1
|
Morales-Sánchez JÁM, Mark K, Souza JPS, Niinemets Ü. Desiccation-rehydration measurements in bryophytes: current status and future insights. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4338-4361. [PMID: 35536655 DOI: 10.1093/jxb/erac172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Desiccation-rehydration experiments have been employed over the years to evaluate desiccation tolerance of bryophytes (Bryophyta, Marchantiophyta, and Anthocerotophyta). Researchers have applied a spectrum of protocols to induce desiccation and subsequent rehydration, and a wide variety of techniques have been used to study desiccation-dependent changes in bryophyte molecular, cellular, physiological, and structural traits, resulting in a multifaceted assortment of information that is challenging to synthesize. We analysed 337 desiccation-rehydration studies, providing information for 351 species, to identify the most frequent methods used, analyse the advances in desiccation studies over the years, and characterize the taxonomic representation of the species assessed. We observed certain similarities across methodologies, but the degree of convergence among the experimental protocols was surprisingly low. Out of 52 bryophyte orders, 40% have not been studied, and data are lacking for multiple remote or difficult to access locations. We conclude that for quantitative interspecific comparisons of desiccation tolerance, rigorous standardization of experimental protocols and measurement techniques, and simultaneous use of an array of experimental techniques are required for a mechanistic insight into the different traits modified in response to desiccation. New studies should also aim to fill gaps in taxonomic, ecological, and spatial coverage of bryophytes.
Collapse
Affiliation(s)
- José Ángel M Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - João Paulo S Souza
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
2
|
Dong XM, Pu XJ, Zhou SZ, Li P, Luo T, Chen ZX, Chen SL, Liu L. Orphan gene PpARDT positively involved in drought tolerance potentially by enhancing ABA response in Physcomitrium (Physcomitrella) patens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111222. [PMID: 35487672 DOI: 10.1016/j.plantsci.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 05/19/2023]
Abstract
Almost all genomes have orphan genes, the majority of which are not functionally annotated. There is growing evidence showed that orphan genes may play important roles in the environmental stress response of Physcomitrium patens. We identified PpARDT (ABA-responsive drought tolerance) as a moss-specific and ABA-responsive orphan gene in P. patens. PpARDT is mainly expressed during the gametophytic stage of the life cycle, and the expression was induced by different abiotic stresses. A PpARDT knockout (Ppardt) mutant showed reduced dehydration-rehydration tolerance, and the phenotype could be rescued by exogenous ABA. Meanwhile, transgenic Arabidopsis lines exhibiting heterologous expression of PpARDT were more sensitive to exogenous ABA than wild-type (Col-0) plants and showed enhanced drought tolerance. These indicate that PpARDT confers drought tolerance among land plants potentially by enhancing ABA response. Further, we identified genes encoding abscisic acid receptor PYR/PYL family proteins, and ADP-ribosylation factors (Arf) as hub genes associated with the Ppardt phenotype. Given the lineage-specific characteristics of PpARDT, our results provide insights into the roles of orphan gene in shaping lineage-specific adaptation possibly by recruiting common pre-existed pathway components.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Xiao-Jun Pu
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Shi-Zhao Zhou
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ping Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650201, China.
| | - Ting Luo
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ze-Xi Chen
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Si-Lin Chen
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Liu
- Key Laboratory Dependent on for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Kleist TJ, Bortolazzo A, Keyser ZP, Perera AM, Irving TB, Venkateshwaran M, Atanjaoui F, Tang RJ, Maeda J, Cartwright HN, Christianson ML, Lemaux PG, Luan S, Ané JM. Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. iScience 2022; 25:103754. [PMID: 35146383 PMCID: PMC8819110 DOI: 10.1016/j.isci.2022.103754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.
Collapse
Affiliation(s)
- Thomas J. Kleist
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
- Corresponding author
| | - Anthony Bortolazzo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachary P. Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adele M. Perera
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fatiha Atanjaoui
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Ren-Jie Tang
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather N. Cartwright
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
| | - Michael L. Christianson
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Peggy G. Lemaux
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author
| |
Collapse
|
4
|
Ghosh TK, Tompa NH, Rahman MM, Mohi-Ud-Din M, Al-Meraj SMZ, Biswas MS, Mostofa MG. Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress. PeerJ 2021; 9:e12419. [PMID: 34824915 PMCID: PMC8590393 DOI: 10.7717/peerj.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/10/2021] [Indexed: 01/24/2023] Open
Abstract
Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort’s model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.
