1
|
Zhao F, Cui C, Wei W, Du Z, Wu K, Jiang X, Zheng Y, Liu Y, Mei H, Zhang H. The candidate gene SibHLHA regulates anthocyanin-driven purple pigmentation in Sesamum indicum flowers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:40. [PMID: 39888402 DOI: 10.1007/s00122-025-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Anthocyanins not only serve as critical pigments determining floral hues but also play essential roles in attracting insects for pollination, feeding animals and mitigating abiotic stress. However, the molecular mechanisms underlying the regulation of flower color in sesame has not yet been reported. In this study, an F2 population was constructed by crossing 'Ganzhi 9' (purple-flowered) with 'BS377' (white-flowered). Genetic analysis revealed that purple flower is controlled by a single locus named as SiFC (Sesamum indicum flower color). Using the BSA-seq approach, SiFC was preliminarily identified on chromosome 6, which was further mapped to a 473 kb interval using Kompetitive Allele Specific PCR (KASP) marker analysis. Moreover, functional annotation, expression profiling, and sequence analyses confirmed that the SibHLHA (Sesame10992) was the most likely candidate gene for SiFC. In addition, SibHLHA, highly homologous to AtTT8 (a key regulator in the anthocyanin synthesis pathway), was found to interact with WER-like or TTG1 proteins, enhancing anthocyanin accumulation in tobacco leaves. Furthermore, an SNP in the second exon of Sibhlha (BS377 variant) was found to alter the encoding amino acids, which affected Sibhlha binding to MYB protein and showed low anthocyanin in tobacco leaves compared with SibHLHA binding with WER-like or TTG1 proteins. These findings not only deepen our understanding of the molecular mechanisms controlling sesame corolla color, but also provide valuable insights for developing ornamental and consumable sesame varieties.
Collapse
Affiliation(s)
- Fengli Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Wenxing Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- The Shennong Laboratory, Zhengzhou, China.
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- The Shennong Laboratory, Zhengzhou, China.
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
2
|
Li S, Yang Y, Zhou Z, Zhou X, Lei D, He R, Zhang Y, Zhang J, Lin Y, Wang Y, Li M, He W, Chen Q, Luo Y, Wang X, Tang H, Zhang Y. PbMYB5 transcription factor plays a role in regulating anthocyanin biosynthesis in pear ( Pyrus bretschneideri Rehd) skin. FRONTIERS IN PLANT SCIENCE 2025; 15:1492384. [PMID: 39877736 PMCID: PMC11772430 DOI: 10.3389/fpls.2024.1492384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
The phenylacetone pathway, which encompasses flavonoids, lignin, and other compounds, is of paramount importance in determining the quality of pear fruit. Nevertheless, the precise regulatory functions of R2R3-MYB transcription factors in the metabolic pathways that regulate pear color changes remain unclear. In this study, we isolated an R2R3-PbMYB5(PbMYB5) transcription factor from 'Red Zaosu' pears and demonstrated that it influenced the expression of several genes, including PbCAD1, PbF5H, PbLAR, PbANR, and PbUFGT. The overexpression of PbMYB5 resulted in a notable elevation in anthocyanin concentration within the pear epidermis. Further research has shown that PbMYB5 is able to bind to PbANS and also has interactions with PbbHLH3 and PbbHLH33.We proposed that PbMYB5 forms a complex with PbbHLH3, PbbHLH33, and PbWD40 to activate PbANS and promote anthocyanin accumulation. This study offers new insights into the regulation of various metabolic pathways that impact fruit coloration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Phukela B, Leonard H, Sapir Y. In silico analysis of R2R3-MYB transcription factors in the basal eudicot model, Aquilegia coerulea. 3 Biotech 2024; 14:284. [PMID: 39479299 PMCID: PMC11522220 DOI: 10.1007/s13205-024-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
R2R3-MYBs are an important group of transcription factors that regulate crucial developmental processes across the plant kingdom; yet no comprehensive analysis of the R2R3-MYBs in the early-diverging eudicot clade of Ranunculaceae has been conducted so far. In the present study, Aquilegia coerulea is chosen to understand the extent of conservation and divergence of R2R3-MYBs as a representative of the family by analysing the genomic distribution, organization, gene structure, physiochemical properties, protein architecture, evolution and possible mode of expansion. Genome-wide analysis showed the presence of 82 putative homologues classified into 21 subgroups, based on phylogenetic analysis of full-length protein sequences. The domain has remained largely conserved across all homologues with few differences from the characterized Arabidopsis thaliana R2R3-MYBs. The topology of the phylogenetic tree remains the same when full-length protein sequences are used, indicating that the evolution of R2R3-MYBs is driven by the domain region only. This is supported by the presence of similar structures of exon-intron and conserved motifs within the same subgroup. Furthermore, comparisons of the AqcoeR2R3-MYB members with monocots and core-eudicots revealed the evolutionary expansion of a few functional clades, such as A. thaliana R2R3-MYB subgroup 6 (SG6), the upstream regulatory factors of floral pigment biosynthesis and floral color. The reconstructed evolutionary history of SG6-like genes across angiosperms highlights the occurrence of independent duplication events in the genus Aquilegia. AqcoeR2R3-MYB genes are present in all seven chromosomes of A. coerulea, most of which result from local and segmental duplications. Selection analysis of these duplicated gene pairs indicates purifying selection except one, and the physiochemical analyses of R2R3-MYBs reveal differences among the MYBs signifying their functional diversification. This study paves the way for further investigation of paralogous copies and their probable role in the evolution of different floral traits in A. coerulea. It lays the foundation for functional genomic studies of R2R3-MYBs in the basal eudicots and facilitates comparative studies among angiosperms. The work also provides a framework for deciphering novel genetic regulatory pathways that govern the diversity of floral morphology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04119-y.
Collapse
Affiliation(s)
- Banisha Phukela
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Leonard
- Department of Botany, Miami University, Oxford, OH 45056 USA
| | - Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Khojayori FN, Ponraj U, Buch K, Zhao Y, Herrera-Ubaldo H, Glover BJ. Evolution and development of complex floral displays. Development 2024; 151:dev203027. [PMID: 39498660 PMCID: PMC11574353 DOI: 10.1242/dev.203027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Flowering plants - angiosperms - display an astounding diversity of floral features, which have evolved in response to animal pollination and have resulted in the most species-rich plant clade. Combinations of macroscale (e.g. colour, symmetry, organ number) and microscale (e.g. cell type, tissue patterning) features often lead to highly elaborate floral displays. Most studies have focused on model species with simple floral displays to uncover the genetic and evolutionary mechanisms involved in flower evolution, yet few studies have focused on complex floral displays. Here, we review current knowledge on the development and evolution of complex floral displays. We review gene regulatory networks involved in four developmental pathways contributing to overall floral display (inflorescence architecture, organ identity, flower symmetry and flower colour) in classical plant models. We then discuss how evolutionary modification of one or more of these pathways has resulted in the production of a range of complex floral displays. Finally, we explore modular systems in which multiple pathways have been modified simultaneously, generating the most elaborate floral displays.
