1
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
2
|
Chen YN, Ho CH. Concept of Fluorescent Transport Activity Biosensor for the Characterization of the Arabidopsis NPF1.3 Activity of Nitrate. SENSORS 2022; 22:s22031198. [PMID: 35161943 PMCID: PMC8839256 DOI: 10.3390/s22031198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
The NRT1/PTR FAMILY (NPF) in Arabidopsis (Arabidopsis thaliana) plays a major role as a nitrate transporter. The first nitrate transporter activity biosensor NiTrac1 converted the dual-affinity nitrate transceptor NPF6.3 into fluorescence activity sensors. To test whether this approach is transferable to other members of this family, screening for genetically encoded fluorescence transport activity sensor was performed with the member of the NPF family in Arabidopsis. In this study, NPF1.3, an uncharacterized member of NPF in Arabidopsis, was converted into a transporter activity biosensor NiTrac-NPF1.3 that responds specifically to nitrate. The emission ratio change of NiTrac-NPF1.3 triggered by the addition of nitrate reveals the important function of NPF1.3 in nitrate transport in Arabidopsis. A functional analysis of Xenopus laevis oocytes confirmed that NPF1.3 plays a role as a nitrate transporter. This new technology is applicable in plant and medical research.
Collapse
|
3
|
Sadoine M, Ishikawa Y, Kleist TJ, Wudick MM, Nakamura M, Grossmann G, Frommer WB, Ho CH. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. PLANT PHYSIOLOGY 2021; 187:485-503. [PMID: 35237822 PMCID: PMC8491070 DOI: 10.1093/plphys/kiab353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 05/03/2023]
Abstract
The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Yuuma Ishikawa
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Thomas J. Kleist
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M. Wudick
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Guido Grossmann
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B. Frommer
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Cheng-Hsun Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Author for communication:
| |
Collapse
|
4
|
Fatima U, Ameen F, Soleja N, Khan P, Almansob A, Ahmad A. A Fluorescence Resonance Energy Transfer-Based Analytical Tool for Nitrate Quantification in Living Cells. ACS OMEGA 2020; 5:30306-30314. [PMID: 33251465 PMCID: PMC7689916 DOI: 10.1021/acsomega.0c04868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/11/2023]
Abstract
Nitrate (NO3 -) is a critical source of nitrogen (N) available to microorganisms and plants. Nitrate sensing activates signaling pathways in the plant system that impinges upon, developmental, molecular, metabolic, and physiological responses locally, and globally. To sustain, the high crop productivity and high nutritional value along with the sustainable environment, the study of rate-controlling steps of a metabolic network of N assimilation through fluxomics becomes an attractive strategy. To monitor the flux of nitrate, we developed a non-invasive genetically encoded fluorescence resonance energy transfer (FRET)-based tool named "FLIP-NT" that monitors the real-time uptake of nitrate in the living cells. The developed nanosensor is suitable for real-time monitoring of nitrate flux in living cells at subcellular compartments with high spatio-temporal resolution. The developed FLIP-NT nanosensor was not affected by the pH change and have specificity for nitrate with an affinity constant (K d) of ∼5 μM. A series of affinity mutants have also been generated to expand the physiological detection range of the sensor protein with varying K d values. It has been found that this sensor successfully detects the dynamics of nitrate fluctuations in bacteria and yeast, without the disruption of cellular organization. This FLIP-NT nanosensor could be a very important tool that will help us to advance the understanding of nitrate signaling.
Collapse
Affiliation(s)
- Urooj Fatima
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| | - Fuad Ameen
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Neha Soleja
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abobakr Almansob
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Altaf Ahmad
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
6
|
Abstract
Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Christopher Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Dersch LM, Beckers V, Wittmann C. Green pathways: Metabolic network analysis of plant systems. Metab Eng 2016; 34:1-24. [DOI: 10.1016/j.ymben.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
|
8
|
Sá JV, Duarte TM, Carrondo MJT, Alves PM, Teixeira AP. Metabolic Flux Analysis: A Powerful Tool in Animal Cell Culture. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Peroza EA, Boumezbeur AH, Zamboni N. Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst 2015; 140:4540-8. [DOI: 10.1039/c5an00707k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A generally applicable protocol for random and yet efficient construction of genetically encoded FRET sensors for small molecules was established.