Collapse
Affiliation(s)
- Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naznin Haque Tompa
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S M Zubair Al-Meraj
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States.,Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
5
|
Žárský J, Žárský V, Hanáček M, Žárský V. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split. FRONTIERS IN PLANT SCIENCE 2021; 12:735020. [PMID: 35154170 PMCID: PMC8829067 DOI: 10.3389/fpls.2021.735020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.
Collapse
Affiliation(s)
- Jakub Žárský
- CryoEco Research Group, Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Jakub Žárský,
| | - Vojtěch Žárský
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Martin Hanáček
- Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Brno, Czechia
- Regional Museum in Jeseník, Jeseník, Czechia
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Becker B, Feng X, Yin Y, Holzinger A. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3270-3278. [PMID: 32107542 PMCID: PMC7289719 DOI: 10.1093/jxb/eraa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.
Collapse
Affiliation(s)
| | - Xuehuan Feng
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yanbin Yin
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Innsbruck, Austria
- Correspondence:
| |
Collapse
|
7
|
Sun Y, Pri-Tal O, Michaeli D, Mosquna A. Evolution of Abscisic Acid Signaling Module and Its Perception. FRONTIERS IN PLANT SCIENCE 2020; 11:934. [PMID: 32754170 PMCID: PMC7367143 DOI: 10.3389/fpls.2020.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 05/18/2023]
Abstract
We hereby review the perception and responses to the stress hormone Abscisic acid (ABA), along the trajectory of 500M years of plant evolution, whose understanding may resolve how plants acquired this signaling pathway essential for the colonization of land. ABA levels rise in response to abiotic stresses, coordinating physiological and metabolic responses, helping plants survive stressful environments. In land plants, ABA signaling cascade leads to growth arrest and large-scale changes in transcript levels, required for coping with environmental stressors. This response is regulated by a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module, that initiates phosphor-activation of transcription factors and ion channels. The enzymatic portions of this module (phosphatase and kinase) are functionally conserved from streptophyte algae to angiosperms, whereas the regulatory component -the PYL receptors, putatively evolved in the common ancestor of Zygnematophyceae and embryophyte as a constitutive, ABA-independent protein, further evolving into a ligand-activated receptor at the embryophyta. This evolutionary process peaked with the appearance of the strictly ABA-dependent subfamily III stress-triggered angiosperms' dimeric PYL receptors. The emerging picture is that the ancestor of land plants and its predecessors synthesized ABA, as its biosynthetic pathway is conserved between ancestral and current day algae. Despite this ability, it was only the common ancestor of land plants which acquired the hormonal-modulation of PYL activity by ABA. This raises several questions regarding both ABA's function in ABA-non-responsive organisms, and the evolutionary aspects of the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Pri-Tal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Assaf Mosquna,
| |
Collapse
|
8
|
Rathnayake KN, Nelson S, Seeve C, Oliver MJ, Koster KL. Acclimation and endogenous abscisic acid in the moss Physcomitrella patens during acquisition of desiccation tolerance. PHYSIOLOGIA PLANTARUM 2019; 167:317-329. [PMID: 30525218 DOI: 10.1111/ppl.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 05/21/2023]
Abstract
The moss Physcomitrella patens has been used as a model organism to study the induction of desiccation tolerance (DT), but links between dehydration rate, the accumulation of endogenous abscisic acid (ABA) and DT remain unclear. In this study, we show that prolonged acclimation of P. patens at 89% relative humidity (RH) [-16 MPa] can induce tolerance of desiccation at 33% RH (-153 MPa) in both protonema and gametophore stages. During acclimation, significant endogenous ABA accumulation occurred after 1 day in gametophores and after 2 days in protonemata. Physcomitrella patens expressing the ABA-inducible EARLY METHIONINE promoter fused to a cyan fluorescent protein (CFP) reporter gene revealed a mostly uniform distribution of the CFP increasing throughout the tissues during acclimation. DT was measured by day 6 of acclimation in gametophores, but not until 9 days of acclimation for protonemata. These results suggest that endogenous ABA accumulating when moss cells experience moderate water loss requires sufficient time to induce the changes that permit cells to survive more severe desiccation. These results provide insight for ongoing studies of how acclimation induces metabolic changes to enable DT in P. patens.
