, France.
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113, UM2/CIRAD, IRD/Sup-Agro, Montpellier, France.
- Académie Nationale des Sciences et Techniques du Sénégal, Dakar, Sénégal.
| | - S Séne
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
| | - M Manokari
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - M M Bullaín Galardis
- Plant Biotechnology Studies Center, Faculty of Agricultural Sciences, University of Granma, Carretera Manzanillo, Bayamo, 85100, Cuba
| | - S N Sylla
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
- Département de Biologie végétale, UCAD, Dakar, Sénégal
| | - M A Selosse
- Institut de Systématique, UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, Évolution, Biodiversité, Paris, 75005, France
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institut Universitaire de France, Paris, France
| | - M S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| |
Collapse
|
10
|
Livne-Luzon S, Avidar M, Herol L, Rog I, Klein T, Shemesh H. Inter-generational consistency of the ectomycorrhizal fungal community in a mixed pine-cedar post-fire stand. TREE PHYSIOLOGY 2024; 44:tpae094. [PMID: 39046267 DOI: 10.1093/treephys/tpae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The mutualistic interaction between trees and ectomycorrhizal fungi (EMF) can have a major effect on forest dynamics and specifically on seedling establishment. Here, we compared the EMF community composition associated with the roots of young saplings and mature trees of two co-habiting Pinaceae: Pinus halepensis and Cedrus deodara growing together in a post-fire forest plot, using fungal ITS metabarcoding. We found that the differences in the EMF community between the two sapling groups were mostly attributed to changes in the relative abundance of specific fungal species, with little species turnover. Specifically, Tomentella showed high abundance on pine roots, while Tuber, Russula and Sebacina were more common on the roots of cedars. The physical proximity to a specific host species was correlated with the EMF community composition of young saplings. Specifically, regardless of the sapling's own identity, the roots of saplings growing next to mature cedars had higher abundance of Tuber species, while Tomentella coerulea (Höhn. & Litsch), Russula densifolia (Secr. ex Gillet) and Tuber nitidum (Vittadini) dominated saplings next to mature pines. Cedar saplings' shoot structure was correlated with a specific EMF species. Overall, these results suggest that when germinating next to mature trees, the EMF community of saplings could be determined by extrinsic factors such as the small-scale distribution of mature trees in the forest.
Collapse
Affiliation(s)
- Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mor Avidar
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| | - Lior Herol
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| | - Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagai Shemesh
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| |
Collapse
|
11
|
Wong S, Kaur J, Kumar P, Karremans AP, Sharma J. Distinct orchid mycorrhizal fungal communities among co-occurring Vanilla species in Costa Rica: root substrate and population-based segregation. MYCORRHIZA 2024; 34:229-250. [PMID: 38664239 DOI: 10.1007/s00572-024-01147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Despite being the second largest family of flowering plants, orchids represent community structure variation in plant-microbial associations, contributes to niche partitioning in metacommunity assemblages. Yet, mycorrhizal communities and interactions remain unknown for orchids that are highly specialized or even obligated in their associations with their mycorrhizal partners. In this study, we sought to compare orchid mycorrhizal fungal (OMF) communities of three co-occurring hemiepiphytic Vanilla species (V. hartii, V. pompona, and V. trigonocarpa) in tropical forests of Costa Rica by addressing the identity of their OMF communities across species, root types, and populations, using high-throughput sequencing. Sequencing the nuclear ribosomal internal transcribed spacer (nrITS) yielded 299 fungal Operational Taxonomic Units (OTUs) from 193 root samples. We showed distinct segregation in the putative OMF (pOMF) communities of the three coexisting Vanilla hosts. We also found that mycorrhizal communities associated with the rare V. hartii varied among populations. Furthermore, we identified Tulasnellaceae and Ceratobasidiaceae as dominant pOMF families in terrestrial roots of the three Vanilla species. In contrast, the epiphytic roots were mainly dominated by OTUs belonging to the Atractiellales and Serendipitaceae. Furthermore, the pOMF communities differed significantly across populations of the widespread V. trigonocarpa and showed patterns of distance decay in similarity. This is the first report of different pOMF communities detected in roots of wild co-occurring Vanilla species using high-throughput sequencing, which provides evidence that three coexisting Vanilla species and their root types exhibited pOMF niche partitioning, and that the rare and widespread Vanilla hosts displayed diverse mycorrhizal preferences.
Collapse
Affiliation(s)
- Shan Wong
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Jaspreet Kaur
- Department of Biology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| | - Pankaj Kumar
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Adam P Karremans
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
12
|
Zhao W, Huang K, Mumin R, Li J, Sun Y, Cui B. Spatial variations impact the soil fungal communities of Larix gmelinii forests in Northeast China. FRONTIERS IN PLANT SCIENCE 2024; 15:1408272. [PMID: 38855467 PMCID: PMC11157130 DOI: 10.3389/fpls.2024.1408272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.
Collapse
Affiliation(s)
| | | | | | | | - Yifei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Baokai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Dyczko D, Plewa-Tutaj K, Kiewra D. Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus. INSECTS 2024; 15:341. [PMID: 38786897 PMCID: PMC11122030 DOI: 10.3390/insects15050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In addition to the microclimate, host availability, and tick microbiota, soil environmental microorganisms can affect tick populations. This study aimed to (1) determine the presence and diversity of entomopathogenic fungi (EF) in forests, where ticks are abundant, and (2) estimate the effectiveness of the isolated EF strains against Ixodes ricinus. (2) Methods: EF were isolated using the trap insect method from soil collected from tick sites. A bioassay was used to estimate the effectiveness of EF against ticks. (3) Results: The presence of EF was found in all tested forest habitat types. A total of 53 strains belonging to the genera Metarhizium, Beauveria, and Isaria were isolated. All the six strains subjected to the bioassay showed potential efficacy against both adult and nymphal stages of I. ricinus; however, the strains differed in their effectiveness. The most effective isolate against I. ricinus was the soil environmental strain of Metarhizium anisopliae. (4) Conclusion: The study indicates that tick habitats can be the source of entomopathogenic fungi, which have a lethal effect on ticks, as demonstrated in preliminary laboratory tests with I. ricinus. However, for practical use, extensive field tests and further research on application methods and long-term effects are necessary to develop effective and sustainable tick management strategies.