Collapse
Affiliation(s)
- Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Kristina Buch
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yi Zhao
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Humberto Herrera-Ubaldo
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
5
|
Jiang Y, Hu X, Mei Y, Li X, Chen S, Yuan J, Wang Y, Tao R, Si J, Xu Z, Ke F, Yang H. A new UiO-66-NH 2 MOF-based nano-immobilized DFR enzyme as a biocatalyst for the synthesis of anthocyanidins. Int J Biol Macromol 2024; 277:134296. [PMID: 39094888 DOI: 10.1016/j.ijbiomac.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xiaodie Hu
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yu Mei
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xuefeng Li
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Shilin Chen
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingbo Yuan
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yang Wang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Ranran Tao
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingyu Si
- Department of Chemistry and Materials Engineering, Hefei University, Hefei 230601, People's Republic of China.
| | - Zezhong Xu
- Analytical and Testing Center, Hefei University, Hefei 230601, People's Republic of China.
| | - Fei Ke
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Hua Yang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
6
|
Miao C, Song C, Ding N, Zuo X, Zhang Z, Zhang X, Mu J, Wang F. De novo transcriptome analysis identifies RpMYB1 as an activator of anthocyanin biosynthesis in Rehmannia piasezkii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108964. [PMID: 39094477 DOI: 10.1016/j.plaphy.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.
Collapse
Affiliation(s)
- Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ning Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jing Mu
- National Resource Center for Chinese Meteria Medica, State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Riglet L, Zardilis A, Fairnie ALM, Yeo MT, Jönsson H, Moyroud E. Hibiscus bullseyes reveal mechanisms controlling petal pattern proportions that influence plant-pollinator interactions. SCIENCE ADVANCES 2024; 10:eadp5574. [PMID: 39270029 PMCID: PMC11397502 DOI: 10.1126/sciadv.adp5574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Colorful flower patterns are key signals to attract pollinators. To produce such motifs, plants specify boundaries dividing petals into subdomains where cells develop distinctive pigmentations, shapes, and textures. While some transcription factors and biosynthetic pathways behind these characteristics are well studied, the upstream processes restricting their activities to specific petal regions remain enigmatic. Here, we unveil that the petal surface of Hibiscus trionum, an emerging model featuring a bullseye on its corolla, is prepatterned as the bullseye boundary position is specified long before it becomes visible. Using a computational model, we explore how pattern proportions are maintained while petals experience a 100-fold size increase. Exploiting transgenic lines and natural variants, we show that plants can regulate boundary position during the prepatterning phase or modulate growth on either side of this boundary later in development to vary bullseye proportions. Such modifications are functionally relevant, as buff-tailed bumblebees can reliably identify food sources based on bullseye size and prefer certain pattern proportions.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - May T Yeo
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund 223 62, Sweden
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
8
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
9
|
Fattorini R, Khojayori FN, Mellers G, Moyroud E, Herrero E, Kellenberger RT, Walker R, Wang Q, Hill L, Glover BJ. Complex petal spot formation in the Beetle Daisy (Gorteria diffusa) relies on spot-specific accumulation of malonylated anthocyanin regulated by paralogous GdMYBSG6 transcription factors. THE NEW PHYTOLOGIST 2024; 243:240-257. [PMID: 38725421 DOI: 10.1111/nph.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Gregory Mellers
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Edwige Moyroud
- Sainsbury Laboratory Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing St., Cambridge, CB2 3EH, UK
| | - Eva Herrero
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rachel Walker
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Lionel Hill
- Biomolecular Analysis Facility, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| |
Collapse
|
10
|
Singh S, Pal L, Rajput R, Chhatwal H, Singh N, Chattopadhyay D, Pandey A. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum. PLANTA 2024; 260:38. [PMID: 38951258 DOI: 10.1007/s00425-024-04470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Chhatwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Moss SMA, Zhou Y, Butelli E, Waite CN, Yeh SM, Cordiner SB, Harris NN, Copsey L, Schwinn KE, Davies KM, Hudson A, Martin C, Albert NW. Painted flowers: Eluta generates pigment patterning in Antirrhinum. THE NEW PHYTOLOGIST 2024; 243:738-752. [PMID: 38822654 DOI: 10.1111/nph.19866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
In the early 1900s, Erwin Baur established Antirrhinum majus as a model system, identifying and characterising numerous flower colour variants. This included Picturatum/Eluta, which restricts the accumulation of magenta anthocyanin pigments, forming bullseye markings on the flower face. We identified the gene underlying the Eluta locus by transposon-tagging, using an Antirrhinum line that spontaneously lost the nonsuppressive el phenotype. A candidate MYB repressor gene at this locus contained a CACTA transposable element. We subsequently identified plants where this element excised, reverting to a suppressive Eluta phenotype. El alleles inhibit expression of anthocyanin biosynthetic genes, confirming it to be a regulatory locus. The modes of action of Eluta were investigated by generating stable transgenic tobacco lines, biolistic transformation of Antirrhinum petals and promoter activation/repression assays. Eluta competes with MYB activators for promoter cis-elements, and also by titrating essential cofactors (bHLH proteins) to reduce transcription of target genes. Eluta restricts the pigmentation established by the R2R3-MYB factors, Rosea and Venosa, with the greatest repression on those parts of the petals where Eluta is most highly expressed. Baur questioned the origin of heredity units determining flower colour variation in cultivated A. majus. Our findings support introgression from wild species into cultivated varieties.
Collapse
Affiliation(s)
- Sarah M A Moss
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | - Chethi N Waite
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Shin-Mei Yeh
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Sarah B Cordiner
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Nilangani N Harris
- The New Zealand Institute for Crop and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | | | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| |
Collapse
|
12
|
Liu Q, Gao G, Shang C, Li T, Wang Y, Li L, Feng X. Screening and verification of proteins that interact with the anthocyanin-related transcription factor PbrMYB114 in 'Yuluxiang' pear. PeerJ 2024; 12:e17540. [PMID: 38887620 PMCID: PMC11182023 DOI: 10.7717/peerj.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ge Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen Shang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Tong Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Yadong Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
13
|
Zhang B, Qin X, Han Y, Li M, Guo Y. Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3401-3411. [PMID: 38492236 DOI: 10.1093/jxb/erae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Vein-associated pigmentation (venation) is a type of floral coloration adopted by plants to attract pollinators. Several petunia (Petunia hybrida) lines generate dorsoventrally asymmetric venation patterning of the corolla tube, in which venation is only present in the dorsal tube. The molecular mechanism underlying this trait is unknown. Here, we demonstrate that miR319 is preferentially expressed in the dorsal corolla tube, leading to dorsoventrally asymmetric expression of its target genes. Transgenic lines overexpressing phy-miR319a generated uniform venation patterning of the corolla tube. Knockout of TCP genes targeted by miR319 promoted venation patterning in the ventral and dorsal tube, while overexpression of the miR319 target gene, PhTCP6, completely inhibited corolla tube venation patterning. In addition, miR319-targeted TCPs negatively regulated venation patterning, probably by repressing the regulator of venation patterning, AN4. Together, our data demonstrate that asymmetric expression of miR319 promotes venation patterning in the petunia dorsal tube alone by repressing the expression of its target TCP genes, which negatively regulate corolla tube venation patterning. These findings provide novel insights into how the dorsoventrally asymmetric distribution of venation patterning is established in zygomorphic flowers.
