1
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
2
|
Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Rimington WR, Pressel S, Duckett JG, Field KJ, Bidartondo MI. Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. MYCORRHIZA 2019; 29:551-565. [PMID: 31720838 PMCID: PMC6890582 DOI: 10.1007/s00572-019-00918-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 05/09/2023]
Abstract
Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive.
Collapse
Affiliation(s)
- William R Rimington
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Department of Life Sciences, Algae, Fungi and Plants Division, Natural History Museum, London, London, SW7 5BD, UK.
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
| | - Silvia Pressel
- Department of Life Sciences, Algae, Fungi and Plants Division, Natural History Museum, London, London, SW7 5BD, UK
| | - Jeffrey G Duckett
- Department of Life Sciences, Algae, Fungi and Plants Division, Natural History Museum, London, London, SW7 5BD, UK
| | - Katie J Field
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
| |
Collapse
|
4
|
Chen ECH, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 2018; 7:e39813. [PMID: 30516133 PMCID: PMC6281316 DOI: 10.7554/elife.39813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.
Collapse
Affiliation(s)
- Eric CH Chen
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Anne Hoffrichter
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Kinga Sedzielewska-Toro
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Max Peart
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Adrian Pelin
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Jeanne Ropars
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Jorg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Andreas Brachmann
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | | |
Collapse
|
5
|
Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. THE NEW PHYTOLOGIST 2018; 220:996-1011. [PMID: 29696662 DOI: 10.1111/nph.15158] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Contents Summary 996 I. Introduction 996 II. An ancient, and diverse, symbiosis 998 III. Structural diversity in ancient plant-fungal partnerships 1000 IV. Mycorrhizal unity in host plant nutrition 1002 V. Plant-to-fungus carbon transfer 1003 VI. From individuals to networks 1003 VII. Diverse responses of mycorrhizal functioning to dynamic environments 1006 VIII. Summary of future research direction 1007 Acknowledgements 1006 References 1006 SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes.
Collapse
Affiliation(s)
- Katie J Field
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
6
|
de Vries S, de Vries J, von Dahlen JK, Gould SB, Archibald JM, Rose LE, Slamovits CH. On plant defense signaling networks and early land plant evolution. Commun Integr Biol 2018; 11:1-14. [PMID: 30214675 PMCID: PMC6132428 DOI: 10.1080/19420889.2018.1486168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
All land plants must cope with phytopathogens. Algae face pathogens, too, and it is reasonable to assume that some of the strategies for dealing with pathogens evolved prior to the origin of embryophytes – plant terrestrialization simply changed the nature of the plant-pathogen interactions. Here we highlight that many potential components of the angiosperm defense toolkit are i) found in streptophyte algae and non-flowering embryophytes and ii) might be used in non-flowering plant defense as inferred from published experimental data. Nonetheless, the common signaling networks governing these defense responses appear to have become more intricate during embryophyte evolution. This includes the evolution of the antagonistic signaling pathways of jasmonic and salicylic acid, multiple independent expansions of resistance genes, and the evolution of resistance gene-regulating microRNAs. Future comparative studies will illuminate which modules of the streptophyte defense signaling network constitute the core and which constitute lineage- and/or environment-specific (peripheral) signaling circuits.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
7
|
Krings M, Harper CJ, Taylor EL. Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. †. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160500. [PMID: 29254965 PMCID: PMC5745336 DOI: 10.1098/rstb.2016.0500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The Lower Devonian Rhynie chert is one of the most important rock deposits yielding comprehensive information on early continental plant, animal and microbial life. Fungi are especially abundant among the microbial remains, and include representatives of all major fungal lineages except Basidiomycota. This paper surveys the evidence assembled to date of fungal hyphae, mycelial cords and reproductive units (e.g. spores, sporangia, sporocarps), and presents examples of fungal associations and interactions with land plants, other fungi, algae, cyanobacteria and animals from the Rhynie chert. Moreover, a small, chytrid-like organism that occurs singly, in chain-like, linear arrangements, planar assemblages and three-dimensional aggregates of less than 10 to [Formula: see text] individuals in degrading land plant tissue in the Rhynie chert is formally described, and the name Perexiflasca tayloriana proposed for the organism. Perexiflasca tayloriana probably colonized senescent or atrophied plant parts and participated in the process of biological degradation. The fungal fossils described to date from the Rhynie chert constitute the largest body of structurally preserved evidence of fungi and fungal interactions from any rock deposit, and strongly suggest that fungi played important roles in the functioning of the Early Devonian Rhynie ecosystem.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Michael Krings