Collapse
|
10
|
Ho CH, Frommer WB. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters. eLife 2014; 3:e01917. [PMID: 24623305 PMCID: PMC3950950 DOI: 10.7554/elife.01917] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI:http://dx.doi.org/10.7554/eLife.01917.001 About 1% of global energy output is used to produce nitrogen-enriched fertiliser to improve crop yields, but much of this energy is wasted because plants absorb only a fraction of the nitrogen that is applied as fertiliser. Even worse, the excess nitrogen leaches into water sources, poisoning the environment and causing health problems. However, to date, most efforts to increase the efficiency of nitrogen uptake in plants have been unsuccessful. The key to improving the uptake efficiency of a nutrient is to identify obstacles in its journey from the soil to cells inside the plant. The first obstacle that nitrate ions encounter is the membrane of the cells on the surface of the roots of the plant. Many researchers believe that it would be possible to increase the amount of nitrogen absorbed by the plant if more was known about the ways that plants control how nitrate ions and other chemicals enter cells. The cell membrane contains gated pores called transporters that allow particular molecules to pass through it. Although the transporters responsible for the uptake of nitrate ions, peptides, and ammonium ions (the main nitrogen compounds that plants acquire) have been identified, current experimental techniques cannot determine when and where a specific transporter is active within a living plant. This makes it difficult to know where to target modifications and to determine how effective they have been at each step. The nitrate transporter also acts as an antenna that measures nitrate concentration to ensure it is used optimally in the plant, but current techniques cannot show how this actually works. Now, Ho and Frommer have exploited the fact that a transporter changes shape as it does its job to create sensors that can track the movement of nitrate and peptides through the cell membrane. By using fluorescent proteins to monitor how the shape of the transporter changes, Ho and Frommer were able to measure how structural mutations and regulatory proteins influenced the movement of nitrate and peptides through the membrane. For efficiency, all of this work was performed in yeast cells. The next goal is to use the technique in plants to uncover how they adjust to changes in nutrient levels in the soil. DOI:http://dx.doi.org/10.7554/eLife.01917.002
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
11
|
Tobimatsu Y, Wagner A, Donaldson L, Mitra P, Niculaes C, Dima O, Kim JI, Anderson N, Loque D, Boerjan W, Chapple C, Ralph J. Visualization of plant cell wall lignification using fluorescence-tagged monolignols. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:357-66. [PMID: 23889038 PMCID: PMC4238399 DOI: 10.1111/tpj.12299] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 05/15/2023]
Abstract
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.
Collapse
Affiliation(s)
- Yuki Tobimatsu
- Department of Biochemistry and the US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), the Wisconsin Energy Institute, University of Wisconsin1552 University Avenue, Madison, WI, 53726, USA
- *For correspondence (e-mails ; )
| | | | | | - Prajakta Mitra
- The US Department of Energy’s Joint BioEnergy Institute (JBEI), Physical Bioscience Division, Lawrence Berkeley National Laboratory5885 Hollis St, Emeryville, CA, 94608, USA
| | - Claudiu Niculaes
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Oana Dima
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - Nickolas Anderson
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - Dominique Loque
- The US Department of Energy’s Joint BioEnergy Institute (JBEI), Physical Bioscience Division, Lawrence Berkeley National Laboratory5885 Hollis St, Emeryville, CA, 94608, USA
| | - Wout Boerjan
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Clint Chapple
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - John Ralph
- Department of Biochemistry and the US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), the Wisconsin Energy Institute, University of Wisconsin1552 University Avenue, Madison, WI, 53726, USA
- *For correspondence (e-mails ; )
| |
Collapse
|
12
|
Shaw SL, Ehrhardt DW. Smaller, faster, brighter: advances in optical imaging of living plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:351-75. [PMID: 23506334 DOI: 10.1146/annurev-arplant-042110-103843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The advent of fluorescent proteins and access to modern imaging technologies have dramatically accelerated the pace of discovery in plant cell biology. Remarkable new insights into such diverse areas as plant pathogenesis, cytoskeletal dynamics, sugar transport, cell wall synthesis, secretory control, and hormone signaling have come from careful examination of living cells using advanced optical probes. New technologies, both commercially available and on the horizon, promise a continued march toward more quantitative methods for imaging and for extending the optical exploration of biological structure and activity to molecular scales. In this review, we lay out fundamental issues in imaging plant specimens and look ahead to several technological innovations in molecular tools, instrumentation, imaging methods, and specimen handling that show promise for shaping the coming era of plant cell biology.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
13
|
Albertin W, Marullo P, Bely M, Aigle M, Bourgais A, Langella O, Balliau T, Chevret D, Valot B, da Silva T, Dillmann C, de Vienne D, Sicard D. Linking post-translational modifications and variation of phenotypic traits. Mol Cell Proteomics 2012; 12:720-35. [PMID: 23271801 DOI: 10.1074/mcp.m112.024349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.