Collapse
Affiliation(s)
- Bin Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
- College of Agriculture, Guizhou University, 550025 Guiyang, Guizhou, China
| | - Xiaoting Qin
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Yao Han
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| |
Collapse
|
14
|
Liu X, Zhao T, Yuan L, Qiu F, Tang Y, Li D, Zhang F, Zeng L, Yang C, Nagdy MM, Htun ZLL, Lan X, Chen M, Liao Z, Li Y. A Fruit-Expressed MYB Transcription Factor Regulates Anthocyanin Biosynthesis in Atropa belladonna. Int J Mol Sci 2024; 25:4963. [PMID: 38732182 PMCID: PMC11084770 DOI: 10.3390/ijms25094963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Lina Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Dan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Mohammad Mahmoud Nagdy
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.M.N.); (M.C.)
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Cairo 12311, Egypt
| | - Zun Lai Lai Htun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
- Department of Botany, University of Magway, Magway 04012, Myanmar
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Xizang Agriculture and Animal Husbandry University, Nyingchi 860000, China;
| | - Min Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.M.N.); (M.C.)
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| |
Collapse
|
15
|
An JP, Xu RR, Wang XN, Zhang XW, You CX, Han Y. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:265-284. [PMID: 38284786 DOI: 10.1111/jipb.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Collapse
Affiliation(s)
- Jian-Ping An
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Xiao-Na Wang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiao-Wei Zhang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
16
|
Islam F, Labib RK, Zehravi M, Lami MS, Das R, Singh LP, Mandhadi JR, Balan P, Khan J, Khan SL, Nainu F, Nafady MH, Rab SO, Emran TB, Wilairatana P. Genus Amorphophallus: A Comprehensive Overview on Phytochemistry, Ethnomedicinal Uses, and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3945. [PMID: 38068582 PMCID: PMC10707911 DOI: 10.3390/plants12233945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 07/01/2024]
Abstract
The genus Amorphophallus belongs to the family Araceae. Plants belonging to this genus are available worldwide and have been used in traditional medicines since ancient times, mainly in Ayurveda and Unani medical practices. Amorphophallus species are an abundant source of polyphenolic compounds; these are accountable for their pharmacological properties, such as their analgesic, neuroprotective, hepatoprotective, anti-inflammatory, anticonvulsant, antibacterial, antioxidant, anticancer, antiobesity, and immunomodulatory effects, as well as their ability to prevent gastrointestinal disturbance and reduce blood glucose. Moreover, Amorphophallus species contain numerous other classes of chemical compounds, such as alkaloids, steroids, fats and fixed oils, tannins, proteins, and carbohydrates, each of which contributes to the pharmacological effects for the treatment of acute rheumatism, tumors, lung swelling, asthma, vomiting, abdominal pain, and so on. Additionally, Amorphophallus species have been employed in numerous herbal formulations and pharmaceutical applications. There has been no extensive review conducted on the Amorphophallus genus as of yet, despite the fact that several experimental studies are being published regularly discussing these plants' pharmacological properties. So, this review discusses in detail the pharmacological properties of Amorphophallus species. We also discuss phytochemical constituents in the Amorphophallus species and their ethnomedicinal uses and toxicological profiles.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (T.B.E.)
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram 821305, India
| | - Jithendar Reddy Mandhadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Assam Down Town University (AdtU), Gandhinagar 781026, India
| | - P. Balan
- Department of Pharmaceutical Chemistry, The Erode College of Pharmacy, Erode 638112, India
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (T.B.E.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Zhao T, Yu Q, Lin C, Liu H, Dong L, Feng X, Liao J. Analyzing Morphology, Metabolomics, and Transcriptomics Offers Invaluable Insights into the Mechanisms of Pigment Accumulation in the Diverse-Colored Labellum Tissues of Alpinia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3766. [PMID: 37960122 PMCID: PMC10650467 DOI: 10.3390/plants12213766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Alpinia plants are widely cherished for their vibrant and captivating flowers. The unique feature of this genus lies in their labellum, a specialized floral structure resulting from the fusion of two non-fertile staminodes. However, the intricate process of pigment formation, leading to distinct color patterns in the various labellum segments of Alpinia, remains a subject of limited understanding. In this study, labellum tissues of two Alpinia species, A. zerumbet (yellow-orange flowers) and A. oxyphylla (white-purple flowers), were sampled and analyzed through morphological structure observation, metabolite analysis, and transcriptome analyses. We found that hemispherical/spherical epidermal cells and undulate cell population morphology usually display darker flower colors, while flat epidermal cells and cell populations usually exhibit lighter flower colors. Metabolomic analysis identified a high concentration of anthocyanins, particularly peonidin derivatives, in segments with orange and purple pigments. Additionally, segments with yellow pigments showed significant accumulations of flavones, flavanols, flavanones, and xanthophylls. Furthermore, our investigation into gene expression levels through qRT-PCR revealed notable differences in several genes that participated in anthocyanin and carotenoid biosynthesis among the four pigmented segments. Collectively, these findings offer a comprehensive understanding of pigmentation in Alpinia flowers and serve as a valuable resource for guiding future breeding efforts aimed at developing Alpinia varieties with novel flower colors.
