1
|
Li J, Petticord DF, Jin M, Huang L, Hui D, Sardans J, Peñuelas J, Yang X, Zhu YG. From nature to urbanity: exploring phyllosphere microbiome and functional gene responses to the Anthropocene. THE NEW PHYTOLOGIST 2025; 245:591-606. [PMID: 39511922 DOI: 10.1111/nph.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The Anthropocene exerts various pressures and influences on the stability and function of the Earth's ecosystems. However, our understanding of how the microbiome responds in form and function to these disturbances is still limited, particularly when considering the phyllosphere, which represents one of the largest microbial reservoirs in the terrestrial ecosystem. In this study, we comprehensively characterized tree phyllosphere bacteria and associated nutrient-cycling genes in natural, rural, suburban, and urban habitats in China. Results revealed that phyllosphere bacterial community diversity, richness, stability, and composition heterogeneity were greatest at the most disturbed sites. Stochastic processes primarily governed the assembly of phyllosphere bacterial communities, although the role of deterministic processes (environmental selection) in shaping these communities gradually increased as we moved from rural to urban sites. Our findings also suggest that human disturbance is associated with the reduced influence of drift as increasingly layered environmental filters deterministically constrain phyllosphere bacterial communities. The intensification of human activity was mirrored in changes in functional gene expression within the phyllosphere microbiome, resulting in enhanced gene abundance, diversity, and compositional variation in highly human-driven disturbed environments. Furthermore, we found that while the relative proportion of core microbial taxa decreased in disturbed habitats, a core set of microbial taxa shaped the distributional characteristics of both microbiomes and functional genes at all levels of disturbance. In sum, this study offers valuable insights into how anthropogenic disturbance may influence phyllosphere microbial dynamics and improves our understanding of the intricate relationship between environmental stressors, microbial communities, and plant function within the Anthropocene.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Daniel F Petticord
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Faticov M, Amorim JH, Abdelfattah A, van Dijk LJA, Carvalho AC, Laforest-Lapointe I, Tack AJM. Local climate, air quality and leaf litter cover shape foliar fungal communities on an urban tree. AMBIO 2024; 53:1673-1685. [PMID: 38871928 PMCID: PMC11436615 DOI: 10.1007/s13280-024-02041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Foliar fungi on urban trees are important for tree health, biodiversity and ecosystem functioning. Yet, we lack insights into how urbanization influences foliar fungal communities. We created detailed maps of Stockholm region's climate and air quality and characterized foliar fungi from mature oaks (Quercus robur) across climatic, air quality and local habitat gradients. Fungal richness was higher in locations with high growing season relative humidity, and fungal community composition was structured by growing season maximum temperature, NO2 concentration and leaf litter cover. The relative abundance of mycoparasites and endophytes increased with temperature. The relative abundance of pathogens was lowest with high concentrations of NO2 and particulate matter (PM2.5), while saprotrophs increased with leaf litter cover. Our findings show that urbanization influences foliar fungi, providing insights for developing management guidelines to promote tree health, prevent disease outbreaks and maintain biodiversity within urban landscapes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden.
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université, J1K 2R, Sherbrooke, QC, Canada.
| | - Jorge H Amorim
- Swedish Meteorological and Hydrological Institute (SMHI), Folkborgsvägen 17, Norrköping, Sweden
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Laura J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden
| | - Ana Cristina Carvalho
- Swedish Meteorological and Hydrological Institute (SMHI), Folkborgsvägen 17, Norrköping, Sweden
| | - Isabelle Laforest-Lapointe
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université, J1K 2R, Sherbrooke, QC, Canada
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Frescativägen 40, 114 18, Stockholm, Sweden
| |
Collapse
|
3
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
4
|
Poma-Angamarca RA, Rojas JR, Sánchez-Rodríguez A, Ruiz-González MX. Diversity of Leaf Fungal Endophytes from Two Coffea arabica Varieties and Antagonism towards Coffee Leaf Rust. PLANTS (BASEL, SWITZERLAND) 2024; 13:814. [PMID: 38592839 PMCID: PMC11154406 DOI: 10.3390/plants13060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Coffee has immense value as a worldwide-appreciated commodity. However, its production faces the effects of climate change and the spread of severe diseases such as coffee leaf rust (CLR). The exploration of fungal endophytes associated with Coffea sp. has already found the existence of nearly 600 fungal species, but their role in the plants remains practically unknown. We have researched the diversity of leaf fungal endophytes in two Coffea arabica varieties: one susceptible and one resistant to CLR. Then, we conducted cross-infection essays with four common endophyte species (three Colletotrichum sp. and Xylaria sp. 1) and Hemileia vastatrix (CLR) in leaf discs, to investigate the interaction of the endophytes on CLR colonisation success and severity of infection. Two Colletotrichum sp., when inoculated 72 h before H. vastatrix, prevented the colonisation of the leaf disc by the latter. Moreover, the presence of endophytes prior to the arrival of H. vastatrix ameliorated the severity of CLR. Our work highlights both the importance of characterising the hidden biodiversity of endophytes and investigating their potential roles in the plant-endophyte interaction.
Collapse
Affiliation(s)
- Ruth A. Poma-Angamarca
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Jacqueline R. Rojas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Mario X. Ruiz-González
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
- SENESCYT is the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación from the Government of Ecuador, Proyecto Prometeo SENESCYT, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
5
|
He C, Zhang M, Li X, He X. Seasonal dynamics of phyllosphere epiphytic microbial communities of medicinal plants in farmland environment. FRONTIERS IN PLANT SCIENCE 2024; 14:1328586. [PMID: 38239215 PMCID: PMC10794659 DOI: 10.3389/fpls.2023.1328586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Introduction The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
6
|
Dong X, Jiang F, Duan D, Tian Z, Liu H, Zhang Y, Hou F, Nan Z, Chen T. Contrasting Effects of Grazing in Shaping the Seasonal Trajectory of Foliar Fungal Endophyte Communities on Two Semiarid Grassland Species. J Fungi (Basel) 2023; 9:1016. [PMID: 37888272 PMCID: PMC10608051 DOI: 10.3390/jof9101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on foliar fungal endophyte communities remains largely unexplored. We conducted a long-term (18 yr) grazing experiment to explore the effects of grazing on the community composition and diversity of the foliar fungal endophytes of two perennial grassland species (i.e., Artemisia capillaris and Stipa bungeana) across one growing season. Grazing significantly increased the mean fungal alpha diversity of A. capillaris in the early season. In contrast, grazing significantly reduced the mean fungal alpha diversity of endophytic fungi of S. bungeana in the late season. Grazing, growing season, and their interactions concurrently structured the community composition of the foliar fungal endophytes of both plant species. However, growing season consistently outperformed grazing and environmental factors in shaping the community composition and diversity of both plant species. Overall, our findings demonstrate that the foliar endophytic fungal community diversity and composition differed in response to grazing between A. capillaris and S. bungeana during one growing season. The focus on this difference will enhance our understanding of grazing's impact on ecological systems and improve land management practices in grazing regions. This variation in the effects of leaf nutrients and plant community characteristics on foliar endophytic fungal community diversity and composition may have a pronounced impact on plant health and plant-fungal interactions.