Collapse
Affiliation(s)
| | - Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław; 51-148 Wrocław, Poland; (D.D.); (D.K.)
| | | |
Collapse
|
14
|
Voller F, Ardanuy A, Taylor AFS, Johnson D. Maintenance of host specialisation gradients in ectomycorrhizal symbionts. THE NEW PHYTOLOGIST 2024; 242:1426-1435. [PMID: 37984824 DOI: 10.1111/nph.19395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic 'filters' comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.
Collapse
Affiliation(s)
- Fay Voller
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Agnès Ardanuy
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, 31320, France
| | - Andy F S Taylor
- Ecological Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
McPolin MC, Kranabetter JM, Philpott TJ, Hawkins BJ. Sporocarp nutrition of ectomycorrhizal fungi indicates an important role for endemic species in a high productivity temperate rainforest. THE NEW PHYTOLOGIST 2024; 242:1603-1613. [PMID: 37771241 DOI: 10.1111/nph.19280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Endemic species of ectomycorrhizal fungi (EMF) are found throughout many biomes, but it is unclear whether their localized distribution is dictated by habitat filtering or geographical barriers to dispersal. We examined community composition (via long-read metabarcoding) and differences in sporocarp nutrition between endemic and cosmopolitan EMF species across perhumid temperate rainforests of British Columbia, characterized by soils with high nitrogen (N) supply alongside low phosphorus (P) and cation availability. Endemic EMF species, representing almost half of the community, had significantly greater sporocarp N (24% higher), potassium (+16%), and magnesium (+17%) concentrations than cosmopolitan species. Sporocarp P concentrations were comparatively low and did not differ by fungal range. However, sporocarp N% and P% were well correlated, supporting evidence for linkages in N and P acquisition. Endemics were more likely to occur on Tsuga heterophylla (a disjunct host genus) than Picea sitchensis (a circumpolar genus). The Inocybaceae and Thelephoraceae families had high proportions of endemic taxa, while species in Cortinariaceae were largely cosmopolitan, indicating some niche conservatism among genera. We conclude that superior adaptive traits in relation to perhumid soils were skewed toward the endemic community, underscoring the potentially important contribution of these localized fungi to rainforest nutrition and productivity.
Collapse
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Tim J Philpott
- British Columbia Ministry of Forests, 200-640 Borland St., Williams Lake, BC, V2G 4T1, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
16
|
Tedersoo L, Drenkhan R, Abarenkov K, Anslan S, Bahram M, Bitenieks K, Buegger F, Gohar D, Hagh‐Doust N, Klavina D, Makovskis K, Zusevica A, Pritsch K, Padari A, Põlme S, Rahimlou S, Rungis D, Mikryukov V. The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13253. [PMID: 38575147 PMCID: PMC10994715 DOI: 10.1111/1758-2229.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mohammad Bahram
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Kriss Bitenieks
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Franz Buegger
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Niloufar Hagh‐Doust
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Kristaps Makovskis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Austra Zusevica
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Karin Pritsch
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Allar Padari
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Natural History MuseumUniversity of TartuTartuEstonia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Dainis Rungis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Vladimir Mikryukov
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
17
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
David KT, Harrison MC, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Pennell M, Hittinger CT, Rokas A. Saccharomycotina yeasts defy long-standing macroecological patterns. Proc Natl Acad Sci U S A 2024; 121:e2316031121. [PMID: 38412132 PMCID: PMC10927492 DOI: 10.1073/pnas.2316031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.
Collapse
Affiliation(s)
- Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
- Department of Biology, Villanova University, Villanova, PA19085
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223
| | - John F. Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou510642, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou310058, China
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
19
|
Pena R, Bluhm SL, Ammerschubert S, Agüi-Gonzalez P, Rizzoli SO, Scheu S, Polle A. Mycorrhizal C/N ratio determines plant-derived carbon and nitrogen allocation to symbiosis. Commun Biol 2023; 6:1230. [PMID: 38053000 PMCID: PMC10698078 DOI: 10.1038/s42003-023-05591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.
Collapse
Affiliation(s)
- Rodica Pena
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Sustainable Land Management, School of Agriculture Policy and Development, University of Reading, Reading, UK
| | - Sarah L Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Silke Ammerschubert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Baranowska M, Behnke-Borowczyk J, Barzdajn W, Szmyt J, Korzeniewicz R, Łukowski A, Memišević-Hodžić M, Kartawik N, Kowalkowski W. Effects of nursery production methods on fungal community diversity within soil and roots of Abies alba Mill. Sci Rep 2023; 13:21284. [PMID: 38042872 PMCID: PMC10693611 DOI: 10.1038/s41598-023-48047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
The aim of this study was to elucidate how different nursery production methods influence the composition of and relationship between soil and root community levels of Abies alba. In the Międzylesie Forest District, we quantified the responses of samples of both community-level fine roots and surrounding soil to environmental changes evoked by various seedling production methods. Fungi levels were identified based on their ITS 1 region and 5.8 S rDNA component. Analysis was conducted using Illumina SBS technology, and the obtained sequences were compared with reference samples deposited in the UNITE. Chemical analysis of the soil was also performed. Different nursery production methods resulted in a strong decoupling in the responses of fungal community levels between soil and roots. Changes in growth conditions imposed by production methods were significant in determining species composition. We found differences in fungal communities among functional groups of samples. In the soil, the dominant species of mycorrhizal fungi were Tylospora asterophora, Amanita rubescens, and Russula ionochlora. Mycorrhizal fungi in roots included Tuber anniae, Thelephoraceae sp., and Acephala applanata. Specific soil substrate conditions significantly influenced fungal community composition, leading to an increase in abundance of mycorrhizal fungi, specifically T. anniae.
