1
|
Chakraborty G, Reddy R, Drivas A, Ledeen RW. Interleukin-2 receptors and interleukin-2-mediated signaling in myelin: activation of diacylglycerol kinase and phosphatidylinositol 3-kinase. Neuroscience 2003; 122:967-73. [PMID: 14643763 DOI: 10.1016/j.neuroscience.2003.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Myelin was previously shown to possess neurotransmitter and cytokine receptors that trigger well-defined signaling mechanisms within the multilamellar structure. The present study reveals the presence of an interleukin-2 (IL-2) receptor in isolated mouse CNS myelin that responds to recombinant mouse IL-2 by activating diacylglycerol kinase (DAGK) and phosphoinositide 3-kinase (PI3K); additional evidence suggests participation by protein tyrosine kinase. Activation of myelin DAGK by IL-2 occurred in brain stem tissue mince and was blocked by chelerythrin chloride, indicating an essential role for myelin-localized protein kinase C. Two inhibitors of PI3K, wortmannin and LY294002, blocked endogenous PI3K as well as that enhanced by IL-2. Activation of PI3K by IL-2 was also blocked by tyrphostin A25, a selective inhibitor of PTK, suggesting activation of the latter by IL-2 is upstream to PI3K activation. This reaction resulted in tyrosine phosphorylation of a protein tentatively identified as the p85 subunit of PI3K. Developmental changes were noted in that receptor density and signaling activity were robust during the period of rapid myelination and declined rapidly thereafter.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, New Jersey Medical School, UMDNJ, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
2
|
Chakraborty G, Drivas A, Ledeen R. The phosphoinositide signaling cycle in myelin requires cooperative interaction with the axon. Neurochem Res 1999; 24:249-54. [PMID: 9972871 DOI: 10.1023/a:1022562021059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies on the origin of myelin phosphoinositides involved in signaling mechanisms indicated axon to myelin transfer of phosphatidylinositol followed by myelin-localized incorporation of axon-derived phosphate groups into phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate. This is in agreement with other studies showing the presence of phosphorylating activity in myelin that converts phosphatidylinositol into the mono-and diphospho derivatives. It was also found that the second messenger, inositol 1,4,5-trisphosphate, is hydrolyzed to inositol 1,4-bisphosphate by a myelin-localized enzyme. The present study was undertaken to determine the locus of the remaining reactions leading to formation of free inositol and completion of the cycle by resynthesis of phosphatidylinositol. The latter reaction was found to occur preferentially in isolated axons, and to a limited extent if at all in myelin. On the other hand, hydrolytic reactions which sequentially convert inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, inositol 1-phosphate, and free inositol were found to occur more prominently in myelin. Thus, restoration of phosphoinositides following signal-induced breakdown of PIP2 in myelin is seen as requiring metabolic interplay between myelin and axon.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA
| | | | | |
Collapse
|
3
|
Ledeen RW, Chakraborty G. Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis. Neurochem Res 1998; 23:277-89. [PMID: 9482240 DOI: 10.1023/a:1022493013904] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism of focal demyelination in multiple sclerosis has been a long-standing enigma of this disorder. Cytokines, a diverse family of signalling molecules, are viewed as potential mediators of the process based on clinical observations and studies with animal models and tissue/cell culture systems. Myelin and oligodendrocyte (OL) destruction occur in cultured preparations subjected to cytokines such as tumor necrosis factor-alpha (TNF alpha) and lymphotoxin (LT). Many studies have shown these and other cytokines to be elevated at lesion sites and in the CSF of multiple sclerosis (MS) patients, with similar findings in animal models. Some variability in the nature of MS lesion formation has been reported, both OLs and myelin being primary targets. To account for myelin destruction in the presence of apparently functional OLs we hypothesize that cytokines such as TNF alpha and LT alpha contribute to myelin damage through triggering of specific reactions within the myelin sheath. We further propose that neutral sphingomyelinase (SMase) is one such enzyme, two forms of which have been detected in purified myelin. An additional event is accumulation of cholesterol ester, apparently a downstream consequence of cytokine-induced SMase. The resulting lipid changes are viewed as potentially destabilizing to myelin, which may render it more vulnerable to attack by invading and resident phagocytes.