Collapse
Affiliation(s)
- Warren Albertin
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Okumoto S. Quantitative imaging using genetically encoded sensors for small molecules in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:108-17. [PMID: 22449046 DOI: 10.1111/j.1365-313x.2012.04910.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative imaging in live cells is a powerful method for monitoring the dynamics of biomolecules at an excellent spatio-temporal resolution. Such an approach, initially limited to a small number of substrates for which specific dyes were available, has become possible for a large number of biomolecules due to the development of genetically encoded, protein-based sensors. These sensors, which can be introduced into live cells through a transgenic approach, offer the benefits of quantitative imaging, with an extra advantage of non-invasiveness. In the past decade there has been a drastic expansion in the number of biomolecules for which genetically encoded sensors are available, and the functional properties of existing sensors are being improved at a dramatic pace. A number of technical improvements have now made the application of genetically encoded sensors in plants rather straightforward, and some of the sensors such as calcium indicator proteins have become standard analytical tools in many plant laboratories. The use of a handful of probes has already revealed an amazing specificity of cellular biomolecule dynamics in plants, which leads us to believe that there are many more discoveries to be made using genetically encoded sensors. In this short review, we will summarize the progress made in the past 15 years in the development in genetically encoded sensors, and highlight significant discoveries made in plant biology.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
15
|
Abstract
Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the "understanding of plant growth" as one of the big challenges for society and part of a new era which they termed "new biology." The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon.
Collapse
|
16
|
Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. PROGRESS IN BRAIN RESEARCH 2012; 196:235-63. [PMID: 22341329 DOI: 10.1016/b978-0-444-59426-6.00012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent protein technology has evolved to include genetically encoded biosensors that can monitor levels of ions, metabolites, and enzyme activities as well as protein conformation and even membrane voltage. They are well suited to live-cell microscopy and quantitative analysis, and they can be used in multiple imaging modes, including one- or two-photon fluorescence intensity or lifetime microscopy. Although not nearly complete, there now exists a substantial set of genetically encoded reporters that can be used to monitor many aspects of neuronal and glial biology, and these biosensors can be used to visualize synaptic transmission and activity-dependent signaling in vitro and in vivo. In this review, we present an overview of design strategies for engineering biosensors, including sensor designs using circularly permuted fluorescent proteins and using fluorescence resonance energy transfer between fluorescent proteins. We also provide examples of indicators that sense small ions (e.g., pH, chloride, zinc), metabolites (e.g., glutamate, glucose, ATP, cAMP, lipid metabolites), signaling pathways (e.g., G protein-coupled receptors, Rho GTPases), enzyme activities (e.g., protein kinase A, caspases), and reactive species. We focus on examples where these genetically encoded indicators have been applied to brain-related studies and used with live-cell fluorescence microscopy.
