1
|
Wang D, Jin Y, Guan C, Yang Q, He G, Xu N, Han X. Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus. TREE PHYSIOLOGY 2024; 44:tpae071. [PMID: 38905297 DOI: 10.1093/treephys/tpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| | - Yuting Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Chaonan Guan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, No. 666 Wusu street, Lin'an district, Hangzhou 311300, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, No. 2025 Chengluo Avenue, Longquanyi District, Chengdu 610106, China
| | - Nan Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Xuemin Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
2
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zeng Y, Song H, Xia L, Yang L, Zhang S. The responses of poplars to fungal pathogens: A review of the defensive pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1107583. [PMID: 36875570 PMCID: PMC9978395 DOI: 10.3389/fpls.2023.1107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-lived tree species need to cope with changing environments and pathogens during their lifetime. Fungal diseases cause damage to trees growth and forest nurseries. As model system for woody plants, poplars are also hosts of a large variety of fungus. The defense strategies to fungus are generally associated with the type of fungus, therefore, the defense strategies of poplar against necrotrophic and biotrophic fungus are different. Poplars initiate constitutive defenses and induced defenses based on recognition of the fungus, hormone signaling network cascades, activation of defense-related genes and transcription factors and production of phytochemicals. The means of sensing fungus invasion in poplars are similar with herbs, both of which are mediated by receptor proteins and resistance (R) proteins, leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), but poplars have evolved some unique defense mechanisms compared with Arabidopsis due to their longevity. In this paper, current researches on poplar defensive responses to necrotrophic and biotrophic fungus, which mainly include the physiological and genetic aspects, and the role of noncoding RNA (ncRNA) in fungal resistance are reviewed. This review also provides strategies to enhance poplar disease resistance and some new insights into future research directions.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haifeng Song
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xiao L, Du Q, Fang Y, Quan M, Lu W, Wang D, Si J, El-Kassaby YA, Zhang D. Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in Populus. TREE PHYSIOLOGY 2021; 41:2198-2215. [PMID: 33987676 DOI: 10.1093/treephys/tpab068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is a vital hormone for adaptive responses to biotic and abiotic stresses, which facilitates growth-immunity trade-offs in plants. However, the genetic regulatory networks underlying the metabolic pathway of SA biosynthesis in perennial species remain unclear. Here, we integrated genome-wide association study (GWAS) with metabolite and expression profiling methodologies to dissect the genetic architecture of SA biosynthesis in Populus. First, we quantified nine intermediate metabolites of SA biosynthesis in 300 unrelated Populus tomentosa Carr. individuals. Then, we used a systematic genetic strategy to identify candidate genes for constructing the genetic regulatory network of SA biosynthesis. We focused on WRKY70, an efficient transcription factor, as the key causal gene in the regulatory network, and combined the novel genes coordinating the accumulation of SA. Finally, we identified eight GWAS signals and eight expression quantitative trait loci situated in a selective sweep, and showed the presence of large allele frequency differences among the three geographic populations, revealing that candidate genes subject to selection were involved in SA biosynthesis. This study provides an integrated strategy for dissecting the genetic architecture of the metabolic pathway of SA biosynthesis in Populus, thereby enhancing our understanding of genetic regulation of SA biosynthesis in trees, and accelerating marker-assisted breeding efforts toward high-resistance elite varieties of Populus.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
5
|
Chen H, Qian X, Chen X, Yang T, Feng M, Chen J, Cheng R, Hong H, Zheng Y, Mei Y, Shen D, Xu Y, Zhu M, Ding XS, Tao X. Cytoplasmic and nuclear Sw-5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. THE NEW PHYTOLOGIST 2021; 231:2262-2281. [PMID: 34096619 DOI: 10.1111/nph.17535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and β expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu, 223001, China
| | - Xiaojiao Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tongqing Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hanghzou, 310029, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