Collapse
Affiliation(s)
- R W Ledeen
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA.
| | | |
Collapse
|
4
|
Chakraborty G, Ziemba S, Drivas A, Ledeen RW. Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-alpha. J Neurosci Res 1997; 50:466-76. [PMID: 9364332 DOI: 10.1002/(sici)1097-4547(19971101)50:3<466::aid-jnr13>3.0.co;2-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purified myelin from mouse brain was found to contain two forms of neutral sphingomyelinase, one Mg2+ dependent and the other Mg2+ independent. The former had a pH optimum of 7.5 and Km of 0.35 mM, whereas the corresponding values for the latter were pH 8.0 and Km 3.03 mM. Specific activity of the Mg(2+)-dependent enzyme showed a rostral-caudal gradient, ranging from 75 nmol/mg protein/hr in myelin from cerebral hemispheres to 21 nmol/mg protein/hr in myelin from spinal cord. Relative specific activity was approximately 20% that of brain stem or cerebral hemisphere homogenate. Treatment of myelin with taurocholate or high salt concentration did not significantly reduce activity of the Mg(2+)-dependent enzyme. The activity of that enzyme did not change with time or in the presence or absence of protease inhibitors; by contrast, that of Mg(2+)-independent enzyme decreased sharply in the absence of protease inhibitors but rose in their presence. To test for the effect of tumor necrosis factor-alpha (TNF alpha) on myelin sphingomyelinase, mouse brain myelin was labeled in vivo by intracerebral injection of [3H]acetate into 18-20-day-old mice. After 40 hr, brain stems were removed, minced, and treated with TNF alpha in Krebs-Ringer solution, after which myelin was immediately isolated. Separation and counting of individual lipids revealed TNF alpha treatment to cause increased labeling of myelin ceramide and cholesterol ester with concomitant decrease in myelin sphingomyelin. Western blotting of myelin proteins using antibodies to the two TNF alpha receptors as probes revealed the presence of the p75 receptor. Implications of these findings in relation to possible mechanisms of autoimmune demyelination are discussed.
Collapse
Affiliation(s)
- G Chakraborty
- Department of Neurosciences, New Jersey Medical School, Newark 07103, USA
| | | | | | | |
Collapse
|
5
|
Ledeen RW, Golly F, Haley JE. Axon-myelin transfer of phospholipids and phospholipid precursors. Labeling of myelin phosphoinositides through axonal transport. Mol Neurobiol 1992; 6:179-90. [PMID: 1282330 DOI: 10.1007/bf02780551] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have provided evidence for axon-to-myelin transfer of intact lipids and lipid precursors for reutilization by myelin enzymes. Several of the lipid constituents of myelin showed significant contralateral/ipsilateral ratios of incorporated radioactivity, indicative of axonal origin, whereas proteins and certain other lipids did not participate in this transfer-reutilization process. The present study will examine the labeling of myelin phosphoinositides by this pathway. Both 32PO4 and [3H]inositol were injected monocularly into 7-9-wk-old rabbits and myelin was isolated 7 or 21 days later from pooled optic tracts and superior colliculi. In total lipids 32P counts of the isolated myelin samples showed significant contralateral/ipsilateral ratios as well as increasing magnitude of contralateral-ipsilateral differences during the time interval. Thin-layer chromatographic isolation of the myelin phosphoinositides revealed significant 32P-labeling of these species, with PIP and PIP2 showing time-related increases. This resembled the labeling pattern of the major phospholipids from rabbit optic system myelin in a previous study and suggested incorporation of axon-derived phosphate by myelin-associated enzymes. The 32P label in PI, on the other hand, remained constant between 7 and 21 days, suggesting transfer of intact lipid. This was supported by the labeling pattern with [3H]inositol, which also showed no increase over time for PI. These results suggest axon-myelin transfer of intact PI followed by myelin-localized incorporation of axon-derived phosphate groups into PIP and PIP2. The general topic of axon-myelin transfer of phospholipids and phospholipid precursors is reviewed.
Collapse
Affiliation(s)
- R W Ledeen
- Albert Einstein College of Medicine, Department of Neurology, Bronx, NY 10461
| | | | | |
Collapse
|
6
|
Padilla S, Pope CN. Retrograde axonal transport of locally synthesized phosphoinositides in the rat sciatic nerve. J Neurochem 1991; 57:415-22. [PMID: 1712828 DOI: 10.1111/j.1471-4159.1991.tb03768.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection, retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precursor into the cell body regions (L4 and L5 dorsal root ganglia) of the sciatic nerve. We now report the retrograde axonal transport of inositol phospholipids synthesized locally in the axons. Following microinjection of myo-[3H]inositol into the rat sciatic nerve (50-55 mm distal to L4 and L5 dorsal root ganglia), a time-dependent accumulation of 3H label occurred in the dorsal root ganglia ipsilateral to the injection site. The ratio of dpm present in the ipsilateral dorsal root ganglia to that in the contralateral dorsal root ganglia was not significantly different from unity between 2 and 8 h following isotope injection but increased to 10-12-fold between 24 and 72 h following precursor injection. By 24 h following precursor injection, the ipsilateral/contralateral ratio of the water-soluble label in the dorsal root ganglia still remained approximately 1.0, whereas the corresponding ratio in the chloroform/methanol-soluble fraction was approximately 20. The time course of appearance of labeled lipids in the ipsilateral dorsal root ganglia after injection of precursor into the nerve at various distances from the dorsal root ganglia indicated a transport rate of at least 5 mm/h. Accumulation of label in the dorsal root ganglia could be prevented by intraneural injection of colchicine or ligation of the sciatic nerve between the dorsal root ganglia and the isotope injection site. These results demonstrate that inositol phospholipids synthesized locally in the sciatic nerve are retrogradely transported back to the nerve cell bodies located in the dorsal root ganglia.