Collapse
|
17
|
Dugué GP, Akemann W, Knöpfel T. A comprehensive concept of optogenetics. PROGRESS IN BRAIN RESEARCH 2012; 196:1-28. [PMID: 22341318 DOI: 10.1016/b978-0-444-59426-6.00001-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
18
|
Okumoto S, Jones A, Frommer WB. Quantitative imaging with fluorescent biosensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:663-706. [PMID: 22404462 DOI: 10.1146/annurev-arplant-042110-103745] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
19
|
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2011; 335:207-11. [PMID: 22157085 DOI: 10.1126/science.1213351] [Citation(s) in RCA: 832] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plants transport fixed carbon predominantly as sucrose, which is produced in mesophyll cells and imported into phloem cells for translocation throughout the plant. It is not known how sucrose migrates from sites of synthesis in the mesophyll to the phloem, or which cells mediate efflux into the apoplasm as a prerequisite for phloem loading by the SUT sucrose-H(+) (proton) cotransporters. Using optical sucrose sensors, we identified a subfamily of SWEET sucrose efflux transporters. AtSWEET11 and 12 localize to the plasma membrane of the phloem. Mutant plants carrying insertions in AtSWEET11 and 12 are defective in phloem loading, thus revealing a two-step mechanism of SWEET-mediated export from parenchyma cells feeding H(+)-coupled import into the sieve element-companion cell complex. We discuss how restriction of intercellular transport to the interface of adjacent phloem cells may be an effective mechanism to limit the availability of photosynthetic carbon in the leaf apoplasm in order to prevent pathogen infections.
Collapse
Affiliation(s)
- Li-Qing Chen
- Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ewald JC, Reich S, Baumann S, Frommer WB, Zamboni N. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One 2011; 6:e28245. [PMID: 22164251 PMCID: PMC3229521 DOI: 10.1371/journal.pone.0028245] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET). We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation.
Collapse
Affiliation(s)
- Jennifer C. Ewald
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- PhD Program in Systems Biology of Complex Diseases, ETH Zurich, Zurich, Switzerland
| | - Sabrina Reich
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Stephan Baumann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 2011; 6:1818-33. [PMID: 22036884 DOI: 10.1038/nprot.2011.392] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Förster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes ∼4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes ∼5 h.
Collapse
|
22
|
Abstract
Optical sensors allow dynamic quantification of metabolite levels with subcellular resolution. Here we describe protocols for analyzing cytosolic glucose levels in yeast using genetically encoded Förster resonance energy transfer (FRET) sensors. FRET glucose sensors with different glucose affinities (K(d)) covering the low nano- to mid- millimolar range can be targeted genetically to the cytosol or to subcellular compartments. The sensors detect the glucose-induced conformational change in the bacterial periplasmic glucose/galactose binding protein MglB using FRET between two fluorescent protein variants. Measurements can be performed with a single sensor or multiple sensors in parallel. In one approach, cytosolic glucose accumulation is measured in yeast cultures in a 96-well plate using a fluorimeter. Upon excitation of the cyan fluorescent protein (CFP), emission intensities of CFP and YFP (yellow fluorescent protein) are captured before and after glucose addition. FRET sensors provide temporally resolved quantitative data of glucose for the compartment of interest. In a second approach, reversible changes of cytosolic free glucose are measured in individual yeast cells trapped in a microfluidic platform, allowing perfusion of different solutions while FRET changes are monitored in a microscope setup. By using the microplate fluorimeter protocol, 96 cultures can be measured in less than 1 h; analysis of single cells of a single genotype can be completed in <2 h. FRET-based analysis has been performed with glucose, maltose, ATP and zinc sensors, and it can easily be adapted for high-throughput screening using a wide spectrum of sensors.
Collapse
|
23
|
In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 2011; 438:1-10. [PMID: 21793803 DOI: 10.1042/bj20110428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation.
Collapse
|
24
|
Quantitative glucose and ATP sensing in mammalian cells. Pharm Res 2011; 28:2745-57. [PMID: 21691894 DOI: 10.1007/s11095-011-0492-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/24/2011] [Indexed: 01/08/2023]
Abstract
The functioning and survival of mammalian cells requires an active energy metabolism. Metabolic dysfunction plays an important role in many human diseases, including diabetes, cancer, inherited mitochondrial disorders, and metabolic syndrome. The monosaccharide glucose constitutes a key source of cellular energy. Following its import across the plasma membrane, glucose is converted into pyruvate by the glycolysis pathway. Pyruvate oxidation supplies substrates for the ATP-generating mitochondrial oxidative phosphorylation (OXPHOS) system. To gain cell-biochemical knowledge about the operation and regulation of the cellular energy metabolism in the healthy and diseased state, quantitative knowledge is required about (changes in) metabolite concentrations under (non) steady-state conditions. This information can, for instance, be used to construct more realistic in silico models of cell metabolism, which facilitates understanding the consequences of metabolic dysfunction as well as on- and off-target effects of mitochondrial drugs. Here we review the current state-of-the-art live-cell quantification of two key cellular metabolites, glucose and ATP, using protein-based sensors. The latter apply the principle of FRET (fluorescence resonance energy transfer) and allow measurements in different cell compartments by fluorescence microscopy. We further summarize the properties and applications of the FRET-based sensors, their calibration, pitfalls, and future perspectives.