7
|
Marchal C, Haberer G, Spannagl M, Uauy C. Comparative Genomics and Functional Studies of Wheat BED-NLR Loci. Genes (Basel) 2020; 11:E1406. [PMID: 33256067 PMCID: PMC7761493 DOI: 10.3390/genes11121406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/01/2022] Open
Abstract
Nucleotide-binding leucine-rich-repeat (LRR) receptors (NLRs) with non-canonical integrated domains (NLR-IDs) are widespread in plant genomes. Zinc-finger BED (named after the Drosophila proteins Boundary Element-Associated Factor and DNA Replication-related Element binding Factor, named BED hereafter) are among the most frequently found IDs. Five BED-NLRs conferring resistance against bacterial and fungal pathogens have been characterized. However, it is unknown whether BED-NLRs function in a manner similar to other NLR-IDs. Here, we used chromosome-level assemblies of wheat to explore the Yr7 and Yr5a genomic regions and show that, unlike known NLR-ID loci, there is no evidence for a NLR-partner in their vicinity. Using neighbor-network analyses, we observed that BED domains from BED-NLRs share more similarities with BED domains from single-BED proteins and from BED-containing proteins harboring domains that are conserved in transposases. We identified a nuclear localization signal (NLS) in Yr7, Yr5, and the other characterized BED-NLRs. We thus propose that this is a feature of BED-NLRs that confer resistance to plant pathogens. We show that the NLS was functional in truncated versions of the Yr7 protein when expressed in N. benthamiana. We did not observe cell-death upon the overexpression of Yr7 full-length, truncated, and 'MHD' variants in N. benthamiana. This suggests that either this system is not suitable to study BED-NLR signaling or that BED-NLRs require additional components to trigger cell death. These results define novel future directions to further understand the role of BED domains in BED-NLR mediated resistance.
Collapse
Affiliation(s)
| | | | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany; (G.H.); (M.S.)
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany; (G.H.); (M.S.)
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| |
Collapse
|
8
|
Morris H, Hietala AM, Jansen S, Ribera J, Rosner S, Salmeia KA, Schwarze FWMR. Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi. ANNALS OF BOTANY 2020; 125:701-720. [PMID: 31420666 PMCID: PMC7182590 DOI: 10.1093/aob/mcz138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND In trees, secondary metabolites (SMs) are essential for determining the effectiveness of defence systems against fungi and why defences are sometimes breached. Using the CODIT model (Compartmentalization of Damage/Dysfunction in Trees), we explain defence processes at the cellular level. CODIT is a highly compartmented defence system that relies on the signalling, synthesis and transport of defence compounds through a three-dimensional lattice of parenchyma against the spread of decay fungi in xylem. SCOPE The model conceptualizes 'walls' that are pre-formed, formed during and formed after wounding events. For sapwood, SMs range in molecular size, which directly affects performance and the response times in which they can be produced. When triggered, high-molecular weight SMs such as suberin and lignin are synthesized slowly (phytoalexins), but can also be in place at the time of wounding (phytoanticipins). In contrast, low-molecular weight phenolic compounds such as flavonoids can be manufactured de novo (phytoalexins) rapidly in response to fungal colonization. De novo production of SMs can be regulated in response to fungal pathogenicity levels. The protective nature of heartwood is partly based on the level of accumulated antimicrobial SMs (phytoanticipins) during the transitionary stage into a normally dead substance. Effectiveness against fungal colonization in heartwood is largely determined by the genetics of the host. CONCLUSION Here we review recent advances in our understanding of the role of SMs in trees in the context of CODIT, with emphasis on the relationship between defence, carbohydrate availability and the hydraulic system.We also raise the limitations of the CODIT model and suggest its modification, encompassing other defence theory concepts. We envisage the development of a new defence system that is modular based and incorporates all components (and organs) of the tree from micro- to macro-scales.
Collapse
Affiliation(s)
- Hugh Morris
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Khalifah A Salmeia
- Laboratory of Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
9
|
Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ. Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet 2020; 16:e1008571. [PMID: 31986137 PMCID: PMC7004385 DOI: 10.1371/journal.pgen.1008571] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/06/2020] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits.