Collapse
Affiliation(s)
- Xin Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Feifei Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Dongdong Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Huining Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Yinan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Tao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| |
Collapse
|
7
|
Nguyen NH, Nguyen PT, Otake H, Nagata A, Hirano N, Imanishi-Shimizu Y, Shimizu K. Biodiversity of Basidiomycetous Yeasts Associated with Cladonia rei Lichen in Japan, with a Description of Microsporomyces cladoniophilus sp. nov. J Fungi (Basel) 2023; 9:jof9040473. [PMID: 37108927 PMCID: PMC10145395 DOI: 10.3390/jof9040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
For more than a century, lichens have been used as an example of dual-partner symbiosis. Recently, this has been challenged by the discovery of various basidiomycetous yeasts that coexist in multiple lichen species, among which Cladonia lichens from Europe and the United States were discovered to be highly specifically associated with the basidiomycetous yeast of the family Microsporomycetaceae. To verify this highly specific relationship, we investigated the diversity of basidiomycetous yeasts associated with Cladonia rei, a widely distributed lichen in Japan, by applying two approaches: yeast isolation from the lichen thalli and meta-barcoding analysis. We obtained 42 cultures of Cystobasidiomycetous yeast which were grouped into six lineages within the family Microsporomycetaceae. Unexpectedly, although the cystobasidiomycetes-specific primer was used, not only the cystobasidiomycetous yeasts but species from other classes were also detected via the meta-barcoding dataset; in particular, pucciniomycetous yeasts were found at a high frequency in some samples. Further, Halobasidium xiangyangense, which was detected in every sample with high abundance, is highly likely a generalist epiphytic fungus that has the ability to associate with C. rei. In the pucciniomycetous group, most of the detected species belong to the scale insect-associated yeast Septobasidium genus. In conclusion, even though Microsporomyces species are not the only yeast group associated with Cladonia lichen, our study demonstrated that the thalli of Cladonia rei lichen could be a suitable habit for them.
Collapse
Affiliation(s)
- Ngoc-Hung Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Phuong-Thao Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Hitomi Otake
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Ayana Nagata
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Nobuharu Hirano
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Yumi Imanishi-Shimizu
- College of Science and Engineering, Kanto Gakuin University, Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Kanagawa, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8673, Chiba, Japan
| |
Collapse
|
8
|
Li J, Jin MK, Neilson R, Hu SL, Tang YJ, Zhang Z, Huang FY, Zhang J, Yang XR. Plant identity shapes phyllosphere microbiome structure and abundance of genes involved in nutrient cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161245. [PMID: 36587661 DOI: 10.1016/j.scitotenv.2022.161245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The phyllosphere is a fluctuant micro-environment habitat that harbors diverse microbial communities that have the potential to influence plant growth through their effect on host fitness. However, we know little about the driving factors of phyllosphere microbial functional traits, e.g., genes related to nutrient cycling and microbial community structure under anthropic disturbance. Here, we characterized phyllosphere microbial communities and the abundance of genes related to nutrient cycling from diverse plant species between urban and natural habitats. We measured leaf functional traits to investigate the potential drivers of the phyllosphere microbial profile. Results indicated that phyllosphere microbial communities differed significantly between urban and natural habitats, and that this variation was dependent upon plant species. Host plant species had a greater influence on the abundance of genes involved in nutrient cycling in the phyllosphere than habitat. In addition, phyllosphere microbial diversity and functional gene abundance were significantly correlated. Furthermore, host leaf functional traits (e.g., specific leaf area and nutrient content) were potential driving factors of both phyllosphere microbial community structure and the abundance of genes involved in nutrient cycling. These findings contribute to a better understanding of the phyllosphere microbiome and its biotic and abiotic controlling factors, which improves our understanding of plant-microbe interactions and their ecosystem functions under anthropic disturbance.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Shi-Lin Hu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi-Jia Tang
- School of Life and Environmental Sciences, the University of Sydney, NSW 2015, Australia; Sydney Institute of Agriculture, NSW 2006, Australia
| | - Zhao Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R, China.
| |
Collapse
|
9
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
10
|
Zhang Y, Li X, Lu L, Huang F, Liu H, Zhang Y, Yang L, Usman M, Li S. Urbanization Reduces Phyllosphere Microbial Network Complexity and Species Richness of Camphor Trees. Microorganisms 2023; 11:microorganisms11020233. [PMID: 36838198 PMCID: PMC9966171 DOI: 10.3390/microorganisms11020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Studies on microbial communities associated with foliage in natural ecosystems have grown in number in recent years yet have rarely focused on urban ecosystems. With urbanization, phyllosphere microorganisms in the urban environment have come under pressures from increasing human activities. To explore the effects of urbanization on the phyllosphere microbial communities of urban ecosystems, we investigated the phyllosphere microbial structure and the diversity of camphor trees in eight parks along a suburban-to-urban gradient. The results showed that the number of ASVs (amplicon sequence variants), unique on the phyllosphere microbial communities of three different urbanization gradients, was 4.54 to 17.99 times higher than that of the shared ASVs. Specific microbial biomarkers were also found for leaf samples from each urbanization gradient. Moreover, significant differences (R2 = 0.133, p = 0.005) were observed in the phyllosphere microbial structure among the three urbanization gradients. Alpha diversity and co-occurrence patterns of bacterial communities showed that urbanization can strongly reduce the complexity and species richness of the phyllosphere microbial network of camphor trees. Correlation analysis with environmental factors showed that leaf total carbon (C), nitrogen (N), and sulfur (S), as well as leaf C/N, soil pH, and artificial light intensity at night (ALIAN) were the important drivers in determining the divergence of phyllosphere microbial communities across the urbanization gradient. Together, we found that urbanization can affect the composition of the phyllosphere bacterial community of camphor trees, and that the interplay between human activities and plant microbial communities may contribute to shaping the urban microbiome.
Collapse
Affiliation(s)
- Yifang Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaomin Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
- Correspondence: (L.L.); (S.L.)
| | - Fuyi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hao Liu
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou 215123, China
| | - Yu Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luhua Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Correspondence: (L.L.); (S.L.)
| |
Collapse
|
11
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Postiglione A, Prigioniero A, Zuzolo D, Tartaglia M, Scarano P, Maisto M, Ranauda MA, Sciarrillo R, Thijs S, Vangronsveld J, Guarino C. Quercus ilex Phyllosphere Microbiome Environmental-Driven Structure and Composition Shifts in a Mediterranean Contex. PLANTS (BASEL, SWITZERLAND) 2022; 11:3528. [PMID: 36559640 PMCID: PMC9782775 DOI: 10.3390/plants11243528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The intra- and interdomain phyllosphere microbiome features of Quercus ilex L. in a Mediterranean context is reported. We hypothesized that the main driver of the phyllosphere microbiome might be the season and that atmospheric pollutants might have a co-effect. Hence, we investigated the composition of epiphytic bacteria and fungi of leaves sampled in urban and natural areas (in Southern Italy) in summer and winter, using microscopy and metagenomic analysis. To assess possible co-effects on the composition of the phyllosphere microbiome, concentrations of particulate matter and polycyclic aromatic hydrocarbons (PAHs) were determined from sampled leaves. We found that environmental factors had a significative influence on the phyllosphere biodiversity, altering the taxa relative abundances. Ascomycota and Firmicutes were higher in summer and in urban areas, whereas a significant increase in Proteobacteria was observed in the winter season, with higher abundance in natural areas. Network analysis suggested that OTUs belonging to Acidobacteria, Cytophagia, unkn. Firmicutes(p), Actinobacteria are keystone of the Q. ilex phyllosphere microbiome. In addition, 83 genes coding for 5 enzymes involved in PAH degradation pathways were identified. Given that the phyllosphere microbiome can be considered an extension of the ecosystem services offered by trees, our results can be exploited in the framework of Next-Generation Biomonitoring.