Collapse
|
25
|
Okumoto S, Pilot G. Amino acid export in plants: a missing link in nitrogen cycling. MOLECULAR PLANT 2011; 4:453-63. [PMID: 21324969 PMCID: PMC3143828 DOI: 10.1093/mp/ssr003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/24/2010] [Indexed: 05/17/2023]
Abstract
The export of nutrients from source organs to parts of the body where they are required (e.g. sink organs) is a fundamental biological process. Export of amino acids, one of the most abundant nitrogen species in plant long-distance transport tissues (i.e. xylem and phloem), is an essential process for the proper distribution of nitrogen in the plant. Physiological studies have detected the presence of multiple amino acid export systems in plant cell membranes. Yet, surprisingly little is known about the molecular identity of amino acid exporters, partially due to the technical difficulties hampering the identification of exporter proteins. In this short review, we will summarize our current knowledge about amino acid export systems in plants. Several studies have described plant amino acid transporters capable of bi-directional, facilitative transport, reminiscent of activities identified by earlier physiological studies. Moreover, recent expansion in the number of available amino acid transporter sequences have revealed evolutionary relationships between amino acid exporters from other organisms with a number of uncharacterized plant proteins, some of which might also function as amino acid exporters. In addition, genes that may regulate export of amino acids have been discovered. Studies of these putative transporter and regulator proteins may help in understanding the elusive molecular mechanisms of amino acid export in plants.
Collapse
Affiliation(s)
- Sakiko Okumoto
- 549 Latham Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
26
|
Chaudhuri B, Hörmann F, Frommer WB. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2411-7. [PMID: 21266495 DOI: 10.1093/jxb/erq444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Quantitative and dynamic analysis of metabolites and signalling molecules is limited by technical challenges in obtaining temporally resolved information at the cellular and compartmental level. Real-time information on signalling and metabolite levels with subcellular granularity can be obtained with the help of genetically encoded FRET (Förster resonance energy transfer) nanosensors. FRET nanosensors represent powerful tools for gene discovery, and analysis of regulatory networks, for example by screening mutants. However, RNA silencing has impaired our ability to express FRET nanosensors functionally in Arabidopsis plants. This drawback was overcome here by expressing the nanosensors in RNA silencing mutants. However, the use of silencing mutants requires the generation of homozygous lines deficient in RNA silencing as well as the mutation of interest and co-expression of the nanosensor. Here it is shown that dynamic changes in cytosolic glucose levels can readily be quantified in wild-type Arabidopsis plants at early stages of development (7-15 d) before silencing had a major effect on fluorescence intensity. A detailed protocol for screening 10-20 mutant seedlings per day is provided. The detailed imaging protocol provided here is suitable for analysing sugar flux in young wild-type plants as well as mutants affected in sugar signalling, metabolism, or transport using a wide spectrum of FRET nanosensors.
Collapse
Affiliation(s)
- Bhavna Chaudhuri
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | | | | |
Collapse
|
27
|
Plaxco KW, Soh HT. Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol 2011; 29:1-5. [PMID: 21106266 PMCID: PMC3010506 DOI: 10.1016/j.tibtech.2010.10.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 01/21/2023]
Abstract
Although the ability to monitor specific molecules in vivo in real-time could revolutionize many aspects of healthcare, the technological challenges that stand in the way of reaching this goal are considerable and are poorly met by most existing analytical approaches. Nature, however, has already solved the problem of real-time molecular detection in complex media by employing biomolecular "switches". That is, protein and nucleic acids that sense chemical cues and, by undergoing specific, binding-induced conformational changes, transduce this recognition into high-gain signal outputs. Here, we argue that devices that employ such switches represent a promising route towards versatile, real-time molecular monitoring in vivo.