Collapse
Affiliation(s)
- Kumudu N Rathnayake
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Sven Nelson
- U.S. Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Candace Seeve
- U.S. Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Melvin J Oliver
- U.S. Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Karen L Koster
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
9
|
Liu D, Sun J, Zhu D, Lyu G, Zhang C, Liu J, Wang H, Zhang X, Gao D. Genome-Wide Identification and Expression Profiles of Late Embryogenesis-Abundant (LEA) Genes during Grain Maturation in Wheat ( Triticum aestivum L.). Genes (Basel) 2019; 10:genes10090696. [PMID: 31510067 PMCID: PMC6770980 DOI: 10.3390/genes10090696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.
Collapse
Affiliation(s)
- Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jing Sun
- Yangzhou University, Yangzhou 225009, China.
| | - Dongmei Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Guofeng Lyu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Chunmei Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Hui Wang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Xiao Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Derong Gao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| |
Collapse
|
10
|
Pizarro M, Contreras RA, Köhler H, Zúñiga GE. Desiccation tolerance in the Antarctic moss Sanionia uncinata. Biol Res 2019; 52:46. [PMID: 31434576 PMCID: PMC6704725 DOI: 10.1186/s40659-019-0251-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/06/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND One of the most extreme environments on our planet is the Maritime Antarctic territory, due to its low-water availability, which restricts the development of plants. Sanionia uncinata Hedw. (Amblystegiaceae), the main colonizer of the Maritime Antarctic, has effective mechanisms to tolerate this environment. It has been described that the tolerance to desiccation is mediated by the hormone abscisic acid (ABA), antioxidants systems, accumulation of compatible solutes and proteins of the late embryogenesis abundant (LEA). However, to date, these mechanisms have not been described in S. uncinata. Therefore, in this work, we postulate that the tolerance to desiccation in the Antarctic moss S. uncinata is mediated by the accumulation of ABA, the osmolytes proline and glycine betaine, and dehydrins (an LEA class 11 proteins). To demonstrate our hypothesis, S. uncinata was subjected to desiccation for 24 h (loss in 95% of water content), and the effects on its physiological, photosynthetic, antioxidant and biochemical parameters were determined. RESULTS Our results showed an accumulation of ABA in response to water loss, and the activation of protective responses that involves an increment in levels of proline and glycine betaine, an increment in the activity of antioxidant enzymes such as SOD, CAT, APX and POD, and the accumulation of dehydrins proteins. CONCLUSION The results showed, suggest that S. uncinata is a desiccation-tolerant moss, property mediated by high cellular plasticity regulated by ABA.
Collapse
Affiliation(s)
- Marisol Pizarro
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, and CEDENNA, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rodrigo A Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, and CEDENNA, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Hans Köhler
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, and CEDENNA, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Gustavo E Zúñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, and CEDENNA, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
11
|
Artur MAS, Zhao T, Ligterink W, Schranz E, Hilhorst HWM. Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants. Genome Biol Evol 2019; 11:459-471. [PMID: 30407531 PMCID: PMC6379091 DOI: 10.1093/gbe/evy248] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 01/29/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins include eight multigene families that are expressed in response to water loss during seed maturation and in vegetative tissues of desiccation tolerant species. To elucidate LEA proteins evolution and diversification, we performed a comprehensive synteny and phylogenetic analyses of the eight gene families across 60 complete plant genomes. Our integrated comparative genomic approach revealed that synteny conservation and diversification contributed to LEA family expansion and functional diversification in plants. We provide examples that: 1) the genomic diversification of the Dehydrin family contributed to differential evolution of amino acid sequences, protein biochemical properties, and gene expression patterns, and led to the appearance of a novel functional motif in angiosperms; 2) ancient genomic diversification contributed to the evolution of distinct intrinsically disordered regions of LEA_1 proteins; 3) recurrent tandem-duplications contributed to the large expansion of LEA_2; and 4) dynamic synteny diversification played a role on the evolution of LEA_4 and its function on plant desiccation tolerance. Taken together, these results show that multiple evolutionary mechanisms have not only led to genomic diversification but also to structural and functional plasticity among LEA proteins which have jointly contributed to the adaptation of plants to water-limiting environments.