Collapse
Affiliation(s)
- Andrew C. Read
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksey V. Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Geo Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Rachel S. Meyer
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Michael D. Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
- Center for Genomics and Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Lindsay R. Triplett
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Adam J. Bogdanove
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
10
|
Eberl F, Uhe C, Unsicker SB. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Tobias PA, Guest DI, Külheim C, Park RF. De Novo Transcriptome Study Identifies Candidate Genes Involved in Resistance to Austropuccinia psidii (Myrtle Rust) in Syzygium luehmannii (Riberry). PHYTOPATHOLOGY 2018; 108:627-640. [PMID: 29231777 DOI: 10.1094/phyto-09-17-0298-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Austropuccinia psidii, causal agent of myrtle rust, was discovered in Australia in 2010 and has since become established on a wide range of species within the family Myrtaceae. Syzygium luehmannii, endemic to Australia, is an increasingly valuable berry crop. Plants were screened for responses to A. psidii inoculation, and specific resistance, in the form of localized necrosis, was determined in 29% of individuals. To understand the molecular basis underlying this response, mRNA was sequenced from leaf samples taken preinoculation, and at 24 and 48 h postinoculation, from four resistant and four susceptible plants. Analyses, based on de novo transcriptome assemblies for all plants, identified significant expression changes in resistant plants (438 transcripts) 48 h after pathogen exposure compared with susceptible plants (three transcripts). Most significantly up-regulated in resistant plants were gene homologs for transcription factors, receptor-like kinases, and enzymes involved in secondary metabolite pathways. A putative G-type lectin receptor-like kinase was exclusively expressed in resistant individuals and two transcripts incorporating toll/interleukin-1, nucleotide binding site, and leucine-rich repeat domains were up-regulated in resistant plants. The results of this study provide the first early gene expression profiles for a plant of the family Myrtaceae in response to the myrtle rust pathogen.
Collapse
Affiliation(s)
- Peri A Tobias
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - David I Guest
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - Carsten Külheim
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - Robert F Park
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| |
Collapse
|
12
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
13
|
Abstract
The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| |
Collapse
|
14
|
Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D. Resistance to root-knot nematodes Meloidogyne spp. in woody plants. THE NEW PHYTOLOGIST 2016; 211:41-56. [PMID: 27128375 DOI: 10.1111/nph.13933] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 05/10/2023]
Abstract
I. 42 II. 43 III. 44 IV. 47 V. 49 VI. 50 VII. 50 VIII. 50 IX. 52 52 References 52 SUMMARY: Root-knot nematodes (RKNs) Meloidogyne spp. cause major damage to cultivated woody plants. Among them, Prunus, grapevine and coffee are the crops most infested by worldwide polyphagous species and species with a more limited distribution and/or narrower host range. The identification and characterization of natural sources of resistance are important steps to develop RKN control strategies. In woody crops, resistant rootstocks genetically different from the scion of agronomical interest may be engineered. We describe herein the interactions between RKNs and different woody crops, and highlight the plant species in which resistance and corresponding resistance (R) genes have been discovered. Even though grapevine and, to a lesser extent, coffee have a history of rootstock selection for RKN resistance, few cases of resistance have been documented. By contrast, in Prunus, R genes with different spectra have been mapped in plums, peach and almond and can be pyramided for durable resistance in interspecific rootstocks. We particularly discuss here the Ma Toll/interleukin-1 receptor-like-nucleotide binding-leucine-rich repeat gene from Myrobalan plum, one of the longest plant R genes cloned to date, due to its unique biological and structural properties. RKN R genes in Prunus will enable us to carry out molecular studies aimed at improving our knowledge of plant immunity in woody plants.