Collapse
Affiliation(s)
- Alessia Postiglione
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
13
|
Taylor AF, Freitag TE, Robinson L, White D, Hedley P, Britton AJ. Nitrogen deposition and temperature structure fungal communities associated with alpine moss-sedge heath in the UK. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Clarke AR, Leach P, Measham PF. The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. INSECTS 2022; 13:882. [PMID: 36292829 PMCID: PMC9604198 DOI: 10.3390/insects13100882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The genus Bactrocera (Diptera: Tephritidae) is endemic to the monsoonal rainforests of South-east Asia and the western Pacific where the larvae breed in ripe, fleshy fruits. While most Bactrocera remain rainforest restricted, species such as Bactrocera dorsalis, Bactrocera zonata and Bactrocera tryoni are internationally significant pests of horticulture, being both highly invasive and highly polyphagous. Almost universally in the literature it is assumed that Bactrocera breed continuously if temperature and hosts are not limiting. However, despite that, these flies show distinct seasonality. If discussed, seasonality is generally attributed to the fruiting of a particular breeding host (almost invariably mango or guava), but the question appears not to have been asked why flies do not breed at other times of the year despite other hosts being available. Focusing initially on B. tryoni, for which more literature is available, we demonstrate that the seasonality exhibited by that species is closely correlated with the seasons of its endemic rainforest environment as recognised by traditional Aboriginal owners. Evidence suggests the presence of a seasonal reproductive arrest which helps the fly survive the first two-thirds of the dry season, when ripe fruits are scarce, followed by a rapid increase in breeding at the end of the dry season as humidity and the availability of ripe fruit increases. This seasonal phenology continues to be expressed in human-modified landscapes and, while suppressed, it also partially expresses in long-term cultures. We subsequently demonstrate that B. dorsalis, across both its endemic and invasive ranges, shows a very similar seasonality although reversed in the northern hemisphere. While high variability in the timing of B. dorsalis population peaks is exhibited across sites, a four-month period when flies are rare in traps (Dec-Mar) is highly consistent, as is the fact that nearly all sites only have one, generally very sharp, population peak per year. While literature to support or deny a reproductive arrest in B. dorsalis is not available, available data is clear that continuous breeding does not occur in this species and that there are seasonal differences in reproductive investment. Throughout the paper we reinforce the point that our argument for a complex reproductive physiology in Bactrocera is based on inductive reasoning and requires specific, hypothesis-testing experiments to confirm or deny, but we do believe there is ample evidence to prioritise such research. If it is found that species in the genus undergo a true reproductive diapause then there are very significant implications for within-field management, market access, and biosecurity risk planning which are discussed. Arguably the most important of these is that insects in diapause have greater stress resistance and cold tolerance, which could explain how tropical Bactrocera species have managed to successfully invade cool temperate regions.
Collapse
Affiliation(s)
- Anthony R. Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, QLD 4001, Australia
| | - Peter Leach
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, P.O. Box 652, Cairns, QLD 4870, Australia
| | - Penelope F. Measham
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Ecosciences Precinct Dutton Park, P.O. Box 267, Dutton Park, QLD 4102, Australia
| |
Collapse
|
15
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
16
|
Jia M, Sun X, Chen M, Liu S, Zhou J, Peng X. Deciphering the microbial diversity associated with healthy and wilted Paeonia suffruticosa rhizosphere soil. Front Microbiol 2022; 13:967601. [PMID: 36060757 PMCID: PMC9432862 DOI: 10.3389/fmicb.2022.967601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Plant health is closely related to the soil, where microorganisms play a critical and unique role. For instance, Paeonia suffruticosa is an emerging woody oil crop in China with attractive development and utilization prospects. However, black root rot causes wilting of the aboveground plant parts, which significantly affected its seed yield and quality. Studies found that soil microorganisms are critical in maintaining plant health, but how changes in the soil microbial communities affect the healthy and diseased oil peony is unclear. Therefore, our present study used high throughput sequencing and BIOLOG to analyze the rhizosphere soil microbial communities of healthy and diseased oil peonies. Our results revealed that the physical and chemical properties of the soil of the diseased plants had changed, with the ability to metabolize the carbon source being enhanced. Moreover, our research highlighted that the oil peony-infecting fungal pathogenic genus (Fusarium, Cylindrocarpon, and Neocosmospora) was closely associated with oil peony yield reduction and disease aggravation. Further network analysis demonstrated that the bacterial and fungal networks of the diseased plants were more complex than those of the healthy plants. Finally, the inter-kingdom network among the diseased plants further indicated that the lesions destroyed the network and increased the intraspecific correlation between the fungal groups.
Collapse
Affiliation(s)
- Manman Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Man Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuang Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
- *Correspondence: Xiawei Peng, ,
| |
Collapse
|
17
|
Dea HI, Urban A, Kazarina A, Houseman GR, Thomas SG, Loecke T, Greer MJ, Platt TG, Lee S, Jumpponen A. Precipitation, Not Land Use, Primarily Determines the Composition of Both Plant and Phyllosphere Fungal Communities. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:805225. [PMID: 37746168 PMCID: PMC10512219 DOI: 10.3389/ffunb.2022.805225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 09/26/2023]
Abstract
Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition - whether abiotic or host-dependent - remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.
Collapse
Affiliation(s)
- Hannah I. Dea
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Abigail Urban
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Anna Kazarina
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Gregory R. Houseman
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Samantha G. Thomas
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, United States
| | - Terry Loecke
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, United States
- Environmental Studies Program, University of Kansas, Lawrence, KS, United States
| | - Mitchell J. Greer
- Department of Agriculture and Nutrition Science, Southern Utah University, Cedar City, UT, United States
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sonny Lee
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
18
|
Li M, Hong L, Ye W, Wang Z, Shen H. Phyllosphere bacterial and fungal communities vary with host species identity, plant traits and seasonality in a subtropical forest. ENVIRONMENTAL MICROBIOME 2022; 17:29. [PMID: 35681245 PMCID: PMC9185928 DOI: 10.1186/s40793-022-00423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/31/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Phyllosphere microbes play important roles in host plant performance and fitness. Recent studies have suggested that tropical and temperate forests harbor diverse phyllosphere bacterial and fungal communities and their assembly is driven by host species identity and plant traits. However, no study has yet examined how seasonality (e.g. dry vs. wet seasons) influences phyllosphere microbial community assembly in natural forests. In addition, in subtropical forests characterized as the transitional zonal vegetation type from tropical to temperate forests, how tree phyllosphere microbial communities are assembled remains unknown. In this study, we quantified bacterial and fungal community structure and diversity on the leaves of 45 tree species with varying phylogenetic identities and importance values within a 20-ha lower subtropical evergreen broad-leaved forest plot in dry and wet seasons. We explored if and how the microbial community assembly varies with host species identity, plant traits and seasonality. RESULTS Phyllosphere microbial communities in the subtropical forest are more abundant and diverse than those in tropical and temperate forests, and the tree species share a "core microbiome" in either bacteria or fungi. Variations in phyllosphere bacterial and fungal community assembly are explained more by host species identity than by seasonality. There is a strong clustering of the phyllosphere microbial assemblage amongst trees by seasonality, and the seasonality effects are more pronounced on bacterial than fungal community assembly. Host traits have different effects on community compositions and diversities of both bacteria and fungi, and among them calcium concentration and importance value are the most powerful explaining variables for bacteria and fungi, respectively. There are significant evolutionary associations between host species and phyllosphere microbiome. CONCLUSIONS Our results suggest that subtropical tree phyllosphere microbial communities vary with host species identity, plant traits and seasonality. Host species identity, compared to seasonality, has greater effects on phyllosphere microbial community assembly, and such effects differ between bacterial and fungal communities. These findings advance our understanding of the patterns and drivers of phyllosphere microbial community assembly in zonal forests at a global scale.
Collapse
Affiliation(s)
- Mengjiao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lan Hong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Wanhui Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhangming Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Hao Shen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden/Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
19
|
Witzell J, Decker VHG, Agostinelli M, Romeralo C, Cleary M, Albrectsen BR. Aspen Leaves as a "Chemical Landscape" for Fungal Endophyte Diversity-Effects of Nitrogen Addition. Front Microbiol 2022; 13:846208. [PMID: 35387081 PMCID: PMC8978019 DOI: 10.3389/fmicb.2022.846208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abiotic and biotic factors may shape the mycobiome communities in plants directly but also indirectly by modifying the quality of host plants as a substrate. We hypothesized that nitrogen fertilization (N) would determine the quality of aspen (Populus tremula) leaves as a substrate for the endophytic fungi, and that by subjecting the plants to N, we could manipulate the concentrations of positive (nutritious) and negative (antifungal) chemicals in leaves, thus changing the internal “chemical landscape” for the fungi. We expected that this would lead to changes in the fungal community composition, in line with the predictions of heterogeneity–diversity relationship and resource availability hypotheses. To test this, we conducted a greenhouse study where aspen plants were subjected to N treatment. The chemical status of the leaves was confirmed using GC/MS (114 metabolites, including amino acids and sugars), LC/MS (11 phenolics), and UV-spectrometry (antifungal condensed tannins, CTs), and the endophytic communities were characterized using culture-dependent sequencing. We found that N treatment reduced foliar concentrations of CT precursor catechin but not that of CTs. Nitrogen treatment also increased the concentrations of the amino acids and reduced the concentration of some sugars. We introduced beetle herbivores (H) as a second treatment but found no rapid changes in chemical traits nor strong effect on the diversity of endophytes induced by herbivores. A few rare fungi were associated with and potentially vectored by the beetle herbivores. Our findings indicate that in a controlled environment, the externally induced changes did not strongly alter endophyte diversity in aspen leaves.