Collapse
Affiliation(s)
- Marlena Baranowska
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Jolanta Behnke-Borowczyk
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Władysław Barzdajn
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Janusz Szmyt
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Robert Korzeniewicz
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Mirzeta Memišević-Hodžić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000, Sarajevo, Bosnia and Herzegovina
| | - Natalia Kartawik
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Wojciech Kowalkowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland.
| |
Collapse
|
21
|
David KT, Harrison MC, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Pennell M, Hittinger CT, Rokas A. Saccharomycotina yeasts defy longstanding macroecological patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555417. [PMID: 37693602 PMCID: PMC10491267 DOI: 10.1101/2023.08.29.555417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth1; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild2. Here, we trained machine learning models on 12,221 occurrence records and 96 environmental variables to infer global distribution maps for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversification. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many longstanding macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and latitude-dependent range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.
Collapse
Affiliation(s)
- Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biology, Villanova University, Villanova PA 19085, USA
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - John F. Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles CA 90089, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
22
|
Wen Z, Lin C, Xu X, Ma S, Peng Y, Sun Y, Tang B, Shi L. Ectomycorrhizal community associated with Cedrus deodara in four urban forests of Nantong in East China. FRONTIERS IN PLANT SCIENCE 2023; 14:1226720. [PMID: 37719211 PMCID: PMC10502312 DOI: 10.3389/fpls.2023.1226720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.
Collapse
Affiliation(s)
- Zhugui Wen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Chunyan Lin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Simiao Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Franić I, Allan E, Prospero S, Adamson K, Attorre F, Auger-Rozenberg MA, Augustin S, Avtzis D, Baert W, Barta M, Bauters K, Bellahirech A, Boroń P, Bragança H, Brestovanská T, Brurberg MB, Burgess T, Burokienė D, Cleary M, Corley J, Coyle DR, Csóka G, Černý K, Davydenko K, de Groot M, Diez JJ, Doğmuş Lehtijärvi HT, Drenkhan R, Edwards J, Elsafy M, Eötvös CB, Falko R, Fan J, Feddern N, Fürjes-Mikó Á, Gossner MM, Grad B, Hartmann M, Havrdova L, Kádasi Horáková M, Hrabětová M, Justesen MJ, Kacprzyk M, Kenis M, Kirichenko N, Kovač M, Kramarets V, Lacković N, Lantschner MV, Lazarević J, Leskiv M, Li H, Madsen CL, Malumphy C, Matošević D, Matsiakh I, May TW, Meffert J, Migliorini D, Nikolov C, O'Hanlon R, Oskay F, Paap T, Parpan T, Piškur B, Ravn HP, Richard J, Ronse A, Roques A, Ruffner B, Santini A, Sivickis K, Soliani C, Talgø V, Tomoshevich M, Uimari A, Ulyshen M, Vettraino AM, Villari C, Wang Y, Witzell J, Zlatković M, Eschen R. Climate, host and geography shape insect and fungal communities of trees. Sci Rep 2023; 13:11570. [PMID: 37463904 DOI: 10.1038/s41598-023-36795-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
Collapse
Affiliation(s)
- Iva Franić
- CABI, Delémont, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | | | - Dimitrios Avtzis
- Forest Research Institute, Hellenic Agricultural Organization-Demeter, Thessaloniki, Greece
| | - Wim Baert
- Meise Botanic Garden, Meise, Belgium
| | - Marek Barta
- Institute of Forest Ecology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Amani Bellahirech
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), Ariana, Tunisia
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Helena Bragança
- Instituto Nacional de Investigação Agrária e Veterinária I. P. (INIAV I. P.), Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Tereza Brestovanská
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - May Bente Brurberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
- NMBU-Norwegian University of Life Sciences, Ås, Norway
| | | | - Daiva Burokienė
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juan Corley
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - György Csóka
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Karel Černý
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration, Kharkiv, Ukraine
| | | | - Julio Javier Diez
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
| | | | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Melbourne, Vic, Australia
- Agriculture Victoria Research, Agribio Centre, Bundoora, Vic, Australia
| | - Mohammed Elsafy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Csaba Béla Eötvös
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Roman Falko
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | - Jianting Fan
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Nina Feddern
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ágnes Fürjes-Mikó
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Bartłomiej Grad
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ludmila Havrdova
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | | | - Markéta Hrabětová
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Mathias Just Justesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Kacprzyk
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | | | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Marta Kovač
- Croatian Forest Research Institute, Jastrebarsko, Croatia
| | | | | | - Maria Victoria Lantschner
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Jelena Lazarević
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Corrie Lynne Madsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Chris Malumphy
- Fera Science Ltd, National Agri-food Innovation Campus, York, UK
| | | | - Iryna Matsiakh
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Ukrainian National Forestry University, Lviv, Ukraine
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, Vic, Australia
| | - Johan Meffert
- National Plant Protection Organisation, Netherlands Food and Consumers Product Safety Authority, Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Duccio Migliorini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Christo Nikolov
- National Forest Centre, Forest Research Institute, Zvolen, Slovakia
| | | | - Funda Oskay
- Faculty of Forestry, Çankırı Karatekin University, Cankiri, Turkey
| | - Trudy Paap
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Taras Parpan
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | | | - Hans Peter Ravn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - John Richard
- Tanzania Forestry Research Institute (TAFORI), Lushoto, Tanzania
| | | | | | - Beat Ruffner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alberto Santini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Karolis Sivickis
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Venche Talgø
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Maria Tomoshevich
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anne Uimari
- Natural Resources Institute Finland, Suonenjoki, Finland
| | - Michael Ulyshen
- USDA Forest Service, Southern Research Station, Athens, GA, USA
| | | | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Johanna Witzell
- Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
24
|
Shao BY, Wang MZ, Chen SS, Ya JD, Jin XH. Habitat-related plastome evolution in the mycoheterotrophic Neottia listeroides complex (Orchidaceae, Neottieae). BMC PLANT BIOLOGY 2023; 23:282. [PMID: 37244988 DOI: 10.1186/s12870-023-04302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Mycoheterotrophs, acquiring organic carbon and other nutrients from mycorrhizal fungi, have evolved repeatedly with substantial plastid genome (plastome) variations. To date, the fine-scale evolution of mycoheterotrophic plastomes at the intraspecific level is not well-characterized. A few studies have revealed unexpected plastome divergence among species complex members, possibly driven by various biotic/abiotic factors. To illustrate evolutionary mechanisms underlying such divergence, we analyzed plastome features and molecular evolution of 15 plastomes of Neottia listeroides complex from different forest habitats. RESULTS These 15 samples of Neottia listeroides complex split into three clades according to their habitats approximately 6 million years ago: Pine Clade, including ten samples from pine-broadleaf mixed forests, Fir Clade, including four samples from alpine fir forests and Fir-willow Clade with one sample. Compared with those of Pine Clade members, plastomes of Fir Clade members show smaller size and higher substitution rates. Plastome size, substitution rates, loss and retention of plastid-encoded genes are clade-specific. We propose to recognized six species in N. listeroides complex and slightly modify the path of plastome degradation. CONCLUSIONS Our results provide insight into the evolutionary dynamics and discrepancy of closely related mycoheterotrophic orchid lineages at a high phylogenetic resolution.