Collapse
Affiliation(s)
- Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
28
|
Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:273-97. [PMID: 21370977 DOI: 10.1146/annurev-arplant-042110-103832] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.
Collapse
Affiliation(s)
- Sarah J Swanson
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
29
|
Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem J 2010; 432:399-406. [PMID: 20854260 DOI: 10.1042/bj20100946] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Precise and dynamic measurement of intracellular metabolite levels has been hampered by difficulties in differentiating between adsorbed and imported fractions and the subcellular distribution between cytosol, endomembrane compartments and mitochondria. In the present study, genetically encoded FRET (Förster resonance energy transfer)-based sensors were deployed for dynamic measurements of free cytosolic glucose and ATP with varying external supply and in glucose-transport mutants. Moreover, by using the FRET sensors in a microfluidic platform, we were able to monitor in vivo changes of intracellular free glucose in individual yeast cells. We demonstrate the suitability of the FRET sensors for gaining physiological insight by demonstrating that free intracellular glucose and ATP levels are reduced in a hxt5Δ hexose-transporter mutant compared with wild-type and other hxtΔ strains.
Collapse
|
30
|
Sadanandom A, Napier RM. Biosensors in plants. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:736-743. [PMID: 20870451 DOI: 10.1016/j.pbi.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
Biosensors come in an increasing array of forms and their development is defining the rate of advance for our understanding of many natural processes. Developmental biology is increasingly using mathematical models and yet few of these models are based on quantitative recordings. In particular, we know comparatively little about the endogenous concentrations or fluxes of signalling molecules such as the phytohormones, an area of great potential for new biosensors. There are extremely useful biosensors for some signals, but most remain qualitative. Other qualities sought in biosensors are temporal and spatial resolution and, usually, an ability to use them without significantly perturbing the system. Currently, the biosensors with the best properties are the genetically encoded optical biosensors based on FRET, but each sensor needs extensive specific effort to develop. Sensor technologies using antibodies as the recognition domain are more generic, but these tend to be more invasive and there are few examples of their use in plant biology. By capturing some of the opportunities appearing with advances in platform technologies it is hoped that more biosensors will become available to plant scientists.
Collapse
|
31
|
Abstract
Background Glutamine is one of the primary amino acids in nitrogen assimilation and often the most abundant amino acid in plant roots. To monitor this important metabolite, a novel genetically encoded fluorescent FRET-reporter was constructed and expressed in Arabidopsis thaliana. As a candidate for the glutamine fluxes, the root tip localized, putative amino acid transporter CAT8 was analyzed and heterologously expressed in yeast and oocytes. Principal Findings Rapid and reversible in vivo fluorescence changes were observed in reporter-expressing root tips upon exposure and removal of glutamine. FRET changes were detected at acid and neutral pH and in the presence of a protonophore, suggesting that part of the glutamine fluxes were independent of the pH. The putative amino acid transporter CAT8 transported glutamine, had a half maximal activity at ∼100 µM and the transport was independent of external pH. CAT8 localized not only to the plasma membrane, but additionally to the tonoplast, when tagged with GFP. Ultrastructural analysis confirmed this dual localization and additionally identified CAT8 in membranes of autophagosomes. Loss-of function of CAT8 did not affect growth in various conditions, but over-expressor plants had increased sensitivity to a structural substrate analog, the glutamine synthetase inhibitor L-methionine sulfoximine. Conclusions The combined data suggest that proton-independent glutamine facilitators exist in root tips.