Collapse
Affiliation(s)
- Johanna Witzell
- Forestry and Wood Technology, Linnaeus University, Växjö, Sweden.,Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Vicki Huizu Guo Decker
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Marta Agostinelli
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Carmen Romeralo
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Forest Research Centre (INIA, CSIC), Madrid, Spain
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
20
|
Wolfe ER, Dove R, Webster C, Ballhorn DJ. Culturable fungal endophyte communities of primary successional plants on Mount St. Helens, WA, USA. BMC Ecol Evol 2022; 22:18. [PMID: 35168544 PMCID: PMC8845407 DOI: 10.1186/s12862-022-01974-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background While a considerable amount of research has explored plant community composition in primary successional systems, little is known about the microbial communities inhabiting these pioneer plant species. Fungal endophytes are ubiquitous within plants, and may play major roles in early successional ecosystems. Specifically, endophytes have been shown to affect successional processes, as well as alter host stress tolerance and litter decomposition dynamics—both of which are important components in harsh environments where soil organic matter is still scarce. Results To determine possible contributions of fungal endophytes to plant colonization patterns, we surveyed six of the most common woody species on the Pumice Plain of Mount St. Helens (WA, USA; Lawetlat'la in the Cowlitz language; created during the 1980 eruption)—a model primary successional ecosystem—and found low colonization rates (< 15%), low species richness, and low diversity. Furthermore, while endophyte community composition did differ among woody species, we found only marginal evidence of temporal changes in community composition over a single field season (July–September). Conclusions Our results indicate that even after a post-eruption period of 40 years, foliar endophyte communities still seem to be in the early stages of community development, and that the dominant pioneer riparian species Sitka alder (Alnus viridis ssp. sinuata) and Sitka willow (Salix sitchensis) may be serving as important microbial reservoirs for incoming plant colonizers. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01974-2.
Collapse
Affiliation(s)
- Emily R Wolfe
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA.
| | - Robyn Dove
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Cassandra Webster
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Daniel J Ballhorn
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| |
Collapse
|
21
|
Perreault R, Laforest-Lapointe I. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. THE ISME JOURNAL 2022; 16:339-345. [PMID: 34522008 PMCID: PMC8776876 DOI: 10.1038/s41396-021-01109-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.
Collapse
Affiliation(s)
- Rosaëlle Perreault
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Isabelle Laforest-Lapointe
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada ,grid.86715.3d0000 0000 9064 6198Centre Sève, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| |
Collapse
|
22
|
Santos TTD, Pes AMO, Morais PBDE. A diverse and partially cellulolytic fungal community contributes to the diet of three species of the aquatic insect Phylloicus (Trichoptera: Calamoceratidae) in Amazonian streams. AN ACAD BRAS CIENC 2021; 93:e20210598. [PMID: 34852068 DOI: 10.1590/0001-3765202120210598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Investigations on the fungal community associated with the digestive tract (DT) of insects have provided insights into the diversity of associated microorganisms and their potential roles in the interaction with their hosts. However, most studies have focused on terrestrial insects, with few studies focusing on aquatic insects in Neotropical regions. We studied fungal taxa associated with the DT of larval stages of the aquatic shredders Phylloicus amazonas, P. elektoros and P. fenestratus in the Brazilian Amazon Forest. Filamentous fungi were isolated, purified and screened for cellulolytic activity. A total of 33 fungal taxa was identified through the combination of classical and molecular taxonomy. The genus Penicillium was the most frequent in DT of Phylloicus spp. (18.75%). The occurrence of fungal taxa among hosts was quite variable, with more than half of the associated fungi being exclusive of each host species. A significant portion of the fungal community associated with each host presented cellulolytic activity (± 50%). It was concluded that the fungal community associated with Phylloicus spp. larvae consist mainly of fungal taxa from food items, which come from riparian vegetation (whose plant species are variable) or are indigenous of the aquatic ecosystems, which is the habitat of these larvae.
Collapse
Affiliation(s)
- Taides T Dos Santos
- Universidade Federal do Oeste da Bahia, Centro Multidisciplinar de Luís Eduardo Magalhães, Rua Itabuna, 1278, 47850-000 Luís Eduardo Magalhães, BA, Brazil
| | - Ana Maria O Pes
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil
| | - Paula B DE Morais
- Universidade Federal do Tocantins, Laboratório de Microbiologia Ambiental e Biotecnologia, Campus Universitário de Palmas, Av. NS 15, ALCNO 14, s/n, Bloco II, 77001-090 Palmas, TO, Brazil
| |
Collapse
|
23
|
Sentenac H, Loyau A, Leflaive J, Schmeller DS. The significance of biofilms to human, animal, plant and ecosystem health. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hugo Sentenac
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin Germany
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Dirk S. Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| |
Collapse
|
24
|
Ndinga-Muniania C, Mueller RC, Kuske CR, Porras-Alfaro A. Seasonal variation and potential roles of dark septate fungi in an arid grassland. Mycologia 2021; 113:1181-1198. [PMID: 34686124 DOI: 10.1080/00275514.2021.1965852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High temperatures and extended drought in temperate and tropical arid ecosystems promote the colonization of diverse microenvironments by dark septate fungi (DSF). These fungi contribute to soil nutrient cycling, soil stabilization, and plant survival, but the roles of individual DSF species, their distributions, and their community diversity are poorly understood. The objective of this study was to evaluate the distribution, seasonal variation, and potential roles of DSF on plant growth. We collected biocrust (lichen-, moss-, and cyanobacterium-dominated biocrusts) soils at different depths and rhizosphere soils from two grasses, Bromus tectorum and Pleuraphis jamesii, in an arid grassland near Moab, Utah, USA. Seasonal variation of DSF was evaluated using culture-based approaches and compared with fungal community profiles from next-generation sequencing (NGS). Culturing showed that DSF were 30% more abundant in biocrusts compared with the focal rhizospheres. The abundance of DSF varied seasonally in belowground samples (rhizosphere and below-biocrust), with a significant increase during the summer months. Pleosporales was the dominant order (35%) in both biocrust and rhizosphere soils out of 817 isolated fungi. Dominant DSF genera in culture included Alternaria, Preussia, Cladosporium, Phoma, and an unknown Pleosporales. Similar results were observed in biocrust and rhizosphere soils NGS. Further, seed germination experiments using dominant taxa were conducted to determine their potential roles on germination and seedling growth using maize as a model plant. Cladosporium and unknown Pleosporales isolates showed plant growth-promoting ability. The variation in abundance of DSF, their differential occurrence in different microenvironments, and their ability to grow in a xerotolerant medium reflect adaptations to summer environmental conditions and to changes in the abundance of organic matter, as well as a potential increase in plant investment in these fungi when heat and drought stresses are more severe.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Department of Biological Sciences and Institute for Environmental Studies, Western Illinois University, Macomb, Illinois 61455.,Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, 55108, Minnesota
| | - Rebecca C Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Andrea Porras-Alfaro
- Department of Biological Sciences and Institute for Environmental Studies, Western Illinois University, Macomb, Illinois 61455.,Division of Environmental Biology, National Science Foundation, Alexandria, Virginia 22314
| |
Collapse
|
25
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|
26
|
Seasonal Dynamics of Fungi Associated with Healthy and Diseased Pinus sylvestris Needles in Northern Europe. Microorganisms 2021; 9:microorganisms9081757. [PMID: 34442836 PMCID: PMC8400686 DOI: 10.3390/microorganisms9081757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023] Open
Abstract
The relationship between the ecological success of needle pathogens of forest trees and species richness of co-inhabiting endophytic fungi is poorly understood. One of the most dangerous foliar pathogens of pine is Dothistroma septosporum, which is a widely spread threat to northern European forests. We sampled two Pinus sylvestris sites in Estonia and two in Norway in order to analyse the relations between the abundance of D. septosporum and overall fungal richness, specific fungal species composition, time of season, needle age and position in the canopy. In both countries, the overall species richness of fungi was highest in autumn, showing a trend of increase with needle age. The overall species richness in the second-year needles in Estonia and third-year needles in Norway was similar, suggesting that a critical colonization threshold for needle shed in P. sylvestris is breached earlier in Estonia than in Norway. The fungal species richness in P. sylvestris needles was largely affected by Lophodermium conigenum. Especially in older needles, the relative abundance of L. conigenum was significantly higher in spring compared to summer or autumn. The timing of recruitment and colonization mechanisms of different foliage endophytes are shortly discussed.