Collapse
Affiliation(s)
- Mariana Aline Silva Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Lv A, Su L, Liu X, Xing Q, Huang B, An Y, Zhou P. Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC PLANT BIOLOGY 2018; 18:299. [PMID: 30477420 PMCID: PMC6258397 DOI: 10.1186/s12870-018-1511-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dehydrins play positive roles in regulating plant abiotic stress responses. The objective of this study was to characterize two dehydrin genes, CdDHN4-L and CdDHN4-S, generated by alternative splicing of CdDHN4 in bermudagrass. RESULTS Overexpression of CdDHN4-L with φ-segment and CdDHN4-S lacking of φ-segment in Arabidopsis significantly increased tolerance against abiotic stresses. The growth phenotype of Arabidopsis exposed to NaCl at 100 mM was better in plants overexpressing CdDHN4-L than those overexpressing CdDHN4-S, as well as better in E.coli cells overexpressing CdDHN4-L than those overexpressing CdDHN4-S in 300 and 400 mM NaCl, and under extreme temperature conditions at - 20 °C and 50 °C. The CdDHN4-L had higher disordered characterization on structures than CdDHN4-S at temperatures from 10 to 90 °C. The recovery activities of lactic dehydrogenase (LDH) and alcohol dehydrogenase (ADH) in presence of CdDHN4-L and CdDHN4-S were higher than that of LDH and ADH alone under freeze-thaw damage and heat. Protein-binding and bimolecular fluorescence complementation showed that both proteins could bind to proteins with positive isoelectric point via electrostatic forces. CONCLUSIONS These results indicate that CdDHN4-L has higher protective ability against abiotic stresses due to its higher flexible unfolded structure and thermostability in comparison with CdDHN4-S. These provided direct evidence of the function of the φ-segment in dehydrins for protecting plants against abiotic stress and to show the electrostatic interaction between dehydrins and client proteins.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xingchen Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Qiang Xing
- Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Jersey, NJ 08901 USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101 People’s Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
13
|
Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, Yu L, Han L, Fu Y, Tian B, Tang L. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience 2018; 7:4994837. [PMID: 29757382 PMCID: PMC5967522 DOI: 10.1093/gigascience/giy051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/12/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Background Bombax ceiba L. (the red silk cotton tree) is a large deciduous tree that is distributed in tropical and sub-tropical Asia as well as northern Australia. It has great economic and ecological importance, with several applications in industry and traditional medicine in many Asian countries. To facilitate further utilization of this plant resource, we present here the draft genome sequence for B. ceiba. Findings We assembled a relatively intact genome of B. ceiba by using PacBio single-molecule sequencing and BioNano optical mapping technologies. The final draft genome is approximately 895 Mb long, with contig and scaffold N50 sizes of 1.0 Mb and 2.06 Mb, respectively. Conclusions The high-quality draft genome assembly of B. ceiba will be a valuable resource enabling further genetic improvement and more effective use of this tree species.
Collapse
Affiliation(s)
- Yong Gao
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Haibo Wang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Dongqin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Shengnan Song
- Nextomics Biosciences Institute, Wuhan, Hubei 430000, China
| | - Long Yu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Lihong Han
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Yi Fu
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
14
|
Xiao L, Yobi A, Koster KL, He Y, Oliver MJ. Desiccation tolerance in Physcomitrella patens: Rate of dehydration and the involvement of endogenous abscisic acid (ABA). PLANT, CELL & ENVIRONMENT 2018; 41:275-284. [PMID: 29105792 DOI: 10.1111/pce.13096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 05/13/2023]
Abstract
The moss Physcomitrella patens, a model system for basal land plants, tolerates several abiotic stresses, including dehydration. We previously reported that Physcomitrella patens survives equilibrium dehydration to -13 MPa in a closed system at 91% RH. Tolerance of desiccation to water potentials below -100 MPa was only achieved by pretreatment with exogenous abscisic acid (ABA). We report here that gametophores, but not protonemata, can survive desiccation below -100 MPa after a gradual drying regime in an open system, without exogenous ABA. In contrast, faster equilibrium drying at 90% RH for 3-5 days did not induce desiccation tolerance in either tissue. Endogenous ABA accumulated in protonemata and gametophores under both drying regimes, so did not correlate directly with desiccation tolerance. Gametophores of a Ppabi3a/b/c triple knock out transgenic line also survived the gradual dehydration regime, despite impaired ABA signaling. Our results suggest that the initial drying rate, and not the amount of endogenous ABA, may be critical in the acquisition of desiccation tolerance. Results from this work will provide insight into ongoing studies to uncover the role of ABA in the dehydration response and the underlying mechanisms of desiccation tolerance in this bryophyte.