Collapse
Affiliation(s)
- Tong Zhao
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, China
| | - Qianxia Yu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Canjia Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Limei Dong
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, China
| | - Xinxin Feng
- Dongguan Botanical Garden, Dongguan 523086, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
18
|
Hu Y, Ji J, Cheng H, Luo R, Zhang J, Li W, Wang X, Zhang J, Yao Y. The miR408a-BBP-LAC3/CSD1 module regulates anthocyanin biosynthesis mediated by crosstalk between copper homeostasis and ROS homeostasis during light induction in Malus plants. J Adv Res 2023; 51:27-44. [PMID: 36371057 PMCID: PMC10491975 DOI: 10.1016/j.jare.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The expression of miR408 is affected by copper (Cu) conditions and positively regulates anthocyanin biosynthesis in Arabidopsis. However, the underlying mechanisms by which miR408 regulates anthocyanin biosynthesis mediated by Cu homeostasis and reactive oxygen species (ROS) homeostasis remain unclear in Malus plants. OBJECTIVES Our study aims to elucidate how miR408a and its target, basic blue protein (BBP) regulate Cu homeostasis and ROS homeostasis, and anthocyanin biosynthesis in Malus plants. METHODS The roles of miR408a and its target BBP in regulating anthocyanin biosynthesis, Cu homeostasis, and ROS homeostasis were mainly identified in Malus plants. RESULTS We found that the BBP protein interacted with the copper-binding proteins LAC3 (laccase) and CSD1 (Cu/Zn SOD superoxide dismutase), indicating a potential crosstalk between Cu homeostasis and ROS homeostasis might be mediated by miR408 to regulate the anthocyanin accumulation. Further studies showed that overexpressing miR408a or suppressing BBP transiently significantly increased the expression of genes related to Cu binding and Cu transport, leading to anthocyanin accumulation under light induction in apple fruit and Malus plantlets. Consistently, opposite results were obtained when repressing miR408a or overexpressing BBP. Moreover, light induction significantly increased the expression of miR408a, CSD1, and LAC3, but significantly reduced the BBP expression, resulting in increased Cu content and anthocyanin accumulation. Furthermore, excessive Cu significantly increased the anthocyanin accumulation, accompanied by reduced expression of miR408a and Cu transport genes, and upregulated expression of Cu binding proteins including BBP, LAC3, and CSD1 to maintain the Cu homeostasis and ROS homeostasis in Malus plantlets. CONCLUSION Our findings provide new insights into the mechanism by which the miR408a-BBP-LAC3/CSD1 module perceives light and Cu signals regulating Cu and ROS homeostasis, ultimately affecting anthocyanin biosynthesis in Malus plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jiayi Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China; Beijing Forestry University, China
| | - Hao Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Rongli Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Wenjing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
19
|
Zhao Q. Thermodynamic understanding of flower pigmentation. Biosystems 2023:104938. [PMID: 37277021 DOI: 10.1016/j.biosystems.2023.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
We have reviewed and interpreted the thermodynamic principles for flower pigmentation. The basic thoughts are as follows: 1) any biological trait is associated with one thermodynamic system; 2) a thermodynamic system of biology cannot be physically isolated from complex thermal systems of biology but can be separately studied using thermodynamic methods; 3) a thermodynamic system of biology has all types of information, including volume, shape, and structure, unlike the traditional thermal system of gases; 4) a thermodynamic system of biology is associated with one type of biological structure that is not fully fixed but can change its conformation under different conditions; and 5) a thermodynamic system of biology shows a hierarchical structure. On the basis of these principles, several conclusions regarding flower pigmentation are obtained as follows: 1) processes of pigmentation formation can be divided into reversible and irreversible processes; 2) the reversible process is related to quantitative changes in pigments; 3) the irreversible process is related to the formation of stable pigmentation patterns that are physiologically inherited; 4) the spot pattern of color pigmentation represents an independent island of the physiological system; 5) many types of activators and inhibitors are involved in flower pigmentation production; 6) the patterns of flower pigmentation can be modulated; and 7) the evolution mechanism of organogenesis can be separated into several steps of independent thermodynamic processes. Our conclusion is that the thermodynamic system, rather than the dynamic system, is the essential and fundamental attribute of biological behaviors.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, PR China.
| |
Collapse
|
20
|
Zhu J, Wang Y, Wang Q, Li B, Wang X, Zhou X, Zhang H, Xu W, Li S, Wang L. The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony. HORTICULTURE RESEARCH 2023; 10:uhad100. [PMID: 37427034 PMCID: PMC10327543 DOI: 10.1093/hr/uhad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/05/2023] [Indexed: 07/11/2023]
Abstract
Xibei tree peony is a distinctive cultivar group that features red-purple blotches in petals. Interestingly, the pigmentations of blotches and non-blotches are largely independent of one another. The underlying molecular mechanism had attracted lots of attention from investigators, but was still uncertain. Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii 'Shu Sheng Peng Mo'. Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes, among which PrF3H, PrDFR, and PrANS are the three major genes. We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways. PrMYBa1, which belongs to MYB subgroup 7 (SG7) was found to activate the early biosynthetic gene (EBG) PrF3H by interacting with SG5 member PrMYBa2 to form an 'MM' complex. The SG6 member PrMYBa3 interacts with two SG5 (IIIf) bHLHs to synergistically activate the late biosynthetic genes (LBGs) PrDFR and PrANS, which is essential for anthocyanin accumulation in petal blotches. The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing. The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction, which may have contributed to the particular expression of PrANS solely in the blotch area. We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.
Collapse
Affiliation(s)
- Jin Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechen Zhang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
22
|
Shah S, Ilyas M, Li R, Yang J, Yang FL. Microplastics and Nanoplastics Effects on Plant-Pollinator Interaction and Pollination Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6415-6424. [PMID: 37068375 DOI: 10.1021/acs.est.2c07733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microplastics and nanoplastics (MNPs) contamination is an emerging environmental and public health concern, and these particles have been reported both in aquatic and terrestrial ecosystems. Recent studies have expanded our understanding of the adverse effects of MNPs pollution on human, terrestrial, and aquatic animals, insects, and plants. In this perspective, we describe the adverse effects of MNPs particles on pollinator and plant health and discuss the mechanisms by which MNPs disrupt the pollination process. We discuss the evidence and integrate transcriptome studies to investigate the negative effects of MNPs on the molecular biology of pollination, which may cause delay or inhibit the pollination services. We conclude by addressing challenges to plant-pollinator health from MNPs pollution and argue that such harmful effects disrupt the communication between plant and pollinator for a successful pollination process.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
- Chinese Academy of Sciences, 100045 Beijing, China
| | - Rui Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Binaghi M, Esfeld K, Mandel T, Freitas LB, Roesti M, Kuhlemeier C. Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species. BMC Biol 2023; 21:58. [PMID: 36941631 PMCID: PMC10029178 DOI: 10.1186/s12915-023-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.
Collapse
Affiliation(s)
- Marta Binaghi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marius Roesti
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland.
| |
Collapse
|
24
|
Yuan Y, Li X, Yao X, Fu X, Cheng J, Shan H, Yin X, Kong H. Mechanisms underlying the formation of complex color patterns on Nigella orientalis (Ranunculaceae) petals. THE NEW PHYTOLOGIST 2023; 237:2450-2466. [PMID: 36527229 DOI: 10.1111/nph.18681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Complex color patterns on petals are widespread in flowering plants, yet the mechanisms underlying their formation remain largely unclear. Here, by conducting detailed morphological, anatomical, biochemical, optical, transcriptomic, and functional studies, we investigated the cellular bases, chromogenic substances, reflectance spectra, developmental processes, and underlying mechanisms of complex color pattern formation on Nigella orientalis petals. We found that the complexity of the N. orientalis petals in color pattern is reflected at multiple levels, with the amount and arrangement of different pigmented cells being the key. We also found that biosynthesis of the chromogenic substances of different colors is sequential, so that one color/pattern is superimposed on another. Expression and functional studies further revealed that a pair of R2R3-MYB genes function cooperatively to specify the formation of the eyebrow-like horizontal stripe and the Mohawk haircut-like splatters. Specifically, while NiorMYB113-1 functions to draw a large splatter region, NiorMYB113-2 functions to suppress the production of anthocyanins from the region where a gap will form, thereby forming the highly specialized pattern. Our results provide a detailed portrait for the spatiotemporal dynamics of the coloration of N. orientalis petals and help better understand the mechanisms underlying complex color pattern formation in plants.