Collapse
|
27
|
Nguyen MH, Shin KC, Lee JK. Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea. MYCOBIOLOGY 2021; 49:385-395. [PMID: 34512082 PMCID: PMC8409933 DOI: 10.1080/12298093.2021.1948175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.
Collapse
Affiliation(s)
- Manh Ha Nguyen
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Keum Chul Shin
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University (Institute of Agriculture and Life Science), Jinju, Korea
| | - Jong Kyu Lee
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
28
|
Zhou SYD, Zhang Q, Neilson R, Giles M, Li H, Yang XR, Su JQ, Zhu YG. Vertical distribution of antibiotic resistance genes in an urban green facade. ENVIRONMENT INTERNATIONAL 2021; 152:106502. [PMID: 33721724 DOI: 10.1016/j.envint.2021.106502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The phyllosphere is considered a key site for the transfer of both naturally and anthropogenically selected antimicrobial resistance genes (ARGs) to humans. Consequently, the development of green building systems may pose an, as yet, unexplored pathway for ARGs and pathogens to transfer from the environment to outdoor plants. We collected leaves from plants climbing up buildings at 1, 2, 4 and 15 m above ground level and collected associated dust samples from adjacent windowsills to determine the diversity and relative abundance of microbiota and ARGs. Overall, a total of 143 ARGs from 11 major classes and 18 mobile genetic elements (MGEs) were detected. The relative abundance of ARGs within the phyllosphere decreased with increasing height above ground level. Fast expectation-maximization microbial source tracking (FEAST) suggested that the contribution of soil and aerosols to the phyllosphere microbiome was limited. A culture-dependent method to isolate bacteria from plant tissues identified a total of 91 genera from root, stem, and leaf samples as well as endophytes isolated from leaves. Of those bacteria, 20 isolates representing 9 genera were known human pathogenic members to humans. Shared bacterial from culture-dependent and culture-independent methods suggest microorganisms may move from soil to plant, potentially through an endophytic mechanism and thus, there is a clear potential for movement of ARGs and human pathogens from the outdoor environment.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
29
|
Li Y, Chesters D, Wang M, Wubet T, Schuldt A, Anttonen P, Guo P, Chen J, Zhou Q, Zhang N, Ma K, Bruelheide H, Wu C, Zhu C. Tree diversity and functional leaf traits drive herbivore-associated microbiomes in subtropical China. Ecol Evol 2021; 11:6153-6166. [PMID: 34141209 PMCID: PMC8207151 DOI: 10.1002/ece3.7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Herbivorous insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar-associated bacteria both directly and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Biological SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ming‐Qiang Wang
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Biological SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Tesfaye Wubet
- Department of Community EcologyHelmholtz Centre for Environmental ResearchHalle/SaaleGermany
| | - Andreas Schuldt
- Forest Nature ConservationGeorg‐August‐University GöttingenGöttingenGermany
| | - Perttu Anttonen
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Peng‐Fei Guo
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Plant ProtectionYunnan Agriculture UniversityYunnanChina
| | - Jing‐Ting Chen
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Biological SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qing‐Song Zhou
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Nai‐Li Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Ke‐Ping Ma
- College of Biological SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Chun‐Sheng Wu
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Chao‐Dong Zhu
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Biological SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Integrated Pest ManagementInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
30
|
Dove NC, Klingeman DM, Carrell AA, Cregger MA, Schadt CW. Fire alters plant microbiome assembly patterns: integrating the plant and soil microbial response to disturbance. THE NEW PHYTOLOGIST 2021; 230:2433-2446. [PMID: 33525047 PMCID: PMC8251558 DOI: 10.1111/nph.17248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/27/2021] [Indexed: 05/06/2023]
Abstract
It is increasingly evident that the plant microbiome is a strong determinant of plant health. While the ability to manipulate the microbiome in plants and ecosystems recovering from disturbance may be useful, our understanding of the plant microbiome in regenerating plant communities is currently limited. Using 16S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region amplicon sequencing, we characterized the leaf, stem, fine root, rhizome, and rhizosphere microbiome of < 1-yr-old aspen saplings and the associated bulk soil after a recent high-intensity prescribed fire across a burn severity gradient. Consistent with previous studies, we found that soil microbiomes are responsive to fire. We extend these findings by showing that certain plant tissue microbiomes also change in response to fire. Differences in soil microbiome compositions could be attributed to soil chemical characteristics, but, generally, plant tissue microbiomes were not related to plant tissue elemental concentrations. Using source tracking modeling, we also show that fire influences the relative dominance of microbial inoculum and the vertical inheritance of the sapling microbiome from the parent tree. Overall, our results demonstrate how fire impacts plant microbiome assembly, diversity, and composition and highlights potential for further research towards increasing plant fitness and ecosystem recovery after fire events.
Collapse
Affiliation(s)
- Nicholas C. Dove
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Dawn M. Klingeman
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Alyssa A. Carrell
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Melissa A. Cregger
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTN37996USA
| | - Christopher W. Schadt
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTN37996USA
| |
Collapse
|
31
|
Siddique AB, Biella P, Unterseher M, Albrectsen BR. Mycobiomes of Young Beech Trees Are Distinguished by Organ Rather Than by Habitat, and Community Analyses Suggest Competitive Interactions Among Twig Fungi. Front Microbiol 2021; 12:646302. [PMID: 33936005 PMCID: PMC8086555 DOI: 10.3389/fmicb.2021.646302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Beech trees (Fagus sylvatica) are prominent keystone species of great economic and environmental value for central Europe, hosting a diverse mycobiome. The composition of endophyte communities may depend on tree health, plant organ or tissue, and growth habitat. To evaluate mycobiome communalities at local scales, buds, and twigs were sampled from two young healthy mountain beech stands in Bavaria, Germany, four kilometers apart. With Illumina high-throughput sequencing, we found 113 fungal taxa from 0.7 million high-quality reads that mainly consisted of Ascomycota (52%) and Basidiomycota (26%) taxa. Significant correlations between richness and diversity indices were observed (p < 0.05), and mycobiomes did not differ between habitats in the current study. Species richness and diversity were higher in twigs compared to spring buds, and the assemblages in twigs shared most similarities. Interaction network analyses revealed that twig-bound fungi shared similar numbers of (interaction) links with others, dominated by negative co-occurrences, suggesting that competitive exclusion may be the predominant ecological interaction in the highly connected twig mycobiome. Combining community and network analyses strengthened the evidence that plant organs may filter endophytic communities directly through colonization access and indirectly by facilitating competitive interactions between the fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
32
|
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:87-99. [PMID: 37284285 PMCID: PMC10168098 DOI: 10.1002/pei3.10043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/08/2023]
Abstract
Plants are colonized by diverse fungal and viral communities that influence their growth and survival as well as ecosystem functioning. Viruses interact with both plants and the fungi they host. Our understanding of plant-fungi-virus interactions is very limited, especially in wild plants. Combining metagenomic and culturomic approaches, we assessed the richness, diversity, and composition of leaf-associated fungal and viral communities from pools of herbaceous wild plants representative of four sites corresponding to cultivated or natural ecosystems. We identified 161 fungal families and 18 viral families comprising 249 RNA-dependent RNA polymerase-based operational taxonomic units (RdRp OTUs) from leaves. Fungal culturomics captured 12.3% of the fungal diversity recovered with metagenomic approaches and, unexpectedly, retrieved viral OTUs that were almost entirely different from those recovered by leaf metagenomics. Ecosystem management had a significant influence on both leaf mycobiome and virome, with a higher fungal community richness in natural ecosystems and a higher viral family richness in cultivated ecosystems, suggesting that leaf-associated fungal and viral communities are under the influence of different ecological drivers. Both the leaf-associated fungal and viral community compositions showed a strong site-specificity. Further research is needed to confirm these trends and unravel the factors structuring plant-fungi-virus interactions in wild plant populations.