Collapse
Affiliation(s)
- Bing-Yi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Zhu Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Si-Si Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
van Galen LG, Orlovich DA, Lord JM, Nilsen AR, Dutoit L, Larcombe MJ. Correlated evolution in an ectomycorrhizal host-symbiont system. THE NEW PHYTOLOGIST 2023; 238:1215-1229. [PMID: 36751898 DOI: 10.1111/nph.18802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mechanisms of diversification in fungi are relatively poorly known. Many ectomycorrhizal symbionts show preference for particular host genera or families, so host-symbiont selection may be an important driver of fungal diversification in ectomycorrhizal systems. However, whether ectomycorrhizal hosts and symbionts show correlated evolutionary patterns remains untested, and it is unknown whether fungal specialisation also occurs in systems dominated by hosts from the same genus. We use metabarcoding of ectomycorrhizal fungi collected with hyphal ingrowth bags from Nothofagus forests across southern New Zealand to investigate host-symbiont specialisation and correlated evolution. We examine how ectomycorrhizal communities differ between host species and look for patterns of host-symbiont cophylogeny. We found substantial differences in ectomycorrhizal communities associated with different host taxa, particularly between hosts from different subgenera (Lophozonia and Fuscospora), but also between more closely related hosts. Twenty-four per cent of fungal taxa tested showed affiliations to particular hosts, and tests for cophylogeny revealed significant correlations between host relatedness and the fungal phylogeny that extended to substantial evolutionary depth. These results provide new evidence of correlated evolution in ectomycorrhizal systems, indicating that preferences among closely related host species may represent an important evolutionary driver for local lineage diversification in ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Laura G van Galen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - David A Orlovich
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Janice M Lord
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Andy R Nilsen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
26
|
DeVan MR, Johnstone JF, Mack MC, Hollingsworth TN, Taylor DL. Host identity affects the response of mycorrhizal fungal communities to high severity fires in Alaskan boreal forests. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Zhang X, Wang Y, Xu Y, Babalola BJ, Xiang S, Ma J, Su Y, Fan Y. Stochastic processes dominate community assembly of ectomycorrhizal fungi associated with Picea crassifolia in the Helan Mountains, China. Front Microbiol 2023; 13:1061819. [PMID: 36713171 PMCID: PMC9878330 DOI: 10.3389/fmicb.2022.1061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Understanding the underlying mechanisms of microbial community assembly is a fundamental topic in microbial ecology. As an integral part of soil organisms, ectomycorrhizal (EM) fungi play vital roles in ecosystems. Picea crassifolia is an important pine species in the Helan Mountains in Inner Mongolia, China, with high ecological and economic values. However, studies of EM fungal diversity and mechanisms underlying community assembly on this pine species are limited. Methods In this study, we investigated EM fungal communities associated with P. crassifolia from 45 root samples across three sites in the Helan Mountains using Illumina Miseq sequencing of the fungal rDNA ITS2 region. Results A total of 166 EM fungal OTUs belonging to 24 lineages were identified, of which Sebacina and Tomentella-Thelephora were the most dominant lineages. Ordination analysis revealed that EM fungal communities were significantly different among the three sites. Site/fungus preference analysis showed that some abundant EM fungal OTUs preferred specific sites. Ecological process analysis implied that dispersal limitation and ecological drift in stochastic processes dominantly determined the community assembly of EM fungi. Discussion Our study indicates that P. crassifolia harbors a high EM fungal diversity and highlights the important role of the stochastic process in driving community assembly of mutualistic fungi associated with a single plant species in a semi-arid forest in northwest China.
Collapse
Affiliation(s)
- Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,*Correspondence: Yonglong Wang, ✉
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Simin Xiang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Jianjun Ma
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Yun Su
- Helan Mountains National Nature Reserve Administration of Inner Mongolia, Alxa League, China
| | - Yongjun Fan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China,Yongjun Fan, ✉
| |
Collapse
|
28
|
Sun N, Zhang W, Liao S, Li H. Is foliar spectrum predictive of belowground bacterial diversity? A case study in a peach orchard. Front Microbiol 2023; 14:1129042. [PMID: 36910201 PMCID: PMC9998905 DOI: 10.3389/fmicb.2023.1129042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Rhizosphere bacteria can have wide-ranging effects on their host plants, influencing plant biochemical and structural characteristics, and overall productivity. The implications of plant-microbe interactions provides an opportunity to interfere agriculture ecosystem with exogenous regulation of soil microbial community. Therefore, how to efficiently predict soil bacterial community at low cost is becoming a practical demand. Here, we hypothesize that foliar spectral traits can predict the diversity of bacterial community in orchard ecosystem. We tested this hypothesis by studying the ecological linkages between foliar spectral traits and soil bacterial community in a peach orchard in Yanqing, Beijing in 2020. Foliar spectral indexes were strongly correlated with alpha bacterial diversity and abundant genera that can promote soil nutrient conversion and utilization, such as Blastococcus, Solirubrobacter, and Sphingomonas at fruit mature stage. Certain unidentified or relative abundance <1% genera were also associated with foliar spectral traits. We selected specific indicators (photochemical reflectance index, normalized difference vegetable index, greenness index, and optimized soil-adjusted vegetation index) of foliar spectral indexes, alpha and beta diversities of bacterial community, and quantified the relations between foliar spectral traits and belowground bacterial community via SEM. The results of this study indicated that foliar spectral traits could powerfully predict belowground bacterial diversity. Characterizing plant attributes with easy-accessed foliar spectral indexes provides a new thinking in untangling the complex plant-microbe relationship, which could better cope with the decreased functional attributes (physiological, ecological, and productive traits) in orchard ecosystem.