Collapse
Affiliation(s)
- Yi Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuan Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
25
|
Yang J, Wu X, Aucapiña CB, Zhang D, Huang J, Hao Z, Zhang Y, Ren Y, Miao Y. NtMYB12 requires for competition between flavonol and (pro)anthocyanin biosynthesis in Narcissus tazetta tepals. MOLECULAR HORTICULTURE 2023; 3:2. [PMID: 37789446 PMCID: PMC10515073 DOI: 10.1186/s43897-023-00050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 10/05/2023]
Abstract
The color of flowers is one of the main characteristics adopted for plants to attract pollinators to ensure the reproductive success of the plant, they are also important in their ornamental appeal in Narcissus plant. In this study, we identified a NtMYB12 locus encoding an R2R3-MYB transcription factor. Comparative transcriptome analysis of loss- and gain- of NtMYB12 tissue relative to wild-type narcissus showed NtMYB12 was mainly involved in flavonol and phenylpropanoid metabolic pathways. Biochemical evidences of dual-luciferase activity and chromatin immunoprecipitation assay supported that MYB12 directly bound to promoters of NtFLS, NtLAR, and NtDFR that were cloned by genome walking assay, and activated NtFLS and NtLAR expression but repressed NtDFR expression. More interestingly, NtMYB12 can interact with NtbHLH1 and NtWD40-1 proteins via R3 domain that were selected by transcriptome-based WGCNA and confirmed by yeast two hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assay. Interaction of NtMYB12 with NtbHLH1 and NtWD40-1 forming MYB-bHLH-WD40 triplex specially activated NtDFR and NtANS expression and promoted (pro)anthocyanin accumulation, while NtMYB12 alone activated NtFLS and NtLAR expression and accumulated flavonols, but repressed NtDFR expression. These results indicated that NtMYB12 alone or NtMYB12-bHLH1-WD40-1 triplex requires for competition of metabolism fluxes between flavonol and (pro)anthocyanin biosynthesis. NtMYB12 dually functions on flavonol and proanthocyanin biogenesis via physically binding to NtFLS and NtLAR promoter activating their expression and on (pro)anthocyanin biosynthesis via NtMYB12-NtWD40-NtbHLH (MBW) triplex activating NtDFR and NtANS expression. Requirement of NtMYB12 alone or MBW complex for the competition between flavonol and anthocyanin biosynthesis results in narcissus colorized petal traits.
Collapse
Affiliation(s)
- Jingwen Yang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Cristina belen Aucapiña
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiazhi Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ziyuan Hao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
26
|
Mi Y, Li Y, Qian G, Vanhaelewyn L, Meng X, Liu T, Yang W, Shi Y, Ma P, Tul-Wahab A, Viczián A, Chen S, Sun W, Zhang D. A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:696-707. [PMID: 36565614 DOI: 10.1016/j.plaphy.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
Collapse
Affiliation(s)
- Yaolei Mi
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Industrial Crop Research Insitute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Guangtao Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucas Vanhaelewyn
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Deroose Plants NV., Weststraat 129 A, 9940, Sleidinge, Belgium
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengda Ma
- Northwest A&F University, Yangling, 712100, China
| | - Atia Tul-Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
28
|
Zhang S, Chen J, Jiang T, Cai X, Wang H, Liu C, Tang L, Li X, Zhang X, Zhang J. Genetic mapping, transcriptomic sequencing and metabolic profiling indicated a glutathione S-transferase is responsible for the red-spot-petals in Gossypium arboreum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3443-3454. [PMID: 35986130 DOI: 10.1007/s00122-022-04191-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
A GST for red-spot-petals in Gossypium arboreum was identified as the candidate under the scope of multi-omics approaches. Colored petal spots are correlated with insect pollination efficiency in Gossypium species. However, molecular mechanisms concerning the formation of red spots on Gossypium arboreum flowers remain elusive. In the current study, the Shixiya1-R (SxyR, with red spots) × Shixiya1-W (SxyW, without red spots) segregating population was utilized to determine that the red-spot-petal phenotype was levered by a single dominant locus. This phenotype was expectedly related to the anthocyanin metabolites, wherein the cyanidin and delphinidin derivatives constituted the major partition. Subsequently, this dominant locus was narrowed to a 3.27 Mb range on chromosome 7 by genomic resequencing from the two parents and the two segregated progeny bulks that have spotted petals or not. Furthermore, differential expressed genes generated from the two bulks at either of three sequential flower developmental stages that spanning the spot formation were intersected with the annotated ones that allocated to the 3.27 Mb interval, which returned eight genes. A glutathione S-transferase-coding gene (Gar07G08900) out of the eight was the only one that exhibited simultaneously differential expression among all three developmental stages, and it was therefore considered to be the probable candidate. Finally, functional validation upon this candidate was achieved by the appearance of scattered petal spots with inhibited expression of Gar07G08900. In conclusion, the current report identified a key gene for the red spotted petal in G. arboreum under the scope of multi-omics approaches, such efforts and embedded molecular resources would benefit future applications underlying the flower color trait in cotton.
Collapse
Affiliation(s)
- Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Jie Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Jiang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Xiao Cai
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
29
|
Liu H, Liu Q, Chen Y, Zhu Y, Zhou X, Li B. Full-Length Transcriptome Sequencing Provides Insights into Flavonoid Biosynthesis in Camellia nitidissima Petals. Gene 2022; 850:146924. [PMID: 36191826 DOI: 10.1016/j.gene.2022.146924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 10/06/2022]
Abstract
Flavonoids are the main medicinal ingredients in Camellia nitidissima, but the regulatory mechanism of flavonoid biosynthesis in flowers is unclear; therefore, the flavonoids in C. nitidissima have not been effectively used. The present study performed full-length transcriptome sequencing of C. nitidissima flower. Furthermore, the reported RNA-sequencing data of C. nitidissima petals were reanalyzed using the full-length transcriptome as a reference, and the regulatory mechanism of flavonoid synthesis in petals was elucidated. The analysis identified 43,350 isoforms annotated in non-redundant protein (Nr), Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG), and Swiss-Prot databases, among which 34,602 aligned to Camellia sinensis genes. A total of 11,857 differentially expressed genes (DEGs), including 112 related to flavonoid synthesis, were identified by pairwise comparison. Subsequently, analysis of the phylogeny and the conserved motifs of R2R3-MYB using the proteins sequences identified three R2R3-MYB transcription factors that regulated flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) identified phenylalanine ammonia-lyase (PAL) and 4-coumarate: CoA ligase(4CL) as the hub genes and showed that bHLH79 interacted with PAL. Finally, validated the expression of seven DEGs involved in flavonoid biosynthesis using real-time quantitative PCR (qRT-PCR). Thus, the present study generated and used the full-length transcriptome as the reference to analyze the transcriptome of petals and proposed a possible regulatory mechanism of flavonoid synthesis in C. nitidissima. The study's findings unravel the genetic mechanisms underlying flavonoid synthesis and suggest candidate genes for the genetic improvement of C. nitidissima.