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany
- Department of Ecology and Evolutionary Biology, and Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| | - Carla J Harper
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany
- Department of Ecology and Evolutionary Biology, and Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| | - Edith L Taylor
- Department of Ecology and Evolutionary Biology, and Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Corradi N, Brachmann A. Fungal Mating in the Most Widespread Plant Symbionts? TRENDS IN PLANT SCIENCE 2017; 22:175-183. [PMID: 27876487 DOI: 10.1016/j.tplants.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are relevant plant symbionts whose hyphae and spores carry hundreds of coexisting nuclei with supposedly divergent genomes but no sign of sexual reproduction. This unusual biology suggested that conventional fungal mating is not amendable to optimize strains for plant growth, but recent evidence of sexual-related nuclear inheritance in these organisms is now challenging this widespread notion. Here, we outline our knowledge of AMF genetics within a historical context, and discuss how past and new information in this area changed our understanding of AMF biology. We also highlight the mating-related processes in AMF, and propose new research avenues and approaches that could lead to a better application of these organisms for agricultural and environmental practices.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Andreas Brachmann
- LMU Munich, Faculty of Biology, Genetics, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
|
10
|
Plett JM, Martin F. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:45-50. [PMID: 26116975 DOI: 10.1016/j.pbi.2015.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 05/03/2023]
Abstract
Mutualistic mycorrhizal plant-fungal interactions have shaped the evolution of plant life on land. In these intimate associations, fungal hyphae grow invasively within plant tissues. Despite this invasion, these mycorrhizal fungi are not repulsed leading to a great deal of research focused on the signals exchanged between mutualistic fungi and their host plants in an effort to understand how these relationships are established. In this review, we focus on one type of signal used by mutualistic fungi during symbiosis: effector proteins. These small secreted proteins have recently been found to be used by a range of beneficial fungi to alter the physiological status of the plant host such that symbiosis is favoured. We discuss how the role of these novel proteins has altered our vision of how the 'mutualistic' lifestyle evolved in fungi: rather than being perceived as beneficial by their plant hosts, these microbes currently viewed as 'beneficial' may actually be overcoming the defences of their plant hosts in a mechanism originally thought to be unique to pathogenic microbes.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia.
| | - Francis Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France.
| |
Collapse
|
11
|
Symbiotic options for the conquest of land. Trends Ecol Evol 2015; 30:477-86. [DOI: 10.1016/j.tree.2015.05.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/28/2022]
|
12
|
Selosse MA, Strullu-Derrien C. Origins of the terrestrial flora: A symbiosis with fungi? BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
13
|
Selosse MA, Strullu-Derrien C, Martin FM, Kamoun S, Kenrick P. Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. THE NEW PHYTOLOGIST 2015; 206:501-6. [PMID: 25800616 DOI: 10.1111/nph.13371] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
| | | | | | | | | |
Collapse
|
14
|
Field KJ, Leake JR, Tille S, Allinson KE, Rimington WR, Bidartondo MI, Beerling DJ, Cameron DD. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. THE NEW PHYTOLOGIST 2015; 205:1492-1502. [PMID: 25615559 DOI: 10.1111/nph.13263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Mycorrhizal functioning in the fern Ophioglossum is complex and poorly understood. It is unknown whether mature O. vulgatum sporophytes form mutualistic associations with fungi of the Glomeromycota and with what specificity. Are green sporophytes able to 'repay' fungal carbon (C) invested in them by mycorrhizal partners during the initially heterotrophic gametophyte and early sporophyte stages of the lifecycle? We identified fungal partners of O. vulgatum sporophytes using molecular techniques and supplied them with (33) P-orthophosphate and O. vulgatum sporophytes with (14) CO2 . We traced the movement of fungal-acquired nutrients and plant-fixed C between symbionts and analysed natural abundance (13) C and (15) N isotope signatures to assess nutritional interactions. We found fungal specificity of O. vulgatum sporophytes towards a mycorrhizal fungus closely related to Glomus macrocarpum. Our radioisotope tracers revealed reciprocal C-for-phosphorus exchange between fern sporophytes and fungal partners, despite competition from surrounding vegetation. Monocultures of O. vulgatum were enriched in (13) C and (15) N, providing inconclusive evidence of mycoheterotrophy when experiencing competition from the surrounding plant community. We show mutualistic and specific symbiosis between a eusporangiate fern and fungi of the Glomeromycota. Our findings suggest a 'take now, pay later' strategy of mycorrhizal functioning through the lifecycle O. vulgatum, from mycoheterotrophic gametophyte to mutualistic aboveground sporophyte.
