1
|
Tong CY, Derek CJC. Novel Extrapolymeric Substances Biocoating on Polyvinylidene Fluoride Membrane for Enhanced Attached Growth of Navicula incerta. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02091-9. [PMID: 35978183 DOI: 10.1007/s00248-022-02091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Cell adhesion is always the first step in biofilm development. With the emergence of attached cultivation systems, this study aims to promote a cost-effective approach for sustainable cultivation of microalgae, Navicula incerta, by pre-coating the main substrates, commercial polyvinylidene fluoride (PVDF) membranes with its own washed algal cells and self-produced soluble extracellular polymeric substances (EPS) for strengthened biofilm development. The effects of pH value (6 to 9), cell suspension volume (10 to 30 mL), and EPS volume (10 to 50 mL) were statistically optimized by means of response surface methodology toolkit. Model outputs revealed good agreement with cell adhesion data variation less than 1% at optimized pre-coating conditions (7.20 pH, 30 mL cell suspension volume, and 50 mL EPS volume). Throughout long-term biofilm cultivation, results demonstrated that EPS pre-coating substantially improved the attached microalgae density by as high as 271% than pristine PVDF due to rougher surface and the presence of sticky exopolymer particles. Nutrients absorbed via the available EPS coating from the bulk medium made the immobilized cells to release less polysaccharides on an average of 30% less than uncoated PVDF. This work suggests that adhesive polymer binders derived from organic sources can be effectively integrated into the development of high-performance novel materials as biocoating for immobilized microalgae cultivation.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
2
|
Stadnichuk IN, Tropin IV. Cyanidiales as Polyextreme Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:472-487. [PMID: 35790381 DOI: 10.1134/s000629792205008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Dreyer I, Li K, Riedelsberger J, Hedrich R, Konrad KR, Michard E. Transporter networks can serve plant cells as nutrient sensors and mimic transceptor-like behavior. iScience 2022; 25:104078. [PMID: 35378857 PMCID: PMC8976136 DOI: 10.1016/j.isci.2022.104078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Sensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H+ and Ca2+ signals, two of the most ubiquitous cellular second messengers. The concept emerging from the computational simulations was confirmed in wet-lab experiments. We document in guard cells that alterations in the external KCl concentration were translated into cytosolic H+ and Ca2+ transients as predicted. We show that transporter networks do not only serve their primary task of transport, but can also take on the role of a receptor without requiring conformational changes of a transporter protein. Such transceptor-like phenomena may be quite common in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Kai R. Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
4
|
Lehmann J, Jørgensen ME, Fratz S, Müller HM, Kusch J, Scherzer S, Navarro-Retamal C, Mayer D, Böhm J, Konrad KR, Terpitz U, Dreyer I, Mueller TD, Sauer M, Hedrich R, Geiger D, Maierhofer T. Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. Curr Biol 2021; 31:3575-3585.e9. [PMID: 34233161 DOI: 10.1016/j.cub.2021.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.
Collapse
Affiliation(s)
- Julian Lehmann
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany; Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Morten E Jørgensen
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Stefanie Fratz
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Jana Kusch
- University Hospital Jena, Institute of Physiologie II, Kollegiengasse 9, Jena 07743, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Carlos Navarro-Retamal
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dominik Mayer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany.
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany.
| |
Collapse
|
5
|
Moreno Osorio JH, Pinto G, Pollio A, Frunzo L, Lens PNL, Esposito G. Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0259-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
6
|
Shutova VV, Tyutyaev EV, Churin AA, Ponomarev VY, Belyakova GA, Maksimov GV. IR and Raman spectroscopy in the study of carotenoids of Cladophora rivularis algae. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Zhan X, Yi X, Yue L, Fan X, Xu G, Xing B. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6037-6044. [PMID: 25923043 DOI: 10.1021/acs.est.5b00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.
Collapse
Affiliation(s)
- Xinhua Zhan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xiu Yi
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaorong Fan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Guohua Xu
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013; 33:172-215. [PMID: 22765907 PMCID: PMC3665214 DOI: 10.3109/07388551.2012.681625] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 01/25/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.