Collapse
Affiliation(s)
- Hexia Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qin Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yuling Chen
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yulin Zhu
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China.
| | - Xingwen Zhou
- College of Architecture and Planning, FuJian University of Technology, Fuzhou 350108, China.
| | - Bo Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
30
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
31
|
Shi Q, Yuan M, Wang S, Luo X, Luo S, Fu Y, Li X, Zhang Y, Li L. PrMYB5 activates anthocyanin biosynthetic PrDFR to promote the distinct pigmentation pattern in the petal of Paeonia rockii. FRONTIERS IN PLANT SCIENCE 2022; 13:955590. [PMID: 35991417 PMCID: PMC9382232 DOI: 10.3389/fpls.2022.955590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Paeonia rockii is well-known for its distinctive large dark-purple spot at the white petal base and has been considered to be the main genetic source of spotted tree peony cultivars. In this study, the petal base and petal background of Paeonia ostii (pure white petals without any spot), P. rockii, and other three tree peony cultivars were sampled at four blooming stages from the small bell-like bud stage to the initial blooming stage. There is a distinct difference between the pigmentation processes of spots and petal backgrounds; the spot pigmentation was about 10 days earlier than the petal background. Moreover, the cyanin and peonidin type anthocyanin accumulation at the petal base mainly contributed to the petal spot formation. Then, we identified a C1 subgroup R2R3-MYB transcription factor, PrMYB5, predominantly transcribing at the petal base. This is extremely consistent with PrDFR and PrANS expression, the contents of anthocyanins, and spot formation. Furthermore, PrMYB5 could bind to and activate the promoter of PrDFR in yeast one-hybrid and dual-luciferase assays, which was further verified in overexpression of PrMYB5 in tobacco and PrMYB5-silenced petals of P. rockii by comparing the color change, anthocyanin contents, and gene expression. In summary, these results shed light on the mechanism of petal spot formation in P. rockii and speed up the molecular breeding process of tree peony cultivars with novel spot pigmentation patterns.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Meng Yuan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiang Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Fu X, Shan H, Yao X, Cheng J, Jiang Y, Yin X, Kong H. Petal development and elaboration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3308-3318. [PMID: 35275176 DOI: 10.1093/jxb/erac092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Petals can be simple or elaborate, depending on whether they have complex basic structures and/or highly specialized epidermal modifications. It has been proposed that the independent origin and diversification of elaborate petals have promoted plant-animal interactions and, therefore, the evolutionary radiation of corresponding plant groups. Recent advances in floral development and evolution have greatly improved our understanding of the processes, patterns, and mechanisms underlying petal elaboration. In this review, we compare the developmental processes of simple and elaborate petals, concluding that elaborate petals can be achieved through four main paths of modifications (i.e. marginal elaboration, ventral elaboration, dorsal elaboration, and surface elaboration). Although different types of elaborate petals were formed through different types of modifications, they are all results of changes in the expression patterns of genes involved in organ polarity establishment and/or the proliferation, expansion, and differentiation of cells. The deployment of existing genetic materials to perform a new function was also shown to be a key to making elaborate petals during evolution.
Collapse
Affiliation(s)
- Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Fang X, Zhang L, Wang L. The Transcription Factor MdERF78 Is Involved in ALA-Induced Anthocyanin Accumulation in Apples. FRONTIERS IN PLANT SCIENCE 2022; 13:915197. [PMID: 35720608 PMCID: PMC9201628 DOI: 10.3389/fpls.2022.915197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 05/30/2023]
Abstract
As a friendly plant growth regulator to the environment, 5-aminolevulinic acid (ALA) has been widely used in plant production, such as fruit coloration, stress resistance, and so on. Previous studies have identified some genes that have a function in the anthocyanin accumulation induced by ALA. However, the regulatory mechanism has not been well revealed. In the current study, we proposed that an ALA-responsive transcription factor, MdERF78, regulated anthocyanin accumulation. MdERF78, overexpressed in apple peels or calli, resulted in a significant increase of anthocyanins, while MdERF78 interference had an opposite trend. Furthermore, the anthocyanin accumulation induced by MdERF78 overexpression was enhanced by exogenous ALA treatment, suggesting that MdERF78 was involved in the ALA-induced anthocyanin accumulation. Yeast one-hybrid and dual luciferase reporter assays revealed that MdERF78 bound to the promoters of MdF3H and MdANS directly and activated their expressions. Additionally, MdERF78 interacted with MdMYB1 and enhanced the transcriptional activity of MdMYB1 to its target gene promoters. Based on these, it can be concluded that MdERF78 has a positive function in ALA-induced anthocyanin accumulation via the MdERF78-MdF3Hpro/MdANSpro and MdERF78-MdMYB1-MdDFRpro/MdUFGTpro/MdGSTF12pro regulatory network. These findings provide new insights into the regulatory mechanism of ALA-promoted anthocyanin accumulation.
Collapse
Affiliation(s)
| | | | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
35
|
Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int J Mol Sci 2022; 23:ijms23041960. [PMID: 35216077 PMCID: PMC8879456 DOI: 10.3390/ijms23041960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit peels of certain pepper (Capsicum annum L.) varieties accumulate a large amount of anthocyanins and exhibit purple color under medium-wave ultraviolet (UV-B) conditions, which severely impacts the commodity value of peppers. However, the regulatory mechanism of the above process has not been well studied so far. To explore which key genes are involved in this regulatory mechanism, pepper variety 19Q6100, the fruit peels of which turn purple under UV-B conditions, was investigated in this study. Transcription factors with expression levels significantly impacted by UV-B were identified by RNA-seq. Those genes may be involved in the regulation of UV-B-induced anthocyanin biosynthesis. Yeast one-hybrid results revealed that seven transcription factors, CabHLH143, CaMYB113, CabHLH137, CaMYBG, CaWRKY41, CaWRKY44 and CaWRKY53 directly bound to the putative promotor regions of the structural genes in the anthocyanin biosynthesis pathway. CaMYB113 was found to interact with CabHLH143 and CaHY5 by yeast two-hybrid assay, and those three genes may participate collaboratively in UV-B-induced anthocyanin biosynthesis in pepper fruit. Virus-induced gene silencing (VIGS) indicated that fruit peels of CaMYB113-silenced plants were unable to turn purple under UV-B conditions. These findings could deepen our understanding of UV-B-induced anthocyanin biosynthesis in pepper.
Collapse
|
36
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Liu X, Duan J, Huo D, Li Q, Wang Q, Zhang Y, Niu L, Luo J. The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 12:810990. [PMID: 35095984 PMCID: PMC8789887 DOI: 10.3389/fpls.2021.810990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3'H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.
Collapse
Affiliation(s)
- Xiaokun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resource, Shanghai, China
| | - Jingjing Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
- College of Plant Science, Tarim University, Alar, China
| | - Dan Huo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qinqin Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Qiaoyun Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Yangling, China
| |
Collapse
|
38
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian. PLANTA 2021; 255:29. [PMID: 34964920 DOI: 10.1007/s00425-021-03815-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.