Collapse
Affiliation(s)
- Katie J Field
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Stefanie Tille
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kate E Allinson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - William R Rimington
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
15
|
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. ACTA ACUST UNITED AC 2014; 55:928-41. [DOI: 10.1093/pcp/pcu024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Horn K, Franke T, Unterseher M, Schnittler M, Beenken L. Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2158-74. [PMID: 24142907 DOI: 10.3732/ajb.1300011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PREMISE OF THE STUDY To understand the early evolution of mycorrhizal symbioses, it is important to know the fungal partners of gametophytes and sporophytes for basal lineages of vascular plants. Subterranean mycotrophic gametophytes of the clubmoss Diphasiastrum alpinum found at three localities gave an opportunity to study their morphology and anatomy and to identify and describe their hitherto unknown fungal endophytes. In addition, sporophytes were screened for fungal partners. METHODS Gametophytes with attached young sporophytes were excavated, and their anatomy and their associated fungi were studied by light microscopy. DNA was isolated and amplified with both universal and group-specific fungal primers for the ITS region, the large subunit and small subunit of the nuclear rDNA, respectively, to identify the fungal partner. KEY RESULTS Gametophytes were uniformly colonized by a fungus with septate hyphae forming coils and vesicles. Its morphology resembles that of the sebacinoid genus Piriformospora. Both ITS and LSU sequences were identified as Sebacinales group B, a basal clade of the Agaricomycetes (Basidiomycota). This fungus was detected in 11 gametophytes from two localities and in rootlets of adjacent Calluna vulgaris (Ericaceae) plants, but was absent in roots of sporophytes. In addition, several ascomycetes and glomeromycetes were found by DNA sequencing. CONCLUSIONS Our study suggests a fungus belonging to Sebacinales group B as the main fungal host of the D. alpinum gametophytes. However, Sebacinales group B fungi occur as well in adjacent Ericaceae plants; therefore, we assume the mycoheterotrophic gametophyte to be epiparasitic on Ericaceae, which would explain the steady association of these plants.
Collapse
Affiliation(s)
- Karsten Horn
- Büro für angewandte Geobotanik und Landschaftsökologie (BaGL), Frankenstrasse 2, D-91077 Dormitz, Germany
| | | | | | | | | |
Collapse
|
17
|
Graham L, Lewis LA, Taylor W, Wellman C, Cook M. Early Terrestrialization: Transition from Algal to Bryophyte Grade. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6988-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
18
|
Abstract
The arbuscular mycorrhizal fungi (AMF) are important symbionts of land plants, which are known for their tremendous positive effects on terrestrial ecosystems, their peculiar cellular features, and their very old evolutionary history. To date, no sexual stage or apparatus have ever been observed in these organisms; a remarkable absence for a eukaryotic lineage. For this reason, AMF have long been considered an evolutionary oddity, having evolved for over 500 millions of years in the absence of sexual reproduction and meiosis. Here, we discuss the recent identification across a number of AMF genomes, of many genes that are known to be involved in the process of meiosis in several eukaryotic model species. The presence of these genes in AMF is a previously unsuspected and highly intriguing finding, which suggests the presence of a “hidden” sexual (or parasexual) reproduction that awaits formal observation in these poorly studied fungi.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research; Department of Biology; University of Ottawa; Ottawa, ON Canada
| | | |
Collapse
|
19
|
Stürmer SL. A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. MYCORRHIZA 2012; 22:247-58. [PMID: 22391803 DOI: 10.1007/s00572-012-0432-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/14/2012] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are grouped in a monophyletic group, the phylum Glomeromycota. In this review, the history and complexity of the taxonomy and systematics of these obligate biotrophs is addressed by recognizing four periods. The initial discovery period (1845-1974) is characterized by description mainly of sporocarp-forming species and the proposal of a classification for these fungi. The following alpha taxonomy period (1975-1989) established a solid morphological basis for species identification and classification, resulting in a profuse description of new species and a need to standardize the nomenclature of spore subcellular structures. The cladistics period from 1990 to 2000 saw the first cladistic classification of AMF based on phenotypic characters only. At the end of this period, genetic characters played a role in defining taxa and elucidating evolutionary relationships within the group. The most recent phylogenetic synthesis period (2001 to present) started with the proposal of a new classification based on genetic characters using sequences of the multicopy rRNA genes.
Collapse
Affiliation(s)
- Sidney Luiz Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Cx.P. 1507, 89012-900, Blumenau, SC, Brazil.
| |
Collapse
|
20
|
Krings M, Taylor TN, Taylor EL, Dotzler N, Walker C. Arbuscular mycorrhizal-like fungi in Carboniferous arborescent lycopsids. THE NEW PHYTOLOGIST 2011; 191:311-314. [PMID: 21557748 DOI: 10.1111/j.1469-8137.2011.03752.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Michael Krings
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
- (Author for correspondence: tel +49 89 2180 6546; email )
| | - Thomas N Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Edith L Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Nora Dotzler
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 21A Inverleith Row, Edinburgh EH3 5LR, UK
| |
Collapse
|