Collapse
Affiliation(s)
- Yuxin Ma
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | | | - Armelle Marais
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Marie Lefebvre
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Sébastien Theil
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
- Present address:
INRA UMRF20, côte de ReyneAurillac15000France
| | | | | |
Collapse
|
33
|
Liu D, Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ Microbiol 2020; 23:1842-1857. [PMID: 32686214 DOI: 10.1111/1462-2920.15172] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Microbial ecology and activity in wine production influences grapevine health and productivity, conversion of sugar to ethanol during fermentation, wine aroma, wine quality and distinctiveness. Fungi in the vineyard ecosystem are not well described. Here, we characterized the spatial and temporal dynamics of fungal communities associated with the grapevine (grapes, flowers, leaves, and roots) and soils over an annual growth cycle in two vineyards to investigate the influences of grape habitat, plant developmental stage (flowering, fruit set, veraison, and harvest), vineyards, and climatic conditions. Fungi were influenced by both the grapevine habitat and plant development stage. The core microbiome was prioritized over space and time, and the identified core members drove seasonal community succession. The developmental stage of veraison, where the grapes undergo a dramatic change in metabolism and start accumulating sugar, coincided with a distinct shift in fungal communities. Co-occurrence networks showed strong correlations between the plant microbiome, the soil microbiome, and weather indices. Our study describes the complex ecological dynamics that occur in microbial assemblages over a growing season and highlight succession of the core community in vineyards.
Collapse
Affiliation(s)
- Di Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
34
|
Darcy JL, Swift SOI, Cobian GM, Zahn GL, Perry BA, Amend AS. Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants. Mol Ecol 2020; 29:3103-3116. [PMID: 32640084 DOI: 10.1111/mec.15544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
A phylogenetically diverse array of fungi live within healthy leaf tissue of dicotyledonous plants. Many studies have examined these endophytes within a single plant species and/or at small spatial scales, but landscape-scale variables that determine their community composition are not well understood, either across geographic space, across climatic conditions, or in the context of host plant phylogeny. Here, we evaluate the contributions of these variables to endophyte beta diversity using a survey of foliar endophytic fungi in native Hawaiian dicots sampled across the Hawaiian archipelago. We used Illumina technology to sequence fungal ITS1 amplicons to characterize foliar endophyte communities across five islands and 80 host plant genera. We found that communities of foliar endophytic fungi showed strong geographic structuring between distances of 7 and 36 km. Endophyte community structure was most strongly associated with host plant phylogeny and evapotranspiration, and was also significantly associated with NDVI, elevation and solar radiation. Additionally, our bipartite network analysis revealed that the five islands we sampled each harboured significantly specialized endophyte communities. These results demonstrate how the interaction of factors at large and small spatial and phylogenetic scales shapes fungal symbiont communities.
Collapse
Affiliation(s)
- John L Darcy
- Department of Botany, University of Hawaii, Honolulu, HI, USA.,Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean O I Swift
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| | - Gerald M Cobian
- Department of Botany, University of Hawaii, Honolulu, HI, USA.,Department of Biological Sciences, California State University Chico, Chico, CA, USA
| | - Geoffrey L Zahn
- Department of Biology, Utah Valley University, Orem, UT, USA
| | - Brian A Perry
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Anthony S Amend
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
35
|
Mason LM, Eagar A, Patel P, Blackwood CB, DeForest JL. Potential microbial bioindicators of phosphorus mining in a temperate deciduous forest. J Appl Microbiol 2020; 130:109-122. [PMID: 32619072 DOI: 10.1111/jam.14761] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 01/20/2023]
Abstract
AIMS The soil microbial community plays a critical role in increasing phosphorus (P) availability in low-P, weathered soils by "mining" recalcitrant organic P through the production of phosphatase enzymes. However, there is a lack of data on the fungal and bacterial taxa which are directly involved in P mining, which could also serve as potential microbial bioindicators of low P availability. METHODS AND RESULTS Leveraging a 5-year P enrichment experiment on low-P forest soils, high-throughput sequencing was used to profile the microbial community to determine which taxa associate closely with P availability. We hypothesized that there would be a specialized group of soil micro-organisms that could access recalcitrant P and whose presence could serve as a bioindicator of P mining. Community profiling revealed several candidate bioindicators of P mining (Russulales, Acidobacteria Subgroup 2, Acidobacteriales, Obscuribacterales and Solibacterales), whose relative abundance declined with elevated P and had a significant, positive association with phosphatase production. In addition, we identified candidate bioindicators of high P availability (Mytilinidales, Sebacinales, Chitinophagales, Cytophagales, Saccharimonadales, Opitulales and Gemmatales). CONCLUSIONS This research provides evidence that mitigating P limitation in this ecosystem may be a specialized trait and is mediated by a few microbial taxa. SIGNIFICANCE AND IMPACT OF THE STUDY Here, we characterize Orders of soil microbes associated with manipulated phosphorus availability in forest soils to determine bioindicator candidates for phosphorus. Likewise, we provide evidence that the microbial trait to utilize recalcitrant organic forms of P (e.g. P mining) is likely a specialized trait and not common to all members of the soil microbial community. This work further elucidates the role that a complex microbial community plays in the cycling of P in low-P soils, and provides evidence for future studies on microbial linkages to human-induced ecosystem changes.
Collapse
Affiliation(s)
- L M Mason
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - A Eagar
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - P Patel
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - C B Blackwood
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - J L DeForest
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| |
Collapse
|
36
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
37
|
Jia Q, Qu J, Mu H, Sun H, Wu C. Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 2020. [DOI: 10.1007/s13199-019-00663-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Into P, Pontes A, Sampaio JP, Limtong S. Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms 2020; 8:E80. [PMID: 31936155 PMCID: PMC7022409 DOI: 10.3390/microorganisms8010080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
The ecology and diversity of phylloplane yeasts is less well understood in tropical regions than in temperate ones. Therefore, we investigated the yeast diversity associated with the phylloplane of corn, an economically important crop in Thailand, by a culture-dependent method. Thirty-six leaf samples were collected and 217 yeast strains were isolated by plating leaf-washings. The strains were grouped by PCR-fingerprinting and representative strains were identified by analysis of the D1/D2 domain of the large subunit rRNA gene. In total, 212 strains were identified within 10 species in the Ascomycota and 32 species in the Basidiomycota. Five strains represented potential new species in the Basidiomycota, one strain was recently described as Papiliotrema plantarum, and four strains belonged to the genera Vishniacozyma and Rhodotorula. A higher number of strains in the Basidiomycota (81.6%) was obtained. Hannaella sinensis was the species with the highest occurrence. Principal coordinates analysis ordinations of yeast communities revealed that there were no differences in the similarity of the sampling sites. The estimation of the expected species richness showed that the observed species richness was lower than expected. This work indicated that a majority of yeast associated with the phylloplane of corn plant belongs to the phylum Basidiomycota.
Collapse
Affiliation(s)
- Parichat Into
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Ana Pontes
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-51 Caparica, Portugal;
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-51 Caparica, Portugal;
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
39
|
Elfstrand M, Zhou L, Baison J, Olson Å, Lundén K, Karlsson B, Wu HX, Stenlid J, García‐Gil MR. Genotypic variation in Norway spruce correlates to fungal communities in vegetative buds. Mol Ecol 2020; 29:199-213. [PMID: 31755612 PMCID: PMC7003977 DOI: 10.1111/mec.15314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome-wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.