Collapse
Affiliation(s)
- Yuka Ohta
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
39
|
Cong L, Qu Y, Sha G, Zhang S, Ma Y, Chen M, Zhai R, Yang C, Xu L, Wang Z. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT, and PbMYB10b in pear. PHYSIOLOGIA PLANTARUM 2021; 173:1841-1849. [PMID: 34418106 DOI: 10.1111/ppl.13525] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that impart red coloration to fruits and flowers. The important WRKY transcription factor family plays multifaceted roles in plant growth and development. In this study, we found a WRKY family gene, Pyrus bretschneideri WRKY75, that may be involved in anthocyanin synthesis in pear. Unlike Arabidopsis thaliana WRKY75, PbWRKY75 may be a positive regulator of anthocyanin synthesis. A transient expression assay indicated that PbWRKY75 promoted pear anthocyanin synthesis. The structural genes (PbANS, PbDFR, and PbUFGT) and positive regulators (PbMYB10 and PbMYB10b) of anthocyanin synthesis were significantly upregulated in the fruitlet skins of PbWRKY75-overexpressing "Zaosu" pears. Subsequently, yeast one-hybrid and dual-luciferase assays indicated that PbWRKY75 promoted PbDFR, PbUFGT, and PbMYB10b expression by activating their promoters. These results revealed that PbWRKY75 may promote the expression of both PbMYB10b and anthocyanin late biosynthetic genes (PbDFR and PbUFGT) by activating their promoters, thereby inducing anthocyanin synthesis in pear. This study enhanced our understanding of the mechanism of pear anthocyanin synthesis, which will be beneficial in the improvement of pear peel color.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yingying Qu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guangya Sha
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Shichao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Youfu Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Min Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
40
|
Ma H, Yang T, Li Y, Zhang J, Wu T, Song T, Yao Y, Tian J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. THE PLANT CELL 2021; 33:3309-3330. [PMID: 34270784 PMCID: PMC8505877 DOI: 10.1093/plcell/koab188] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanin pigments contribute to plant coloration and are valuable sources of antioxidants in the human diet as components of fruits and vegetables. Their production is known to be induced by light in apple fruit (Malus domestica); however, the underlying molecular mechanism responsible for early-stage light-induced anthocyanin biosynthesis remains unclear. Here, we identified an ethylene response factor (ERF) protein, ERF109, involved in light-induced anthocyanin biosynthesis and found that it promotes coloration by directly binding to anthocyanin-related gene promoters. Promoter::β-glucuronidase reporter analysis and Hi-C sequencing showed that a long noncoding RNA, MdLNC499, located nearby MdERF109, induces the expression of MdERF109. A W-box cis-element in the MdLNC499 promoter was found to be regulated by a transcription factor, MdWRKY1. Transient expression in apple fruit and stable transformation of apple calli allowed us to reconstruct a MdWRKY1-MdLNC499-MdERF109 transcriptional cascade in which MdWRKY1 is activated by light to increase the transcription of MdLNC499, which in turn induces MdERF109. The MdERF109 protein induces the expression of anthocyanin-related genes and the accumulation of anthocyanins in the early stages of apple coloration. Our results provide a platform for better understanding the various regulatory mechanisms involved in light-induced apple fruit coloration.
Collapse
Affiliation(s)
- Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 102206, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
41
|
He Y, Li D, Li S, Liu Y, Chen H. SmBICs Inhibit Anthocyanin Biosynthesis in Eggplant (Solanum melongena L.). PLANT & CELL PHYSIOLOGY 2021; 62:1001-1011. [PMID: 34043001 DOI: 10.1093/pcp/pcab070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. It has been reported that blue light inhibitors of cryptochromes (BICs) act as negative regulators in light signal transduction, but little is known about their role in anthocyanin biosynthesis. In this study, yeast one-hybrid analysis showed that SmBICs could bind to the promoter of SmCHS, indicating that they could directly participate in eggplant anthocyanin biosynthesis. In SmBICs-silenced eggplants, more anthocyanins were accumulated, while SmBIC1-overexpression (OE) and SmBIC2-OE Arabidopsis and eggplants synthesized less anthocyanin. Quantitative real-time polymerase chain reaction also revealed that the anthocyanin structural genes, which were downregulated in SmBIC1-OE and SmBIC2-OE lines, were upregulated in SmBICs-silenced eggplants. In addition, transcriptome analysis further confirmed that differentially expressed genes of SmBICs-OE plants were enriched mainly in the pathways related to anthocyanin biosynthesis and the key transcription factors and structural genes for anthocyanin biosynthesis, such as SmMYB1, SmTT8, SmHY5, SmCHS, SmCHI, SmDFR and SmANS, were suppressed significantly. Finally, bimolecular fluorescence complementation and blue-light-dependent degradation assay suggested that SmBICs interacted with photo-excited SmCRY2 to inhibit its photoreaction, thereby inhibiting the expression of genes related to anthocyanin biosynthesis and reducing anthocyanin accumulation. Collectively, our study suggests that SmBICs repress anthocyanin biosynthesis by inhibiting photoactivation of SmCRY2. This study provides a new working model for anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - DaLu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - ShaoHang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
42
|
Piao C, Wu J, Cui ML. The combination of R2R3-MYB gene AmRosea1 and hairy root culture is a useful tool for rapidly induction and production of anthocyanins in Antirrhinum majus L. AMB Express 2021; 11:128. [PMID: 34519881 PMCID: PMC8440734 DOI: 10.1186/s13568-021-01286-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022] Open
Abstract
Anthocyanins are the largest group of water-soluble pigments and beneficial for human health. Although most plants roots have the potential to express natural biosynthesis pathways required to produce specialized metabolites such as anthocyanins, the anthocyanin synthesis is specifically silenced in roots. To explore the molecular mechanism of absence and production ability of anthocyanin in the roots, investigated the effect of a bHLH gene AmDelila, and an R2R3-MYB gene AmRosea1, which are the master regulators of anthocyanin biosynthesis in Antirrhinum majus flowers, by expressing these genes in transformed hairy roots of A. majus. Co-ectopic expression of both AmDelila and AmRosea1 significantly upregulated the expression of the key target structural genes in the anthocyanin biosynthesis pathway. Furthermore, this resulted in strongly enhanced anthocyanin accumulation in transformed hairy roots. Ectopic expression of AmDelila alone did not gives rise to any significant anthocyanin accumulation, however, ectopic expression of AmRosea1 alone clearly upregulated expression of the main structural genes as well as greatly promoted anthocyanin accumulation in transformed hairy roots, where the contents reached 0.773–2.064 mg/g fresh weight. These results suggest that AmRosea1 plays a key role in the regulatory network in controlling the initiation of anthocyanin biosynthesis in roots, and the combination of AmRosea1 and hairy root culture is a powerful tool to study and production of anthocyanins in the roots of A. majus.