Collapse
Affiliation(s)
- S Padilla
- Cellular and Molecular Toxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | |
Collapse
|
7
|
Golly F, Larocca JN, Ledeen RW. Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium. J Neurosci Res 1990; 27:342-8. [PMID: 1965838 DOI: 10.1002/jnr.490270313] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purified myelin from rat brainstem, prelabeled in vivo by intracerebral injection of [3H]myoinositol, showed enhanced breakdown of phosphoinositides on treatment with 5'-guanylylimidodiphosphate [Gpp-(NH)p] and Ca2+. Concentration variation of the former in the presence of Ca2+ showed a dose-dependent release of inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3), while inositol 1-phosphate (IP) release was erratic. Concentration-dependent release of IP2 and IP3 was also observed with Ca2+ as the variable in the presence of Gpp(NH)p. Carbachol, when present, did not enhance the stimulatory effect of Gpp(NH)p alone. Addition of diphosphoglycerate during incubation enhanced IP3 at the expense of IP2, suggesting the presence of IP3 phosphatase in myelin.
Collapse
Affiliation(s)
- F Golly
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
8
|
Affiliation(s)
- G M Helmkamp
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Kansas Medical Center, Kansas City 66103-8410
| |
Collapse
|
9
|
Shantharam P, SrinivasaRao P. Activity of myelin membrane Na+/K+-ATPase and 5'-nucleotidase in relation to phospholipid acyl profiles, ganglioside composition and phosphoinositides in developing brains of undernourished rats. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 982:115-22. [PMID: 2545271 DOI: 10.1016/0005-2736(89)90181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The relationship between undernutrition-induced alterations in some myelin membrane-bound enzyme activities and phospholipid fatty acid composition of this membrane was ascertained in developing rat brains. Undernutrition was imposed in pregnant dams through gestation and lactation, (last 10 days of gestation, and through lactation) by feed restriction. Experimental groups of animals received 50% of the amount of diet consumed by controls. Pups born to these mother rats were killed at day 7, 14 or 21 of postnatal age. Myelin membrane was isolated from the major regions of the brain, and analysed for phospholipid fatty acid profiles, phosphoinositides and ganglioside species. While there were no diet-related differences in the activities of 5'-nucleotidase (EC 3.1.3.5), myelin phospholipids from cerebella and brain stems of experimental rats exhibited lowered proportions of the long-chain polyunsaturated fatty acids, C20:4 (n - 6) and C22:6 (n - 3) concomitant with elevated activities of ouabain-sensitive Na+/K+-ATPase (EC 3.6.1.4). Levels of diphosphoinositide, triphosphoinositide and trisialogangliosides also decreased in myelin from brains of experimental animals. These results suggest a relationship between myelin phospholipid fatty acid profiles as indicators of membrane unsaturation, and the possibility of allosteric modification of Na+/K+-ATPase activity.
Collapse
Affiliation(s)
- P Shantharam
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad
| | | |
Collapse
|
10
|
Lowery JM, Berti-Mattera LN, Zhu X, Peterson RG, Eichberg J. Relationship of ATP turnover, polyphosphoinositide metabolism, and protein phosphorylation in sciatic nerve and derived peripheral myelin subfractions from normal and streptozotocin diabetic rats. J Neurochem 1989; 52:921-32. [PMID: 2465383 DOI: 10.1111/j.1471-4159.1989.tb02543.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sciatic nerve from streptozotocin-induced diabetic rats has previously been shown to incorporate more 32P into phosphatidylinositol-4,5-bisphosphate (PIP2) and the principal myelin proteins than normal nerve. In the present study, labeling of ATP and PIP2 was compared. Using nerve segments, [gamma-32P]ATP specific activity reached a plateau after incubation for 4 h with [32P]orthophosphate, whereas the specific activity of [32P]PIP2 rose much more slowly and was still increasing after 8 h. The rate of disappearance of radioactivity from prelabeled ATP was biphasic, with 75% being lost within 30 min and the remainder declining much more slowly for several hours thereafter. In contrast, no decrease in prelabeled PIP2 radioactivity could be detected for up to 4 h. The kinetics of ATP metabolism were not appreciably different for normal and diabetic nerve. However, after incubation with [32P]orthophosphate for 2 h, the specific activity of PIP2 was 50-120% higher in diabetic nerve. This phenomenon, therefore, cannot be ascribed to altered specific activity of the ATP precursor pool. Greater labeling of PIP2 in 32P-labeled diabetic nerve was present in purified myelin isolated using a simple discontinuous sucrose density gradient, but not in a "nonmyelin" fraction. When nerve homogenate was fractionated on a more complex gradient, three myelin-enriched subfractions were obtained which were heterogeneous as judged by morphological appearance, protein profile, and lipid metabolic activity. The proportion of total lipid radioactivity accounted for by PIP2 was elevated in all the subfractions relative to the homogenate. As compared to myelin subfractions from normal nerve, an increased percentage of 32P in PIP2 was obtained only in the major myelin subfraction from diabetic nerve. The phosphorylation of P0 relative to the other myelin proteins was also enhanced in this subfraction in nerve from diabetic animals.