Collapse
Affiliation(s)
- Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
- U.S. Department of Agriculture - Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Abou Yobi
- U.S. Department of Agriculture - Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Karen L Koster
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Yikun He
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Melvin J Oliver
- U.S. Department of Agriculture - Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Rippin M, Becker B, Holzinger A. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics. PLANT & CELL PHYSIOLOGY 2017; 58:2067-2084. [PMID: 29036673 PMCID: PMC5722205 DOI: 10.1093/pcp/pcx136] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at ∼86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Sussmilch FC, McAdam SAM. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. PLANTS (BASEL, SWITZERLAND) 2017; 6:E54. [PMID: 29113039 PMCID: PMC5750630 DOI: 10.3390/plants6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia.
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses. Methods Mol Biol 2017. [PMID: 28735405 DOI: 10.1007/978-1-4939-7136-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.
Collapse
|
18
|
Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava. FRONTIERS IN PLANT SCIENCE 2016; 7:2039. [PMID: 28119717 PMCID: PMC5220070 DOI: 10.3389/fpls.2016.02039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits. The effectiveness of histone deacetylase (HDAC) inhibitors for increasing tolerance to salinity stress has recently been reported. Here we use the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), to enhance tolerance to high salinity in cassava. Immunoblotting analysis reveals that SAHA treatment induces strong hyper-acetylation of histones H3 and H4 in roots, suggesting that SAHA functions as the HDAC inhibitor in cassava. Consistent with increased tolerance to salt stress under SAHA treatment, reduced Na+ content and increased K+/Na+ ratio were detected in SAHA-treated plants. Transcriptome analysis to discover mechanisms underlying salinity stress tolerance mediated through SAHA treatment reveals that SAHA enhances the expression of 421 genes in roots under normal condition, and 745 genes at 2 h and 268 genes at 24 h under both SAHA and NaCl treatment. The mRNA expression of genes, involved in phytohormone [abscisic acid (ABA), jasmonic acid (JA), ethylene, and gibberellin] biosynthesis pathways, is up-regulated after high salinity treatment in SAHA-pretreated roots. Among them, an allene oxide cyclase (MeAOC4) involved in a crucial step of JA biosynthesis is strongly up-regulated by SAHA treatment under salinity stress conditions, implying that JA pathway might contribute to increasing salinity tolerance by SAHA treatment. Our results suggest that epigenetic manipulation might enhance tolerance to high salinity stress in cassava.
Collapse
Affiliation(s)
- Onsaya Patanun
- Plant Biochemistry and Molecular Genetics Laboratory, Department of Biotechnology, Faculty of Science, Mahidol UniversityBangkok, Thailand
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
| | - Misao Itouga
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Yukari Kato
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Jarunya Narangajavana
- Plant Biochemistry and Molecular Genetics Laboratory, Department of Biotechnology, Faculty of Science, Mahidol UniversityBangkok, Thailand
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
- Plant Genomic Network Science Division, Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|
19
|
Shinde S, Behpouri A, McElwain JC, Ng CKY. Genome-wide transcriptomic analysis of the effects of sub-ambient atmospheric oxygen and elevated atmospheric carbon dioxide levels on gametophytes of the moss, Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4001-12. [PMID: 25948702 PMCID: PMC4473992 DOI: 10.1093/jxb/erv197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It is widely accepted that atmospheric O2 has played a key role in the development of life on Earth, as evident from the coincidence between the rise of atmospheric O2 concentrations in the Precambrian and biological evolution. Additionally, it has also been suggested that low atmospheric O2 is one of the major drivers for at least two of the five mass-extinction events in the Phanerozoic. At the molecular level, our understanding of the responses of plants to sub-ambient O2 concentrations is largely confined to studies of the responses of underground organs, e.g. roots to hypoxic conditions. Oxygen deprivation often results in elevated CO2 levels, particularly under waterlogged conditions, due to slower gas diffusion in water compared to air. In this study, changes in the transcriptome of gametophytes of the moss Physcomitrella patens arising from exposure to sub-ambient O2 of 13% (oxygen deprivation) and elevated CO2 (1500 ppmV) were examined to further our understanding of the responses of lower plants to changes in atmospheric gaseous composition. Microarray analyses revealed that the expression of a large number of genes was affected under elevated CO2 (814 genes) and sub-ambient O2 conditions (576 genes). Intriguingly, the expression of comparatively fewer numbers of genes (411 genes) was affected under a combination of both sub-ambient O2 and elevated CO2 condition (low O2-high CO2). Overall, the results point towards the effects of atmospheric changes in CO2 and O2 on transcriptional reprogramming, photosynthetic regulation, carbon metabolism, and stress responses.