Collapse
Affiliation(s)
- Simon Bernard Saucet
- RIKEN Centre for Sustainable Resource Science, Plant Immunity Research Group, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Cyril Van Ghelder
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Henri Duval
- INRA, UR 1052, Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), CS 60094, 84143, Montfavet, France
| | - Daniel Esmenjaud
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
15
|
Tobias PA, Guest DI, Külheim C, Hsieh JF, Park RF. A curious case of resistance to a new encounter pathogen: myrtle rust in Australia. MOLECULAR PLANT PATHOLOGY 2016; 17:783-8. [PMID: 26575410 PMCID: PMC6638338 DOI: 10.1111/mpp.12331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 05/28/2023]
Abstract
Resistance genes (R genes) in plants mediate a highly specific response to microbial pathogens, often culminating in localized cell death. Such resistance is generally pathogen race specific and believed to be the result of evolutionary selection pressure. Where a host and pathogen do not share an evolutionary history, specific resistance is expected to be absent or rare. Puccinia psidii, the causal agent of myrtle rust, was recently introduced to Australia, a continent rich in myrtaceous taxa. Responses within species to this new pathogen range from full susceptibility to resistance. Using the myrtle rust case study, we examine models to account for the presence of resistance to new encounter pathogens, such as the retention of ancient R genes through prolonged 'trench warfare', pairing of resistance gene products and the guarding of host integrity.
Collapse
Affiliation(s)
- Peri A Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Eveleigh, NSW, 2015, Australia
| | - David I Guest
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Eveleigh, NSW, 2015, Australia
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Ji-Fan Hsieh
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert F Park
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Plant Breeding Institute, Narellan, NSW, 2567, Australia
| |
Collapse
|
16
|
Kroj T, Chanclud E, Michel‐Romiti C, Grand X, Morel J. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. THE NEW PHYTOLOGIST 2016; 210:618-26. [PMID: 26848538 PMCID: PMC5067614 DOI: 10.1111/nph.13869] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 05/18/2023]
Abstract
Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system.
Collapse
Affiliation(s)
- Thomas Kroj
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Emilie Chanclud
- Université Montpellier2 Place Eugène Bataillon34095Montpellier Cedex 5France
| | - Corinne Michel‐Romiti
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Xavier Grand
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Jean‐Benoit Morel
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| |
Collapse
|
17
|
Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin H, Moffett P, Li X, Germain H. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:247-57. [PMID: 26713351 DOI: 10.1094/mpmi-11-15-0246-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.
Collapse
Affiliation(s)
- Oliver X Dong
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | | | - Melodie B Plourde
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Bulbul Ahmed
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Ming Wang
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | | | - Hailing Jin
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | - Peter Moffett
- 3 Department of Biology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Xin Li
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | - Hugo Germain
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| |
Collapse
|
18
|
Christie N, Tobias PA, Naidoo S, Külheim C. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots. FRONTIERS IN PLANT SCIENCE 2016; 6:1238. [PMID: 26793216 PMCID: PMC4709456 DOI: 10.3389/fpls.2015.01238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/20/2015] [Indexed: 05/03/2023]
Abstract
Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Peri A. Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of SydneyNSW, Australia
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Carsten Külheim
- Research School of Biology, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
19
|
Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FKK, Knight MR, Sharples GJ, Goverse A, Pålsson LO, Takken FLW, Cann MJ. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein. J Biol Chem 2015; 290:24945-60. [PMID: 26306038 PMCID: PMC4599002 DOI: 10.1074/jbc.m115.672121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.
Collapse
Affiliation(s)
- Stepan Fenyk
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Philip D Townsend
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Christopher H Dixon
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gerhard B Spies
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | | | - Erik J Slootweg
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lotte B Westerhof
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Fleur K K Gawehns
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc R Knight
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gary J Sharples
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Aska Goverse
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute,
| |
Collapse
|
20
|
Jia Y, Yuan Y, Zhang Y, Yang S, Zhang X. Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 2015; 16:48. [PMID: 25935646 PMCID: PMC4417205 DOI: 10.1186/s12863-015-0208-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Nucleotide binding site leucine-rich repeats (NBS-LRR) genes encode a large class of disease resistance (R) proteins in plants. Extensive studies have been carried out to identify and investigate NBS-encoding gene families in many important plant species. However, no comprehensive research into NBS-encoding genes in the Rosaceae has been performed. RESULTS In this study, five whole-genome sequenced Rosaceae species, including apple, pear, peach, mei, and strawberry, were analyzed to investigate the evolutionary pattern of NBS-encoding genes and to compare them to those of three Cucurbitaceae species, cucumber, melon, and watermelon. Considerable differences in the copy number of NBS-encoding genes were observed between Cucurbitaceae and Rosaceae species. In Rosaceae species, a large number and a high proportion of NBS-encoding genes were observed in peach (437, 1.52%), mei (475, 1.51%), strawberry (346, 1.05%) and pear (617, 1.44%), and apple contained a whopping 1303 (2.05%) NBS-encoding genes, which might be the highest number of R-genes in all of these reported diploid plant. However, no more than 100 NBS-encoding genes were identified in Cucurbitaceae. Many more species-specific gene families were classified and detected with the signature of positive selection in Rosaceae species, especially in the apple genome. CONCLUSIONS Taken together, our findings indicate that NBS-encoding genes in Rosaceae, especially in apple, have undergone extreme expansion and rapid adaptive evolution. Useful information was provided for further research on the evolutionary mode of disease resistance genes in Rosaceae crops.