Collapse
Affiliation(s)
- Na Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weiwei Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hong Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
29
|
Factors in the Distribution of Mycorrhizal and Soil Fungi. DIVERSITY 2022. [DOI: 10.3390/d14121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil fungi are crucial microorganisms in the functioning of ecosystems. They shape the soil properties, facilitate nutrient circulation, and assist with plant growth. However, their biogeography and distribution studies are limited compared to other groups of organisms. This review aims to provide an overview of the main factors shaping the spatial distribution of soil fungi (with a special focus on mycorrhizal fungi). The review also tries to identify the field frontier where further studies are needed. The main drivers of soil fungal distribution were classified and reviewed into three groups: soil properties, plant interactions, and dispersal vectors. It was apparent that ectomycorrhizal and arbuscular fungi are relatively overrepresented in the body of research, while the other mycorrhiza types and endophytes were grossly omitted. Notwithstanding, soil pH and the share of ectomycorrhizal plants in the plant coverage were repeatedly reported as strong predictors of mycorrhizal fungal distribution. Dispersal potential and vector preferences show more variation among fungi, especially when considering long-distance dispersal. Additionally, special attention was given to the applications of the island biogeography theory to soil fungal assemblages. This theory proves to be a very efficient framework for analyzing and understanding not only the soil fungal communities of real islands but even more effective islands, i.e., isolated habitats, such as patches of trees discontinuous from more enormous forests.
Collapse
|
30
|
Dramani R, Gouwakinnou GN, Houdanon RD, De Kesel A, Minter D, Yorou NS. Ecological niche modelling of Cantharellus species in Benin, and revision of their conservation status. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Cook K, Taylor AD, Sharma J, Taylor DL. Inter-annual Persistence of Canopy Fungi Driven by Abundance Despite High Spatial Turnover. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02104-7. [PMID: 36048179 DOI: 10.1007/s00248-022-02104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
While it is now well established that fungal community composition varies spatially at a variety of scales, temporal turnover of fungi is less well understood. Here we studied inter-annual community compositional changes of fungi in a rainforest tree canopy environment. We tracked fungal community shifts over 3 years in three substrate types (live bryophytes, dead bryophytes, and host tree bark) and compared these changes to amounts of community turnover seen at small spatial scales in the same system. The effect of substrate type on fungal community composition was stronger than that of sampling year, which was very small but significant. Although levels of temporal turnover varied among substrates, with greater turnover in live bryophytes than other substrates, the amount of turnover from year to year was comparable to what is seen at spatial distances between 5 and 9 cm for the same substrate. Stability of communities was largely driven by a few fungi with high relative abundances. A majority of fungal occurrences were at low relative abundances (≤ 0.1%). These fungi tended to be short lived and persisted to following years ≤ 50% of the time, depending on substrate. Their presence and persistence are likely impacted by stochastic processes like dispersal limitation and disturbance. Most samples contained only one or a few fungi at high relative abundance (≥ 10%) that persisted half or more of the time. These more abundant and persistent fungi are expected to have sustained functional interactions within the canopy ecosystem.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA.
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
32
|
Wang W, Wang J, Wang Q, Bermudez RS, Yu S, Bu P, Wang Z, Chen D, Feng J. Effects of Plantation Type and Soil Depth on Microbial Community Structure and Nutrient Cycling Function. Front Microbiol 2022; 13:846468. [PMID: 35711749 PMCID: PMC9197460 DOI: 10.3389/fmicb.2022.846468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
Declining soil quality and microecological imbalances were evaluated in larch plantations in this study. One potential solution to this problem is the cultivation of mixed coniferous and broad-leaved plantations. However, it is unclear whether and how soil microbial community structure and nutrient cycling function would be affected by mixed plantations and soil depths. In this study, we used high-throughput sequencing technology to investigate bacterial 16S and fungal ITS regions for comparisons of soil microbial diversity among plantation types (a Larix gmelinii pure plantation, a Fraxinus mandshurica pure plantation, a Larix–Fraxinus mixed plantation within the Larix row, the Fraxinus row, and between the Larix and Fraxinus rows) and soil depths (0–10, 10–20, and 20–40 cm). These data were used to evaluate variations in microbial communities and nutrient cycling function with the determining environmental factors. Our results indicated that bacteria had a stronger spatial dependence than did fungi, while plantation types significantly affected the fungal community. The relative abundance of Gaiellaceae, as well as bacterial ligninolysis, nitrate ammonification, and nitrite ammonification functions significantly increased with increasing soil depth. Compared with other plantations, the relative abundance of Inocybaceae was significantly higher in the Larix plantation. Distance-based redundancy analysis (db-RDA) showed that Gaiellaceae and Inocybaceae abundances were positively correlated with ammonium nitrogen content, available phosphorus content, and phosphatase activity. Our findings indicate that variations in soil available phosphorus are closely related to the relative abundances of Gaiellaceae at different soil depths and Inocybaceae in different plantation types. Mixed plantations might change the availability of soil phosphorus by controlling the relative abundance of Inocybaceae. We recommend that fungal community changes be considered in the sustainable management of mixed plantations.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jianjun Wang
- Liaoning Academy of Forestry Sciences, Shenyang, China
| | - Qianchun Wang
- Liaoning Academy of Forestry Sciences, Shenyang, China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, China.,Faculty of Agricultural Sciences, Luis Vargas Torres de Esmeraldas University of Technology, Esmeraldas, Ecuador
| | - Shihe Yu
- Liaoning Academy of Forestry Sciences, Shenyang, China
| | - Pengtu Bu
- Liaoning Academy of Forestry Sciences, Shenyang, China
| | - Zhanwei Wang
- Liaoning Academy of Forestry Sciences, Shenyang, China
| | - Dongshen Chen
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jian Feng
- Liaoning Academy of Forestry Sciences, Shenyang, China
| |
Collapse
|
33
|
Li P, Zhang J, Wang S, Zhang P, Chen W, Ding S, Xi J. Changes in the Distribution Preference of Soil Microbial Communities During Secondary Succession in a Temperate Mountain Forest. Front Microbiol 2022; 13:923346. [PMID: 35783407 PMCID: PMC9247583 DOI: 10.3389/fmicb.2022.923346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Soil microbes play a crucial role in a forest ecosystem. However, whether the distribution of bacteria and fungi in different forest succession stages is random or following ecological specialization remains to be further studied. In the present study, we characterized soil bacterial and fungal communities to determine their distribution preference, with different succession communities in a temperate mountain forest. The Kruskal–Wallis method was used to analyze structural differences between bacterial and fungal communities in different succession processes. The specificity of soil microbial distribution in a secondary forest was studied by network analysis. The torus-translation test was used to analyze the species distribution preference of soil microbes in different succession stages. Results showed that the species composition of soil bacteria and fungi differed significantly in different succession processes. The modularity index of fungi (0.227) was higher than that of bacteria (0.080). Fungi (54.47%) had specific preferences than bacteria (49.95%) with regard to forests in different succession stages. Our work suggests that the distribution pattern of most soil microbes in a temperate mountain forest was not random but specialized in temperate mountain forests. Different microbes showed different distribution preferences. Fungi were more sensitive than bacteria during secondary succession in a temperate mountain forest. In addition, microbe–environment relations varied during secondary succession. Our results provided new insight into the mechanism through which complex soil microbial communities responded to changes in forest community succession.