Collapse
Affiliation(s)
- Suhas Shinde
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ali Behpouri
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jennifer C McElwain
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carl K-Y Ng
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Greenwood JL, Stark LR. The rate of drying determines the extent of desiccation tolerance in Physcomitrella patens. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:460-467. [PMID: 32481005 DOI: 10.1071/fp13257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/16/2013] [Indexed: 06/11/2023]
Abstract
The effect of differential drying rates on desiccation tolerance in Physcomitrella patens (Hedw.) Bruch & Schimp. is examined. In order to provide more evidence as to the status of desiccation tolerance in P. patens, a system was designed that allowed alteration of the rate of water loss within a specific relative humidity. An artificial substrate consisting of layers of wetted filter paper was used to slow the drying process to as long as 284h, a significant increase over the commonly used method of exposure (saturated salt solution). By slowing the rate of drying, survival rates and chlorophyll fluorescence parameters improved, and tissue regeneration time was faster. These results indicate a trend where the capacity for desiccation tolerance increases with slower drying, and reveal a much stronger capacity for desiccation tolerance in P. patens than was previously known.
Collapse
Affiliation(s)
- Joshua L Greenwood
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Box 454004, Las Vegas, NV 89154-4004, USA
| | - Lloyd R Stark
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Box 454004, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
21
|
The dehydrin wzy2 promoter from wheat defines its contribution to stress tolerance. Funct Integr Genomics 2013; 14:111-25. [PMID: 24363037 DOI: 10.1007/s10142-013-0354-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/16/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Dehydrins (DHNs), which are stress-related proteins, are important for plant survival under various abiotic and biotic stresses. To elucidate the regulatory mechanisms of wheat-derived DHNs under these stresses, we characterized the DHN wzy2 promoter of the wheat cultivar Zhengyin 1 and studied its contribution to stress tolerance. Sequence analysis indicated that the wzy2 gene contains one 109-bp intron inserted in the nucleotide sequence encoding the S-motif and characterized by a GT-AG border. The wzy2 promoter was revealed to contain several potential stress-related cis-acting regulatory elements, including elements responsive to abscisic acid (ABA; ABREs), anoxia (GC motifs), low temperature (LTREs), auxin (TGA elements), methyl jasmonate (MeJA; TGACG motifs), and gibberellin (TATC boxes). Quantitative real-time PCR analysis showed that transcript accumulation occurred in response to low temperature, anoxia, indoleacetic acid, MeJA, ABA, and gibberellin (GA) treatments. Histochemical analysis of GUS expression demonstrated that wzy2 promoter activity could be upregulated by low temperature, anoxia, ABA, and GA treatments. Interestingly, wzy2 promoter element-driven β-glucuronidase expression was first observed in meristemoids rather than calli of wheat seeds subjected to anoxia. Taken together, these results indicate that YSK2-type wzy2 can be induced directly by ABA, low temperature, anoxia, and GA treatments and indirectly by drought, implying that different cis-acting elements interact in stress response cross talk.
Collapse
|
22
|
Shinde S, Shinde R, Downey F, Ng CKY. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2013; 8:e22535. [PMID: 23221763 PMCID: PMC3745561 DOI: 10.4161/psb.22535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 05/26/2023]
Abstract
The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions.
Collapse
|