Collapse
Affiliation(s)
- YanXiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Yang Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
21
|
Abstract
Intracellular immune receptors with nucleotide-binding, leucine-rich domains (NLRs) are found in both plants and animals. Compared to animals, NLR-encoding gene families are expanded, more prevalent and have enriched diversity in higher plants. Strong host defense triggered by the recognition of specific pathogen effectors constitutes a major part of the plant immune response that has long been exploited to breed crops for enhanced resistance. Although the first plant NLR genes were cloned about 20 years ago, their signaling mechanisms remain obscure. Here we review recent progress in plant NLR studies, focusing on their pathogen recognition, homeostasis control and potential signaling activation mechanisms.
Collapse
|
22
|
Poplar genetic engineering: promoting desirable wood characteristics and pest resistance. Appl Microbiol Biotechnol 2013; 97:5669-79. [DOI: 10.1007/s00253-013-4940-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
23
|
Fossdal CG, Yaqoob N, Krokene P, Kvaalen H, Solheim H, Yakovlev IA. Local and systemic changes in expression of resistance genes, NB-LRR genes and their putative microRNAs in Norway spruce after wounding and inoculation with the pathogen Ceratocystis polonica. BMC PLANT BIOLOGY 2012; 12:105. [PMID: 22776433 PMCID: PMC3431983 DOI: 10.1186/1471-2229-12-105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA). We examined the expression of five Norway spruce miRNA that may regulate NB-LRR related transcripts in secondary phloem (bark) of resistant Norway spruce after wounding and inoculation with the necrotrophic blue stain fungus Ceratocystis polonica. RESULTS The plants of this clone recovered from both the pathogen inoculations and wounding alone. We found local and systemic induction of the resistance marker genes PaChi4, PaPAL and PaPX3 indicative of an effective induced host defence response. There were minor local and systemic changes in the expression of five miRNAs and 21 NB-LRRs between healthy and treated plants. Only five putative NB-LRRs (PaLRR1, PaLRR3, PaLRR14, PaLRR15 and PaLRR16) showed significant increases greater than two-fold as a local response to C. polonica. Of all NB-LRRs only PaLRR3, the most highly differentially regulated NB-LRR, showed a significant increase also due to wounding. The five miRNAs showed indications of an initial local and systemic down-regulation at day 1, followed by a later increase up to and beyond the constitutive levels at day 6. However, the initial down-regulation was significant only for miR3693 and miR3705. CONCLUSIONS Overall, local and systemic expression changes were evident only for the established resistance marker genes and PaLRR3. The minor expression changes observed both for the followed miRNAs and their predicted NB-LRR targets suggest that the expression of most NB-LRR genes are maintained close to their constitutive levels in stressed and healthy Norway spruce plants.