Collapse
Affiliation(s)
- Kari Skjånes
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Fredrik A. Dahls vei 20, Ås, Norway.
| | | | | |
Collapse
|
9
|
Steinacher A, Leyser O, Clayton RH. A computational model of auxin and pH dynamics in a single plant cell. J Theor Biol 2011; 296:84-94. [PMID: 22142622 DOI: 10.1016/j.jtbi.2011.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/27/2023]
Abstract
Directed cell-to-cell movement of the plant growth hormone auxin is often referred to as polar auxin transport, and has gained much interest since its discovery at the beginning of the 20th century, both by biologists and theoreticians. Computational modelling of auxin transport at tissue and whole plant scales has given valuable insights into the feedback dynamics between auxin and its transport, which often leads to cell polarisation. However, one cellular feedback mechanism that has been overlooked so far in previous models is the interplay between auxin and pH during auxin transport, even though this is well known from biology. We propose a kinetic model of such a feedback mechanism, linking knowledge about auxin-induced acidification of cell wall compartments to the chemiosmotic hypothesis of auxin transport. Our results suggest that proton fluxes may play a significant role in auxin transport. Since active auxin transport relies on the proton motive force over the cellular membrane, allocation of auxin is linked to its effects on compartmental pH. Our auxin/pH feedback model predicts enhanced accumulation of auxin in cells and increases in both auxin influx and efflux when this feedback is in effect. These results were robust in all simulations and consistent with biological evidence, thus providing a framework for generating and testing hypotheses of auxin-related polarisation events at a cellular level.
Collapse
Affiliation(s)
- Arno Steinacher
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK.
| | | | | |
Collapse
|
10
|
Liu J, Guo Y. The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase. J Genet Genomics 2011; 38:307-13. [PMID: 21777855 DOI: 10.1016/j.jgg.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
High soil pH is harmful to plant growth and development. The organization and dynamics of microfilament (MF) cytoskeleton play important roles in the plant anti-alkaline process. In the previous study, we determined that alkaline stress induces a signal that triggers MF dynamics-dependent root growth. In this study we identified that PKS5 kinase involves in this regulatory process to facilitate the signal to reach the downstream target MF. Under pH 8.3 treatment, the depolymerization of MF was faster in pks5-4 (PKS5 kinase constitutively activated) than that in wild-type plants. The inhibition of wild-type, pks5-1, and pks5-4 root growth by pH 8.3 was correlated to their MF depolymerization rate. When the plants were treated with phalloidin to stabilize MF, the high pH sensitive phenotype of pks5-4 can be partially rescued. When the plants were treated with a kinase inhibitor Staurosporine, the MF depolymerization rate in pks5-4 was similar as that in wild-type under pH 8.3 treatment and the sensitivity of root growth was also rescued. However, when the plants were treated with LaCl(3), a calcium channel blocker, the root growth sensitivity of pks5-4 under pH 8.3 was rescued but MF depolymerization was even faster than that of plants without LaCl(3) treatment. These results suggest that the PKS5 involves in external high pH signal mediated MF depolymerization, and that may be independent of calcium signal.
Collapse
Affiliation(s)
- Juntao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing
| | | |
Collapse
|
11
|
Lew RR. Ion and oxygen fluxes in the unicellular alga Eremosphaera viridis. PLANT & CELL PHYSIOLOGY 2010; 51:1889-1899. [PMID: 20926416 DOI: 10.1093/pcp/pcq149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plasma membrane fluxes of the large unicellular model algal cell Eremosphaera viridis (De Bary) were measured under various light regimes to explore the role of plasma membrane fluxes during photosynthesis and high light-induced chloroplast translocation. Plasma membrane fluxes were measured directly and non-invasively with self-referencing ion-selective (H(+), Ca(2+), K(+) and Cl(-)) potentiometric microelectrodes and oxygen amperometric microelectrodes. At light irradiances high enough to induce chloroplast migration from the cell periphery to its center, oxygen evolution declined to respiratory net O(2) uptake prior to any significant chloroplast translocation, while net K(+) and Cl(-) influx increased during the decline in photosynthetic activity (and the membrane potential depolarized). The results suggest that chloroplast translocation is not the cause of the cessation of O(2) evolution at high irradiance. Rather, the chloroplast translocation may play a protective role: shielding the centrally located nucleus from damaging light intensities. At both high and low light intensities (similar to ambient growth conditions), there was a strong inverse correlation between H(+) net fluxes and respiratory and photosynthetic net O(2) fluxes. A similar inverse relationship was also observed for Ca(2+) net fluxes, but only at higher light intensities. The net H(+) fluxes are small relative to the buffering capacity of the cell, but are clearly related to both photosynthetic and respiratory activity.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, Toronto, Ontario Canada.
| |
Collapse
|