Collapse
Affiliation(s)
- Peikun Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Jian Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Senlin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Panpan Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Wenju Chen
- College of Resources and Environment Sciences, Henan Agricultural University, Zhengzhou, China
| | - Shengyan Ding
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- *Correspondence: Shengyan Ding,
| | - Jingjing Xi
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- Jingjing Xi,
| |
Collapse
|
34
|
Kutos S, Barnes EM, Bhutada A, Lewis JD. Preferential associations of soil fungal taxa under mixed compositions of eastern American tree species. FEMS Microbiol Ecol 2022; 98:6581587. [PMID: 35521705 DOI: 10.1093/femsec/fiac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Soil fungi are vital to forest ecosystem function, in part through their role mediating tree responses to environmental factors, as well as directly through effects on resource cycling. While the distribution of soil fungi can vary with abiotic factors, plant species identity is also known to affect community composition. However, the particular influence that a plant will have on its soil microbiota remains difficult to predict. Here, we paired amplicon sequencing and enzymatic assays to assess soil fungal composition and function under three tree species, Quercus rubra, Betula nigra, and Acer rubrum, planted individually and in all combinations in a greenhouse. We observed that fungal communities differed between each of the individual planted trees, suggesting at least some fungal taxa may associate preferentially with these tree species. Additionally, fungal community composition under mixed-tree plantings broadly differed from the individual planted trees, suggesting mixing of these distinct soil fungal communities. The data also suggest that there were larger enzymatic activities in the individual plantings as compared to all mixed-tree plantings which may be due to variations in fungal community composition. This study provides further evidence of the importance of tree identity on soil microbiota and functional changes to forest soils.
Collapse
Affiliation(s)
- Steve Kutos
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| | - Elle M Barnes
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| | - Arnav Bhutada
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - J D Lewis
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| |
Collapse
|
35
|
Zhang R, Shi XF, Liu PG, Wilson AW, Mueller GM. Host Shift Speciation of the Ectomycorrhizal Genus Suillus (Suillineae, Boletales) and Biogeographic Comparison With Its Host Pinaceae. Front Microbiol 2022; 13:831450. [PMID: 35432238 PMCID: PMC9009389 DOI: 10.3389/fmicb.2022.831450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Suillus is a genus of ectomycorrhizal fungi associated almost exclusively with Pinaceae. Lack of sample collections in East Asia and unresolved basal phylogenetic relationships of the genus are the major obstacles for better understanding the Suillus evolution. A resolved phylogeny of Suillus representing global diversity was achieved by sequencing multiple nuclear ribosomal and protein coding genes and extensive samples collected in East Asia. Fungal fossils are extremely rare, and the Eocene ectomycorrhizal symbiosis (ECM) fossil of Pinus root has been widely used for calibration. This study explored an alternative calibration scenario of the ECM fossil for controversy. Ancestral host associations of Suillus were estimated by maximum likelihood and Bayesian Markov chain Monte Carlo (MCMC) analyses, inferred from current host information from root tips and field observation. Host shift speciation explains the diversification of Suillus major clades. The three basal subgenera of Suillus were inferred to be associated with Larix, and diverged in early Eocene or Upper Cretaceous. In the early Oligocene or Paleocene, subgenus Suillus diverged and switched host to Pinus subgenus Strobus, and then switched to subgenus Pinus four times. Suillus subgenus Douglasii switched host from Larix to Pseudotsuga in Oligocene or Eocene. Increased species diversity occurred in subgenus Suillus after it switched host to Pinus but no associated speciation rate shifts were detected. Ancestral biogeographic distributions of Suillus and Pinaceae were estimated under the Dispersal Extinction Cladogenesis (DEC) model. Ancestral distribution patterns of Suillus and Pinaceae are related but generally discordant. Dispersals between Eurasia and North America explain the prevalence of disjunct Suillus taxa.