Collapse
Affiliation(s)
- Carl Gunnar Fossdal
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
| | - Nadeem Yaqoob
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Høgskoleveien 12, As, NO-1432, Norway
| | - Paal Krokene
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
| | - Harald Kvaalen
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
| | - Halvor Solheim
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
| | - Igor A Yakovlev
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, As, NO-1431, Norway
| |
Collapse
|
24
|
|
25
|
Hacquard S, Petre B, Frey P, Hecker A, Rouhier N, Duplessis S. The poplar-poplar rust interaction: insights from genomics and transcriptomics. J Pathog 2011; 2011:716041. [PMID: 22567338 PMCID: PMC3335510 DOI: 10.4061/2011/716041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/28/2011] [Indexed: 11/28/2022] Open
Abstract
Poplars are extensively cultivated worldwide, and their susceptibility to the leaf rust fungus Melampsora larici-populina leads to considerable damages in plantations. Despite a good knowledge of the poplar rust life cycle, and particularly the epidemics on poplar, the perennial status of the plant host and the obligate biotrophic lifestyle of the rust fungus are bottlenecks for molecular investigations. Following the completion of both M. larici-populina and Populus trichocarpa genome sequences, gene families involved in poplar resistance or in rust fungus virulence were investigated, allowing the identification of key genetic determinants likely controlling the outcome of the interaction. Specific expansions of resistance and defense-related genes in poplar indicate probable innovations in perennial species in relation with host-pathogen interactions. The genome of M. Larici-populina contains a strikingly high number of genes encoding small secreted proteins (SSPs) representing hundreds of candidate effectors. Transcriptome analyses of interacting partners in compatible and incompatible interactions revealed conserved set of genes involved in poplar defense reactions as well as timely regulated expression of SSP transcripts during host tissues colonisation. Ongoing functional studies of selected candidate effectors will be achieved mainly on the basis of recombinant protein purification and subsequent characterisation.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Institut National de la Recherche Agronomique (INRA), Nancy Université, Unité Mixte de Recherche 1136, "Interactions Arbres/Micro-organismes," Centre INRA de Nancy, 54280 Champenoux, France
| | | | | | | | | | | |
Collapse
|
26
|
Bresson A, Jorge V, Dowkiw A, Guerin V, Bourgait I, Tuskan GA, Schmutz J, Chalhoub B, Bastien C, Faivre Rampant P. Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide-binding site leucine-rich repeat (NBS-LRR)-rich genomic regions of chromosome 19 in poplar. THE NEW PHYTOLOGIST 2011; 192:151-163. [PMID: 21658182 DOI: 10.1111/j.1469-8137.2011.03786.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• R(US) is a major dominant gene controlling quantitative resistance, inherited from Populus trichocarpa, whereas R(1) is a gene governing qualitative resistance, inherited from P. deltoides. • Here, we report a reiterative process of concomitant fine-scale genetic and physical mapping guided by the P. trichocarpa genome sequence. The high-resolution linkage maps were developed using a P. deltoides × P. trichocarpa progeny of 1415 individuals. R(US) and R(1) were mapped in a peritelomeric region of chromosome 19. Markers closely linked to R(US) were used to screen a bacterial artificial chromosome (BAC) library constructed from the P. trichocarpa parent, heterozygous at the locus R(US) . • Two local physical maps were developed, one encompassing the R(US) allele and the other spanning r(US) . The alignment of the two haplophysical maps showed structural differences between haplotypes. The genetic and physical maps were anchored to the genome sequence, revealing genome sequence misassembly. Finally, the R(US) locus was localized within a 0.8-cM interval, whereas R(1) was localized upstream of R(US) within a 1.1-cM interval. • The alignment of the genetic and physical maps with the local reorder of the chromosome 19 sequence indicated that R(US) and R(1) belonged to a genomic region rich in nucleotide-binding site leucine-rich repeat (NBS-LRR) and serine threonine kinase (STK) genes.
Collapse
Affiliation(s)
- Aloïs Bresson
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| | - Véronique Jorge
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Arnaud Dowkiw
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Vanina Guerin
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Isabelle Bourgait
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Gerald A Tuskan
- Oak Ridge National Laboratory, PO Box 2008, MS-6422, Bldg. 1062, Rm 215, Oak Ridge, TN 37831-6422, USA
| | - Jeremy Schmutz
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 3508-2908, USA
| | - Boulos Chalhoub
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| | - Catherine Bastien
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Patricia Faivre Rampant
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| |
Collapse
|