Collapse
Affiliation(s)
- Malin Elfstrand
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Linghua Zhou
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - John Baison
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Åke Olson
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Karl Lundén
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Harry X. Wu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Jan Stenlid
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - M. Rosario García‐Gil
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
40
|
Kosawang C, Sørensen H, Kjær ED, Dilokpimol A, McKinney LV, Collinge DB, Nielsen LR. Defining the twig fungal communities of Fraxinus species and Fraxinus excelsior genotypes with differences in susceptibility to ash dieback. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Skaltsas DN, Badotti F, Vaz ABM, Silva FFD, Gazis R, Wurdack K, Castlebury L, Góes-Neto A, Chaverri P. Exploration of stem endophytic communities revealed developmental stage as one of the drivers of fungal endophytic community assemblages in two Amazonian hardwood genera. Sci Rep 2019; 9:12685. [PMID: 31481728 PMCID: PMC6722055 DOI: 10.1038/s41598-019-48943-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Many aspects of the dynamics of tropical fungal endophyte communities are poorly known, including the influence of host taxonomy, host life stage, host defence, and host geographical distance on community assembly and composition. Recent fungal endophyte research has focused on Hevea brasiliensis due to its global importance as the main source of natural rubber. However, almost no data exist on the fungal community harboured within other Hevea species or its sister genus Micrandra. In this study, we expanded sampling to include four additional Hevea spp. and two Micrandra spp., as well as two host developmental stages. Through culture-dependent and -independent (metagenomic) approaches, a total of 381 seedlings and 144 adults distributed across three remote areas within the Peruvian Amazon were sampled. Results from both sampling methodologies indicate that host developmental stage had a greater influence in community assemblage than host taxonomy or locality. Based on FunGuild ecological guild assignments, saprotrophic and mycotrophic endophytes were more frequent in adults, while plant pathogens were dominant in seedlings. Trichoderma was the most abundant genus recovered from adult trees while Diaporthe prevailed in seedlings. Potential explanations for that disparity of abundance are discussed in relation to plant physiological traits and community ecology hypotheses.
Collapse
Affiliation(s)
- Demetra N Skaltsas
- University of Maryland, Department of Plant Science and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland, 20742, USA.
- U.S. Department of Agriculture, Agricultural Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland, 20705, USA.
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, MC-100-44, Oak Ridge, TN, 37831, USA.
| | - Fernanda Badotti
- Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Química, 30421-169, Belo Horizonte, Minas Gerais, 30421-169, Brazil
| | - Aline Bruna Martins Vaz
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, 31270-901, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Felipe Ferreira da Silva
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, 31270-901, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Romina Gazis
- University of Florida, Department of Plant Pathology, Tropical Research & Education Center, 18905 SW 280 Street, Homestead, Florida, 33031, USA
| | - Kenneth Wurdack
- Smithsonian Institution, Department of Botany, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia, 20013, USA
| | - Lisa Castlebury
- U.S. Department of Agriculture, Agricultural Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland, 20705, USA
| | - Aristóteles Góes-Neto
- Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Química, 30421-169, Belo Horizonte, Minas Gerais, 30421-169, Brazil
| | - Priscila Chaverri
- University of Maryland, Department of Plant Science and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland, 20742, USA
- Escuela de Biología, Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica, USA
| |
Collapse
|
42
|
Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, Håkansson Å, Uhlig E, Becher PG, Karlsson M, Alsanius BW. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:501-512. [PMID: 31030156 DOI: 10.1016/j.scitotenv.2019.04.254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The plant microbiome is an important factor for plant health and productivity. While the impact of nitrogen (N) availability for plant growth and development is well established, its influence on the microbial phyllosphere community structure is unknown. We hypothesize that nitrogen impacts the growth and abundance of several microorganisms on the leaf surface. The bacterial and fungal communities of baby leaf spinach (Spinacia oleracea), and rocket (Diplotaxis tenuifolia) were investigated in a field trial for two years in a commercial setting. Nitrogen fertilizer was tested in four doses (basic nitrogen, basic + suboptimal, basic + commercial, basic + excess) with six replicates in each. Culture-independent (Illumina sequencing) and culture-dependent (viable count and identification of bacterial isolates) community studies were combined with monitoring of plant physiology and site weather conditions. This study found that alpha diversity of bacterial communities decreased in response to increasing nitrogen fertilizer dose, whereas viable counts showed no differences. Correspondingly, fungal communities of the spinach phyllosphere showed a decreasing pattern, whereas the decreasing diversity of fungal communities of rocket was not significant. Plant species and effects of annual variations on microbiome structure were observed for bacterial and fungal communities on both spinach and rocket. This study provides novel insights on the impact of nitrogen fertilizer regime on a nutrient scarce habitat, the phyllosphere.
Collapse
Affiliation(s)
- Julia Darlison
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden.
| | - Lars Mogren
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Maria Grudén
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Antoine Minet
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Clarisse Liné
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Morgane Mieli
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Torbjörn Bengtsson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Åsa Håkansson
- LTH Lund University, Department of Food Technology, Box 124, SE-221 00 Lund, Sweden
| | - Elisabeth Uhlig
- LTH Lund University, Department of Food Technology, Box 124, SE-221 00 Lund, Sweden
| | - Paul G Becher
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Maria Karlsson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| | - Beatrix W Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, PO Box 103, SE-230 53 Alnarp, Sweden
| |
Collapse
|
43
|
Boutigny AL, Gautier A, Basler R, Dauthieux F, Leite S, Valade R, Aguayo J, Ioos R, Laval V. Metabarcoding targeting the EF1 alpha region to assess Fusarium diversity on cereals. PLoS One 2019; 14:e0207988. [PMID: 30633747 PMCID: PMC6329491 DOI: 10.1371/journal.pone.0207988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Fusarium head blight (FHB) is a major cereal disease caused by a complex of Fusarium species. These species vary in importance depending on climatic conditions, agronomic factors or host genotype. In addition, Fusarium species can release toxic secondary metabolites. These mycotoxins constitute a significant food safety concern as they have health implications in both humans and animals. The Fusarium species involved in FHB differ in their pathogenicity, ability to produce mycotoxins, and fungicide sensitivity. Accurate and exhaustive identification of Fusarium species in planta is therefore of great importance. In this study, using a new set of primers targeting the EF1α gene, the diversity of Fusarium species on cereals was evaluated using Illumina high-throughput sequencing. The PCR amplification parameters and bioinformatic pipeline were optimized with mock and artificially infected grain communities and further tested on 65 field samples. Fusarium species were retrieved from mock communities and good reproducibility between different runs or PCR cycle numbers was be observed. The method enabled the detection of as few as one single Fusarium-infected grain in 10,000. Up to 17 different Fusarium species were detected in field samples of barley, durum and soft wheat harvested in France. This new set of primers enables the assessment of Fusarium diversity by high-throughput sequencing on cereal samples. It provides a more exhaustive picture of the Fusarium community than the currently used techniques based on isolation or species-specific PCR detection. This new experimental approach may be used to show changes in the composition of the Fusarium complex or to detect the emergence of new Fusarium species as far as the EF1α sequence of these species show a sufficient amount of polymorphism in the portion of sequence analyzed. Information on the distribution and prevalence of the different Fusarium species in a given geographical area, and in response to various environmental factors, is of great interest for managing the disease and predicting mycotoxin contamination risks.