Collapse
Affiliation(s)
- Rui Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Xiao-fei Shi
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Pei-gui Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| | - Andrew W. Wilson
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Sam Mitchel Herbarium of Fungi, Denver Botanic Garden, Denver, CO, United States
| | - Gregory M. Mueller
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, United States
- Plant Conservation Science, Chicago Botanic Garden, Glencoe, IL, United States
| |
Collapse
|
36
|
Wang X, Han Q. A Closer Examination of the 'Abundant-Center' for Ectomycorrhizal Fungal Community Associated With Picea crassifolia in China. FRONTIERS IN PLANT SCIENCE 2022; 13:759801. [PMID: 35283884 PMCID: PMC8908202 DOI: 10.3389/fpls.2022.759801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A long-standing hypothesis in biogeography predicts that a species' abundance is highest at the center of its geographical range and decreases toward its edges. In this study, we test the abundant-center hypothesis of ectomycorrhizal (ECM) fungal communities associated with Picea crassifolia, an endemic species widely distributed in northwest China. We analyzed the taxonomic richness and the relative abundance of ECM fungi in four main distribution areas, from center to edges. In total, 234 species of ECM fungi were detected, and of these, 137 species were shared among all four sites. Inocybe, Sebacina, Tomentella, and Cortinarius were the dominant genera. ECM fungal richness and biodiversity were highest at the central and lower at peripheral sites. Our results indicated that ECM fungal species richness was consistent with the abundant-center hypothesis, while the relative abundances of individual fungal genera shifted inconsistently across the plant's range.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang, China
| | - Qisheng Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
37
|
Gong S, Feng B, Jian SP, Wang GS, Ge ZW, Yang ZL. Elevation Matters More than Season in Shaping the Heterogeneity of Soil and Root Associated Ectomycorrhizal Fungal Community. Microbiol Spectr 2022; 10:e0195021. [PMID: 35019700 PMCID: PMC8754124 DOI: 10.1128/spectrum.01950-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/29/2023] Open
Abstract
Ectomycorrhizal (EcM) fungi play important roles in forest ecosystems, and their richness and composition can change along with elevation and season changes. However, no study has estimated the relative importance of altitudinal and seasonal heterogeneity in predicting the distribution of EcM fungal communities by simultaneously considering different sample types (root versus soil). In this study, we collected root and soil samples along a > 1,500-m elevation gradient during wet and dry seasons from Baima Snow Mountain, located in "the Mountains of Southwest China," one of the 34 biodiversity hot spots, and we analyzed them using next-generation sequencing. Regardless of the sample type, similar EcM fungal richness pattern with increasing elevation (decline in the forest zone, and an increase at the alpine meadow zone) and strong community turnovers among different elevational zones and between two seasons were detected, and changes of EcM fungal community similarity on 400-m altitude gradient were equivalent to the community turnover between dry and wet seasons. Elevation and edaphic factors were shown to have the largest effects on EcM fungal community. The heterogeneity of richness and community composition was stronger among different elevational zones than across different seasons, mainly because the elevation variations in the EcM fungal community were shaped by the combined effects of different environmental factors, while seasonal changes were mainly controlled by temperature and fast-changing soil nutrients. IMPORTANCE Altitude and season represent two important environmental gradients that shape the structure of biome, including the heterogeneity of EcM fungi. Previous studies have separately considered the influences of altitude and season on EcM fungal communities, but the relative importance of altitude and season is still unknown. The present study revealed that elevation influences the heterogeneity of EcM fungal community more than season; this may be because the variability of environmental factors is higher across different elevations than that across seasons.
Collapse
Affiliation(s)
- Sai Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bang Feng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Si-Peng Jian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Geng Shen Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zai-Wei Ge
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhu Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
38
|
Khan NF, Reshi ZA. Diversity of root-associated mycobiome of Betula utilis D. Don: a treeline species in Kashmir Himalaya. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Host phylogeny is the primary determinant of ectomycorrhizal fungal community composition in the permafrost ecosystem of eastern Siberia at a regional scale. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Cook K, Sharma J, Taylor AD, Herriott IC, Taylor DL. Epiphytic fungal communities vary by substrate type and at sub-meter spatial scales. Mol Ecol 2022; 31:1879-1891. [PMID: 35060231 DOI: 10.1111/mec.16358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. We explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along 5 adjacent tree branches, with inter-sample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes, and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all OTUs found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than one meter. Similarity among samples declines by half in less than ten cm, and even at these short distances, similarities are low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics, and diversity of other tree canopy organisms, including epiphytic plants.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska, 311 Irving I Building, Fairbanks, AK, 99775, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
41
|
Okada KH, Matsuda Y. Soil spore bank communities of ectomycorrhizal fungi in Pseudotsuga japonica forests and neighboring plantations. MYCORRHIZA 2022; 32:83-93. [PMID: 34989868 DOI: 10.1007/s00572-021-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Ectomycorrhizal (EcM) fungal spores play an important role in seedling establishment and forest regeneration, especially in areas where compatible host tree species are absent. However, compared to other Pinaceae trees with a wide distribution, limited information is available for the interaction between the endangered Pseudotsuga trees and EcM fungi, especially the spore bank. The aim of this study was to investigate EcM fungal spore bank communities in soil in remnant patches of Japanese Douglas-fir (Pseudotsuga japonica) forest. We conducted a bioassay of 178 soil samples collected from three P. japonica forests and their neighboring arbuscular mycorrhizal artificial plantations, using the more readily available North American Douglas-fir (Pseudotsuga menziesii) as bait seedlings. EcM fungal species were identified by a combination of morphotyping and DNA sequencing of the ITS region. We found that EcM fungal spore banks were present not only in P. japonica forests but also in neighboring plantations. Among the 13 EcM fungal species detected, Rhizopogon togasawarius had the second highest frequency and was found in all plots, regardless of forest type. Species richness estimators differed significantly among forest types. The community structure of EcM fungal spore banks differed significantly between study sites but not between forest types. These results indicate that EcM fungal spore banks are not restricted to EcM forests and extend to surrounding forest dominated by arbuscular mycorrhizal trees, likely owing to the durability of EcM fungal spores in soils.