Collapse
|
43
|
Yang J, Meng J, Liu X, Hu J, Zhu Y, Zhao Y, Jia G, He H, Yuan T. Integrated mRNA and small RNA sequencing reveals a regulatory network associated with flower color in oriental hybrid lily. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:103-114. [PMID: 34091210 DOI: 10.1016/j.plaphy.2021.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins are one of the main components of pigments, that are responsible for a wide range of colors in plants. To clarify the regulatory mechanism of anthocyanin biosynthesis in oriental hybrid lily, UPLC/MS analysis was performed to identify the pigments in two cultivars (white and pink). Four major anthocyanins were identified in pink cultivar, and no anthocyanins were detected in white cultivar. Transcriptome and small RNA sequencing (sRNAseq) analyses were performed using tepal tissues at two floral developmental stages from the two cultivars. In total, 55,698 transcripts were assembled, among which 233 were annotated as putative anthocyanin-related transcripts. Differential expression analysis and qRT-PCR results confirmed that most of the anthocyanin-related structural genes had higher expression levels in pink cultivar than in white cultivar. Conversely, LhANR showed a significantly high expression level in white cultivar. Annotated transcription factors (TFs), including MYB activators, MYB repressors and bHLHs, that putatively inhibit or enhance the expression of anthocyanin-related genes were identified. LhMYBA1, an anthocyanin activator, was isolated, and its heterologous expression resulted in a remarkably high level of anthocyanin accumulation. Additionally, 73 differentially expressed microRNAs (miRNAs), including 23 known miRNAs, were detected through sRNAseq. The miRNA target prediction showed that several anthocyanin-related genes might be targeted by miRNAs. Expression profile analysis revealed that these miRNAs showed higher expression levels at later floral developmental stages in white cultivar than in pink cultivar. The results indicated that anthocyanin deficiency in white cultivar might be influenced by multiple levels of suppressive mechanisms, including mRNAs and sRNAs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaolin Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junshu Hu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuntao Zhu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yiran Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Guixia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Hengbin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
44
|
Hu Y, Cheng H, Zhang Y, Zhang J, Niu S, Wang X, Li W, Zhang J, Yao Y. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. THE NEW PHYTOLOGIST 2021; 231:1105-1122. [PMID: 33908060 DOI: 10.1111/nph.17431] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 05/22/2023]
Abstract
Light induces anthocyanin accumulation and hence decides the coloration of apple fruit. It also plays a key role in regulating the biosynthesis of other secondary metabolites. However, the crosstalk between anthocyanin and lignin metabolism during light induction, which affects the edible quality and visual quality of apple fruit, respectively, have rarely been characterized. In this study, we identified and functionally elucidated the roles of miR7125 and its target, cinnamoyl-coenzyme A reductase gene (CCR), in regulating the homeostasis between anthocyanin and lignin biosynthesis during light induction. Overexpressing miR7125 or inhibiting CCR transiently in apple fruit promoted anthocyanin biosynthesis but reduced lignin production under light-induced conditions. Consistently, opposite results were observed under the background of repressed miR7125 or overexpressed CCR. We found that the repressor MdMYB16 and the activator MdMYB1 bound to the miR7125 promoter. Transient repression of MdMYB16 upregulated miR7125 expression significantly, accompanied by decreased levels of MdCCR transcript, resulting in a reduction in the lignin biosynthesis and an increase in anthocyanin accumulation. However, transient overexpression of MdMYB16 produced the opposite effects to MdMYB16-RNAi. The results reveal a novel mechanism by which the MdMYB16/MdMYB1-miR7125-MdCCR module collaboratively regulates homeostasis between anthocyanin and lignin biosynthesis under light induction in apple.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Hao Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Shuqing Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Wenjing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| |
Collapse
|
45
|
Transcriptome-Based WGCNA Analysis Reveals Regulated Metabolite Fluxes between Floral Color and Scent in Narcissus tazetta Flower. Int J Mol Sci 2021; 22:ijms22158249. [PMID: 34361014 PMCID: PMC8348138 DOI: 10.3390/ijms22158249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.
Collapse
|
46
|
Frachon L, Stirling SA, Schiestl FP, Dudareva N. Combining biotechnology and evolution for understanding the mechanisms of pollinator attraction. Curr Opin Biotechnol 2021; 70:213-219. [PMID: 34217123 DOI: 10.1016/j.copbio.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022]
Abstract
Many flowering plants rely on pollinators for their reproductive success. Plant-pollinator interactions usually depend on a complex combination of traits based on a fine-tuned biosynthetic machinery, with many structural and regulatory genes involved. Yet, the physiological mechanisms in plants are the product of evolutionary processes. While evolution has been modifying flowers through millions of years, it is also a rapid process that can change plant traits within few generations. Here we discuss both mechanistic and evolutionary aspects of pollinator attraction. We also propose how latest advances in biotechnology and evolutionary studies, and their combination, will improve the elucidation of molecular mechanisms and evolutionary dynamics of pollinator attraction in changing environments.
Collapse
Affiliation(s)
- Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Shannon A Stirling
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
47
|
Zhang B, Xu X, Huang R, Yang S, Li M, Guo Y. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the corolla tube of Petunia hybrida. HORTICULTURE RESEARCH 2021; 8:116. [PMID: 34059660 PMCID: PMC8166957 DOI: 10.1038/s41438-021-00555-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 05/11/2023]
Abstract
Venation is a common anthocyanin pattern displayed in flowers that confers important ornamental traits to plants. An anthocyanin-related R2R3-MYB transcription factor, DPL, has been proposed to regulate corolla tube venation in petunia plants. Here, however, we provide evidence redefining the role of DPL in petunia. A CRISPR/Cas9-mediated mutation of DPL resulted in the absence of the vein-associated anthocyanin pattern above the abaxial surface of the flower bud, but not corolla tube venation, thus indicating that DPL did not regulate the formation of corolla tube venation. Alternately, quantitative real-time PCR analysis demonstrated that the spatiotemporal expression pattern of another R2R3-MYB gene, AN4, coincided with the formation of corolla tube venation in petunia. Furthermore, overexpression of AN4 promoted anthocyanin accumulation by increasing the expression of anthocyanin biosynthesis genes. CRISPR/Cas9-mediated mutation of AN4 led to an absence of corolla tube venation, suggesting that this gene in fact determines this key plant trait. Taken together, the results presented here redefine the prime regulator of corolla tube venation, paving the way for further studies on the molecular mechanisms underlying the various venation patterns in petunia.
Collapse
Affiliation(s)
- Bin Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
- College of Agriculture, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Xiaojing Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
| | - Renwei Huang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, 611130, Chengdu, China
| | - Sha Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China.
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
48
|
Galipot P, Damerval C, Jabbour F. The seven ways eukaryotes produce repeated colour motifs on external tissues. Biol Rev Camb Philos Soc 2021; 96:1676-1693. [PMID: 33955646 DOI: 10.1111/brv.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.
Collapse
Affiliation(s)
- Pierre Galipot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France.,Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, 91190, France
| | - Catherine Damerval
- Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, 91190, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| |
Collapse
|
49
|
Floral morphs of Justicia adhatoda L. differ in fruit and seed, but not floral, traits or pollinator visitation. J Biosci 2021. [DOI: 10.1007/s12038-021-00159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Torices R, DeSoto L, Narbona E, Gómez JM, Pannell JR. Effects of the Relatedness of Neighbours on Floral Colour. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.589781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reproductive success of plants depends both on their phenotype and the local neighbourhood in which they grow. Animal-pollinated plants may benefit from increased visitation when surrounded by attractive conspecific individuals, via a “magnet effect.” Group attractiveness is thus potentially a public good that can be exploited by individuals, with selfish exploitation predicted to depend on genetic relatedness within the group. Petal colour is a potentially costly trait involved in floral signalling and advertising to pollinators. Here, we assessed whether petal colour was plastically sensitive to the relatedness of neighbours in the annual herb Moricandia moricandioides, which produces purple petals through anthocyanin pigment accumulation. We also tested whether petal colour intensity was related to nectar volume and sugar content in a context-dependent manner. Although both petal colour and petal anthocyanin concentration did not significantly vary with the neighbourhood configuration, plants growing with kin made a significantly higher investment in petal anthocyanin pigments as a result of the greater number and larger size of their flowers. Moreover the genetic relatedness of neighbours significantly modified the relationship between floral signalling and reward quantity: while focal plants growing with non-kin showed a positive relationship between petal colour and nectar production, plants growing with kin showed a positive relationship between number of flowers and nectar volume, and sugar content. The observed plastic response to group relatedness might have important effects on pollinator behaviour and visitation, with direct and indirect effects on plant reproductive success and mating patterns, at least in those plant species with patchy and genetically structured populations.
Collapse
|