Collapse
|
32
|
Rasmusson AG, Fernie AR, van Dongen JT. Alternative oxidase: a defence against metabolic fluctuations? PHYSIOLOGIA PLANTARUM 2009; 137:371-82. [PMID: 19558416 DOI: 10.1111/j.1399-3054.2009.01252.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An increasing number of oscillating or fluctuating cellular systems have been recently described following the adaptation of fluorescent technology. In diverse organisms, these variously involve signalling factors, heat production, central metabolism and reactive oxygen species (ROS). In response to many plant stresses and primarily via the influence of ROS, changes in mRNA and protein levels or in vivo activity of alternative oxidase are often observed. However, in several investigations, a lack of correlation between the mRNA, protein and in vivo activity has been evident. This discrepancy has made it questionable whether the induction of alternative oxidase has importance in regulating alternative pathway activity in vivo, or being diagnostic for a role of alternative oxidase in stress tolerance and ROS avoidance. Here, we suggest a role of alternative oxidase in counteracting deleterious short-term metabolic fluctuations, especially under stress conditions. This model emphasizes the importance of peak activity for establishing protein levels and allows an amalgamation of the present status of physiological, cellular and molecular knowledge.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
33
|
Rieger MA, Schroeder T. Analyzing cell fate control by cytokines through continuous single cell biochemistry. J Cell Biochem 2009; 108:343-52. [DOI: 10.1002/jcb.22273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Zamboni N, Sauer U. Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 2009; 12:553-8. [PMID: 19744879 DOI: 10.1016/j.mib.2009.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 11/28/2022]
Abstract
Metabolomics and (13)C-flux analysis have become instrumental for analyzing cellular metabolism and its regulation. Driven primarily by technical advances in mass spectrometry-based analytics, they provide unmatched readouts on metabolic state and activity. Functional genomics leverages metabolomics for the discovery of novel enzymes and unexpected secondary activities of annotated enzymes. (13)C-flux analyses are frequently used for empirical elucidation of pathways in poorly characterized species and for network-wide analysis of mechanisms that realize energy and redox balancing. Integration of metabolomics, (13)C-flux analysis and other data enable the condition-dependent characterization of regulatory circuits that ultimately govern the metabolic phenotype.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
35
|
Allen DK, Libourel IGL, Shachar-Hill Y. Metabolic flux analysis in plants: coping with complexity. PLANT, CELL & ENVIRONMENT 2009; 32:1241-57. [PMID: 19422611 DOI: 10.1111/j.1365-3040.2009.01992.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Theory and experience in metabolic engineering both show that metabolism operates at the network level. In plants, this complexity is compounded by a high degree of compartmentation and the synthesis of a very wide array of secondary metabolic products. A further challenge to understanding and predicting plant metabolic function is posed by our ignorance about the structure of metabolic networks even in well-studied systems. Metabolic flux analysis (MFA) provides tools to measure and model the functioning of metabolism, and is making significant contributions to coping with their complexity. This review gives an overview of different MFA approaches, the measurements required to implement them and the information they yield. The application of MFA methods to plant systems is then illustrated by several examples from the recent literature. Next, the challenges that plant metabolism poses for MFA are discussed together with ways that these can be addressed. Lastly, new developments in MFA are described that can be expected to improve the range and reliability of plant MFA in the coming years.
Collapse
Affiliation(s)
- Doug K Allen
- Michigan State University, Plant Biology Department, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
36
|
Frommer WB, Davidson MW, Campbell RE. Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 2009; 38:2833-41. [PMID: 19771330 DOI: 10.1039/b907749a] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent proteins have revolutionized cell biology by allowing researchers to non-invasively peer into the inner workings of cells and organisms. While the most common applications of fluorescent proteins are to image expression, localization, and dynamics of protein chimeras, there is a growing interest in using fluorescent proteins to create biosensors for minimally invasive imaging of concentrations of ions and small molecules, the activity of enzymes, and changes in the conformation of proteins in living cells. This tutorial review provides an overview of the progress made in the development of fluorescent protein-based biosensors to date.