Collapse
Affiliation(s)
- Anne-Laure Boutigny
- ANSES Laboratoire de la santé des végétaux, Unité de Mycologie, Malzéville, France
| | | | - Ryan Basler
- INRA, UMR1290 BIOGER_CPP, Thiverval-Grignon, France
| | | | | | - Romain Valade
- ARVALIS Institut du végétal, Thiverval-Grignon, France
| | - Jaime Aguayo
- ANSES Laboratoire de la santé des végétaux, Unité de Mycologie, Malzéville, France
| | - Renaud Ioos
- ANSES Laboratoire de la santé des végétaux, Unité de Mycologie, Malzéville, France
| | - Valérie Laval
- INRA, UMR1290 BIOGER_CPP, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
44
|
Fuirst M, Veit RR, Hahn M, Dheilly N, Thorne LH. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One 2018; 13:e0209200. [PMID: 30562368 PMCID: PMC6298667 DOI: 10.1371/journal.pone.0209200] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 01/22/2023] Open
Abstract
Larus gull species have proven adaptable to urbanization and due to their generalist feeding behaviors, they provide useful opportunities to study how urban environments impact foraging behavior and host-associated microbiota. We evaluated how urbanization influenced the foraging behavior and microbiome characteristics of breeding herring gulls (Larus argentatus) at three different colonies on the east coast of the United States. Study colonies represented high, medium and low degrees of urbanization, respectively. At all colonies, gulls frequently foraged at landfills and in other urban environments, but both the use of urban environments and gull foraging metrics differed with the degree of urbanization. Gulls at the more urban colonies used urban environments more frequently, showed higher rates of site fidelity and took shorter trips. Gulls at less urban colonies used a greater diversity of habitat types and foraged offshore. We observed high microbial diversity at all colonies, though microbial diversity was highest at the least urban colony where gulls used a wider variety of foraging habitats. This suggests that gulls may acquire a wider range of bacteria when visiting a higher variety of foraging sites. Our findings highlight the influence of urban habitats on gull movements and microbiome composition and diversity during the breeding season and represent the first application of amplicon sequence variants, an objective and repeatable method of bacterial classification, to study the microbiota of a seabird species.
Collapse
Affiliation(s)
- Matthew Fuirst
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Richard R. Veit
- Department of Biology, College of Staten Island (CSI) CUNY, Staten Island, NY, United States of America
| | - Megan Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Nolwenn Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Lesley H. Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
45
|
Qian X, Duan T, Sun X, Zheng Y, Wang Y, Hu M, Yao H, Ji N, Lv P, Chen L, Shi M, Guo L, Zhang D. Host genotype strongly influences phyllosphere fungal communities associated with Mussaenda pubescens var. alba (Rubiaceae). FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Whitaker BK, Reynolds HL, Clay K. Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Ecology 2018; 99:2703-2711. [PMID: 30367461 DOI: 10.1002/ecy.2543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
Experimental tests of community assembly mechanisms for host-associated microbiomes in nature are lacking. Asymptomatic foliar fungal endophytes are a major component of the plant microbiome and are increasingly recognized for their impacts on plant performance, including pathogen defense, hormonal manipulation, and drought tolerance. However, it remains unclear whether fungal endophytes preferentially colonize certain host ecotypes or genotypes, reflecting some degree of biotic adaptation in the symbioses, or whether colonization is simply a function of spore type and abundance within the local environment. Whether host ecotype, local environment, or some combination of both controls the pattern of microbiome formation across hosts represents a new dimension to the age-old debate of nature versus nurture. Here, we used a reciprocal transplant design to explore the extent of host specificity and biotic adaptation in the plant microbiome, as evidenced by differential colonization of host genetic types by endophytes. Specifically, replicate plants from three locally-adapted ecotypes of the native grass Panicum virgatum (switchgrass) were transplanted at three geographically distinct field sites (one home and two away) in the Midwestern US. At the end of the growing season, plant leaves were harvested and the fungal microbiome characterized using culture-dependent sequencing techniques. Our results demonstrated that fungal endophyte community structure was determined by local environment (i.e., site), but not by host ecotype. Fungal richness and diversity also strongly differed by site, with lower fungal diversity at a riparian field site, whereas host ecotype had no effect. By contrast, there were significant differences in plant phenotypes across all ecotypes and sites, indicating ecotypic differentiation of host phenotype. Overall, our results indicate that environmental factors are the primary drivers of community structure in the switchgrass fungal microbiome.
Collapse
Affiliation(s)
- Briana K Whitaker
- Department of Biology, Indiana University, 1001 East 3rd St., Bloomington, Indiana, 47401, USA.,Department of Plant & Microbial Biology, North Carolina State University, Box 7612, Raleigh, North Carolina, 27695-7612, USA
| | - Heather L Reynolds
- Department of Biology, Indiana University, 1001 East 3rd St., Bloomington, Indiana, 47401, USA
| | - Keith Clay
- Department of Biology, Indiana University, 1001 East 3rd St., Bloomington, Indiana, 47401, USA.,Department of Ecology & Evolutionary Biology, Tulane University, 6823 St,. Charles Ave., New Orleans, Louisiana, 70118, USA
| |
Collapse
|
47
|
Carvalho SD, Castillo JA. Influence of Light on Plant-Phyllosphere Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1482. [PMID: 30369938 PMCID: PMC6194327 DOI: 10.3389/fpls.2018.01482] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 05/11/2023]
Abstract
Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Collapse
Affiliation(s)
- Sofia D. Carvalho
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José A. Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
48
|
Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P. Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. MICROBIAL ECOLOGY 2018; 76:668-679. [PMID: 29500493 DOI: 10.1007/s00248-018-1161-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The diversity and factors influencing fungal assemblages in phyllosphere of Mediterranean tree species have been barely studied, especially when endophytic and epiphytic communities are simultaneously considered. In this work, the endophytic and epiphytic fungal communities from olive tree phyllosphere were studied. This tree species is natural from the Mediterranean region and adapted to grow under adverse climatic conditions. The main objectives were to determine whether there are differences between both fungal communities and to examine whether different abiotic (climate-related) and biotic (plant organs) factors play a pivotal role in structuring these communities. Both communities differed in size and composition, with epiphytic community being richer and more abundant, displaying also a dominance of melanized fungi. Season was the major driver of community composition, especially of epiphytes. Other drivers shaping epiphytes were wind speed and temperature, while plant organ, rainfall, and temperature were the major drivers for endophytic composition. In contrast, canopy orientation caused slight variations in community composition of fungi, but with distinct effects in spring and autumn seasons. In conclusion, epiphytic and endophytic communities are not driven by the same factors. Several sources of variation undergo complex interactions to form and maintain phyllosphere fungal community in Mediterranean climates. Climatic parameters have influence on these fungal communities, suggesting that they are likely to be affected by climate changes in a near future.
Collapse
Affiliation(s)
- Teresa Gomes
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - José Alberto Pereira
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
| | - Jacinto Benhadi
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal
| | - Teresa Lino-Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- School of Agriculture-Polytechnic Institute of Bragança, CIMO, Campus Sta Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
49
|
Singh P, Santoni S, This P, Péros JP. Genotype-Environment Interaction Shapes the Microbial Assemblage in Grapevine's Phyllosphere and Carposphere: An NGS Approach. Microorganisms 2018; 6:microorganisms6040096. [PMID: 30248973 PMCID: PMC6313654 DOI: 10.3390/microorganisms6040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Plant surface or phyllosphere is the habitat of hyperdiverse microbial communities and it is always exposed to the fluctuating environmental factors, which is thought to be one of the potential drivers of microbial community structuring. Impact of grapevine genotypes in variable environmental factors (i.e., at different geographic locations) on the phyllosphere has never been studied and is the main objective of this report. Using high throughput short amplicon sequencing of 16S rRNA genes and internal transcribed spacer (ITS), we analyzed the impacts of genotypes of Vitis Vinifera (coming from three genetic pool), on the microbial (bacterial and fungal) assemblage in the phyllosphere. First, we performed the analysis of the phyllosphere microbiome while using fifteen genotypes that were chosen to maximize intra-specific diversity and grown in two Mediterranean vineyards. Then, the same analysis was performed on five commercially important varieties of Vitis vinifera that were sampled from three different French agro-climatic zones (or terroir: a combination of climate, soils, and human practices). Our study revealed that, at a particular geographic location, genotypes have an impact on microbial assemblage in the phyllosphere and carposphere of leaf and fruit (or berries), respectively, which is more prominent on the carposphere but the effect of terroir was much stronger than the genotype when the leaf phyllosphere of five grapevine varieties grown in different agro-climatic zones was compared. Impacts of the season and exterior plant organs (leaf and berries) on microbial taxa structuring in the phyllosphere was also assessed and presented in this report.
Collapse
Affiliation(s)
- Prashant Singh
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Patrice This
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| |
Collapse
|
50
|
Whitebark pine foliar fungal endophyte communities in the southern Cascade Range, USA: Host mycobiomes and white pine blister rust. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|