Collapse
Affiliation(s)
- Keita Henry Okada
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
42
|
Janowski D, Nara K. Unique host effect of Tilia japonica on ectomycorrhizal fungal communities independent of the tree’s dominance: A rare example of a generalist host? Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Nakahata R, Naramoto M, Sato M, Mizunaga H. Multifunctions of fine root phenology in vegetative and reproductive growth in mature beech forest ecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryo Nakahata
- Center for Ecological Research Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Masako Sato
- Graduate School of Agriculture Shizuoka University Shizuoka Japan
| | | |
Collapse
|
44
|
Boeraeve M, Leroux O, De Lange R, Verbeken A, Jacquemyn H. The Effect of Surrounding Vegetation on the Mycorrhizal Fungal Communities of the Temperate Tree Crataegus monogyna Jacq. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:741813. [PMID: 37744148 PMCID: PMC10512229 DOI: 10.3389/ffunb.2021.741813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 09/26/2023]
Abstract
About 90% of all land plants form mycorrhiza to facilitate the acquisition of essential nutrients such as phosphorus, nitrogen, and sometimes carbon. Based on the morphology of the interaction and the identity of the interacting plants and fungi, four major mycorrhizal types have been distinguished: arbuscular mycorrhiza (AM), ectomycorrhizal (EcM), ericoid mycorrhiza, and orchid mycorrhiza. Although most plants are assumed to form only one type of mycorrhiza, some species simultaneously form associations with two mycorrhizal types within a single root system. However, the dual-mycorrhizal status of many species is under discussion and in some plant species the simultaneous association with two mycorrhizal types varies in space or time or depends on the ecological context. Here, we assessed the mycorrhizal communities associating with common hawthorn (Crataegus monogyna), a small tree that commonly associates with AM fungi, and investigated the potential factors that underlie variation in mycorrhizal community composition. Histological staining of C. monogyna roots showed the presence of a Hartig net and hyphal sheaths in and around the roots, demonstrating the capacity of C. monogyna to form EcM. Meta-barcoding of soil and root samples of C. monogyna collected in AM-dominated grassland vegetation and in mixed AM + EcM forest vegetation showed a much higher number of EcM sequences and OTUs in root and soil samples from mixed AM + EcM vegetation than in samples from pure AM vegetation. We conclude that C. monogyna is able to form both AM and EcM, but that the extent to which it does depends on the environmental context, i.e., the mycorrhizal type of the surrounding vegetation.
Collapse
Affiliation(s)
- Margaux Boeraeve
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Ruben De Lange
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Khokon AM, Schneider D, Daniel R, Polle A. Soil Layers Matter: Vertical Stratification of Root-Associated Fungal Assemblages in Temperate Forests Reveals Differences in Habitat Colonization. Microorganisms 2021; 9:2131. [PMID: 34683452 PMCID: PMC8537680 DOI: 10.3390/microorganisms9102131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ectomycorrhizal and saprotrophic fungi play pivotal roles in ecosystem functioning. Here, we studied the vertical differentiation of root-associated fungi (RAF) in temperate forests. We analysed RAF assemblages in the organic and mineral soil from 150 experimental forest plots across three biogeographic regions spanning a distance of about 800 km. Saprotrophic RAF showed the highest richness in organic and symbiotrophic RAF in mineral soil. Symbiotrophic RAF exhibited higher relative abundances than saprotrophic fungi in both soil layers. Beta-diversity of RAF was mainly due to turnover between organic and mineral soil and showed regional differences for symbiotrophic and saprotrophic fungi. Regional differences were also found for different phylogenetic levels, i.e., fungal orders and indicator species in the organic and mineral soil, supporting that habitat conditions strongly influence differentiation of RAF assemblages. Important exceptions were fungal orders that occurred irrespective of the habitat conditions in distinct soil layers across the biogeographic gradient: Russulales and Cantharellales (ectomycorrhizal fungi) were enriched in RAF assemblages in mineral soil, whereas saprotrophic Polyporales and Sordariales and ectomycorrhizal Boletales were enriched in RAF assemblages in the organic layer. These results underpin a phylogenetic signature for niche partitioning at the rank of fungal orders and suggest that RAF assembly entails two strategies encompassing flexible and territorial habitat colonization by different fungal taxa.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.S.); (R.D.)
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.S.); (R.D.)
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
46
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Adamo I, Castaño C, Bonet JA, Colinas C, Martínez de Aragón J, Alday JG. Lack of Phylogenetic Differences in Ectomycorrhizal Fungi among Distinct Mediterranean Pine Forest Habitats. J Fungi (Basel) 2021; 7:jof7100793. [PMID: 34682215 PMCID: PMC8538088 DOI: 10.3390/jof7100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding whether the occurrences of ectomycorrhizal species in a given tree host are phylogenetically determined can help in assessing different conservational needs for each fungal species. In this study, we characterized ectomycorrhizal phylogenetic composition and phylogenetic structure in 42 plots with five different Mediterranean pine forests: i.e., pure forests dominated by P. nigra, P. halepensis, and P. sylvestris, and mixed forests of P. nigra-P. halepensis and P. nigra-P. sylvestris, and tested whether the phylogenetic structure of ectomycorrhizal communities differs among these. We found that ectomycorrhizal communities were not different among pine tree hosts neither in phylogenetic composition nor in structure and phylogenetic diversity. Moreover, we detected a weak abiotic filtering effect (4%), with pH being the only significant variable influencing the phylogenetic ectomycorrhizal community, while the phylogenetic structure was slightly influenced by the shared effect of stand structure, soil, and geographic distance. However, the phylogenetic community similarity increased at lower pH values, supporting that fewer, closely related species were found at lower pH values. Also, no phylogenetic signal was detected among exploration types, although short and contact were the most abundant types in these forest ecosystems. Our results demonstrate that pH but not tree host, acts as a strong abiotic filter on ectomycorrhizal phylogenetic communities in Mediterranean pine forests at a local scale. Finally, our study shed light on dominant ectomycorrhizal foraging strategies in drought-prone ecosystems such as Mediterranean forests.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Correspondence:
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - José Antonio Bonet
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| | - Carlos Colinas
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Josu G. Alday
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| |
Collapse
|
48
|
Li XC, Qian X, Gao C, Seitz S, Scholten T, Wang YL, Yao H, Gan HY, Guo LD. Plant identity strongly structures the root-associated fungal community in a diverse subtropical forest. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. THE NEW PHYTOLOGIST 2021; 231:1195-1209. [PMID: 33605460 DOI: 10.1111/nph.17288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Céline Leroy
- AMAP, CIRAD, CNRS, INRAE, IRD, Univ Montpellier, Montpellier, 34000, France
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | | - Eliane Louisanna
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Heidy Schimann
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | |
Collapse
|
50
|
Sanaei A, Sayer EJ, Yuan Z, Lin F, Fang S, Ye J, Liu S, Hao Z, Wang X. Soil Stoichiometry Mediates Links Between Tree Functional Diversity and Soil Microbial Diversity in a Temperate Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|