Collapse
Affiliation(s)
- Wolf B Frommer
- Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305, USA.
| | | | | |
Collapse
|
37
|
|
38
|
Niittylae T, Chaudhuri B, Sauer U, Frommer WB. Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics. Methods Mol Biol 2009; 553:355-72. [PMID: 19588116 DOI: 10.1007/978-1-60327-563-7_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The recent development of analytic technologies allows fast analysis of metabolism in real time. Fluxomics aims to define the genes involved in regulation of flux through a metabolic or signaling pathway. Flux through a metabolic or signaling pathway is determined by the activity of its individual components; regulation can occur at many levels, including transcriptional, posttranslational, and allosteric levels. Currently two technologies are used to monitor fluxes. The first is pulse labeling of the organism with a tracer such as C13, followed by mass spectrometric analysis of the partitioning of label into different compounds. The second approach is based on the use of flux sensors, proteins that respond with a conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the conformational change and serves as a proxy for ligand concentration. Both methods provide high time resolution. In contrast to mass spectrometry assays, FRET nanosensors monitor only a single compound, but the advantage of FRET nanosensors is that they yield data with cellular and subcellular resolution.
Collapse
Affiliation(s)
- Totte Niittylae
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | | | | | | |
Collapse
|
39
|
Chaudhuri B, Hörmann F, Lalonde S, Brady SM, Orlando DA, Benfey P, Frommer WB. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:948-62. [PMID: 18702670 PMCID: PMC2752219 DOI: 10.1111/j.1365-313x.2008.03652.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although soil contains only traces of soluble carbohydrates, plant roots take up glucose and sucrose efficiently when supplied in artificial media. Soluble carbohydrates and other small metabolites found in soil are in part products from exudation from plant roots. The molecular nature of the transporters for uptake and exudation is unknown. Here, fluorescence resonance energy transfer (FRET) glucose and sucrose sensors were used to characterize accumulation and elimination of glucose and sucrose in Arabidopsis roots tips. Using an improved image acquisition set-up, FRET responses to perfusion with carbohydrates were detectable in roots within less than 10 sec and over a wide concentration range. Accumulation was fully reversible within 10-180 sec after glucose or sucrose had been withdrawn; elimination may be caused by metabolism and/or efflux. The rate of elimination was unaffected by pre-incubation with high concentrations of glucose, suggesting that elimination is not due to accumulation in a short-term buffer such as the vacuole. Glucose and sucrose accumulation was insensitive to protonophores, was comparable in media differing in potassium levels, and was similar at pH 5.8, 6.8 and 7.8, suggesting that both influx and efflux may be mediated by proton-independent transport systems. High-resolution expression mapping in root tips showed that only a few proton-dependent transport of the STP (Sugar Transport Protein) and SUT/SUC (Sucrose Transporter/Carrier) families are expressed in the external cell layers of root tips. The root expression maps may help to pinpoint candidate genes for uptake and release of carbohydrates from roots.
Collapse
Affiliation(s)
- Bhavna Chaudhuri
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Chaudhuri B, Hörmann F, Lalonde S, Brady SM, Orlando DA, Benfey P, Frommer WB. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008. [PMID: 18702670 DOI: 10.1111/tpj.2008.56.issue-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although soil contains only traces of soluble carbohydrates, plant roots take up glucose and sucrose efficiently when supplied in artificial media. Soluble carbohydrates and other small metabolites found in soil are in part products from exudation from plant roots. The molecular nature of the transporters for uptake and exudation is unknown. Here, fluorescence resonance energy transfer (FRET) glucose and sucrose sensors were used to characterize accumulation and elimination of glucose and sucrose in Arabidopsis roots tips. Using an improved image acquisition set-up, FRET responses to perfusion with carbohydrates were detectable in roots within less than 10 sec and over a wide concentration range. Accumulation was fully reversible within 10-180 sec after glucose or sucrose had been withdrawn; elimination may be caused by metabolism and/or efflux. The rate of elimination was unaffected by pre-incubation with high concentrations of glucose, suggesting that elimination is not due to accumulation in a short-term buffer such as the vacuole. Glucose and sucrose accumulation was insensitive to protonophores, was comparable in media differing in potassium levels, and was similar at pH 5.8, 6.8 and 7.8, suggesting that both influx and efflux may be mediated by proton-independent transport systems. High-resolution expression mapping in root tips showed that only a few proton-dependent transport of the STP (Sugar Transport Protein) and SUT/SUC (Sucrose Transporter/Carrier) families are expressed in the external cell layers of root tips. The root expression maps may help to pinpoint candidate genes for uptake and release of carbohydrates from roots.
Collapse
Affiliation(s)
- Bhavna Chaudhuri
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|