Collapse
Affiliation(s)
- J M Lowery
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5500
| | | | | | | | | |
Collapse
|
11
|
Sun GY, Lin TN. Time course for labeling of brain membrane phosphoinositides and other phospholipids after intracerebral injection of [32P]-ATP. Evaluation by an improved HPTLC procedure. Life Sci 1989; 44:689-96. [PMID: 2538690 DOI: 10.1016/0024-3205(89)90475-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An improved two-dimensional HPTLC procedure was developed for separating phospholipids including individual phosphoinositides, phosphatidic acids and plasmalogens. This procedure was used to examine the time course for uptake of label by phospholipids in brain subcellular membranes after intracerebral injection of [gamma-32P]-ATP. There were considerable differences in the phospholipid labeling pattern among different subcellular fractions. In particular, a high proportion of labeled phosphatidylinositol 4,5-bisphosphates and phosphatidic acids was found in the myelin fraction during the initial 4 hr after injection. In other subcellular fractions, labeling of phosphoinositides was maximum at 2 hr, but with prolonged time, poly-phosphoinositides started to show a decline in radioactivity whereas labeling of other phospholipids continued to show a steady increase instead. Results indicate at least two different modes for the uptake of label by brain membrane phospholipids after intracerebral injection of [32P]-ATP.
Collapse
Affiliation(s)
- G Y Sun
- Sinclair Comparative Medicine Research Farm, University of Missouri, Columbia 65203-9497
| | | |
Collapse
|
12
|
Kahn DW, Morell P. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine. J Neurochem 1988; 50:1542-50. [PMID: 2834516 DOI: 10.1111/j.1471-4159.1988.tb03042.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain slices obtained from the forebrains of adult female rats were incubated with [32P]phosphate and [3H]glycerol for 60 min, and lipids extracted and analyzed by TLC. The 32P in brain slice lipids was primarily in polyphosphoinositides, phosphatidylinositol (PI), and phosphatidate (PA). Distribution of the 32P-labeled lipids in isolated myelin was biased toward PA, 38%, relative to 16% in whole tissue slice lipids. About 33% of the total labeled PA in brain slices was accounted for by that in myelin. On a per milligram protein basis, PA labeling in myelin is about 2.5-fold greater than that of whole brain slice. Since incorporation of [3H]glycerol (indicative of synthesis by the de novo synthetic pathway) was at very low levels, we conclude that [32P]phosphate entered into myelin PA primarily through a pathway involving phospholipase C activity. Much of the production of PA relates to hydrolysis of phosphoinositides, yielding diacylglycerol which is then phosphorylated within myelin. The distribution of label among the inositol-containing lipids suggests that only a fraction of the myelin polyphosphoinositides serve as substrate for rapid diglyceride production. In the presence of 10 mM acetylcholine (ACh) there was a 20-60% stimulation of [32P]phosphate incorporation into PA and PI of brain slice lipids and purified myelin. Stimulation by ACh was blocked by atropine. The observed increase in the 32P/3H ratio, relative to controls, indicated that for both total lipids and myelin lipids there was selective stimulation of a phospholipase C-dependent cycle relative to de novo biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D W Kahn
- Biological Sciences Research Center, University of North Carolina, Chapel Hill 27599-7250
| | | |
Collapse
|
13
|
Larocca JN, Cervone A, Ledeen RW. Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium. Brain Res 1987; 436:357-62. [PMID: 2829993 DOI: 10.1016/0006-8993(87)91679-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Slices of rat brainstem that had been prelabeled by in vivo injection of [3H]inositol were stimulated with carbachol in the presence of lithium and changes measured in the radioactivity of inositol lipids and water-soluble inositol phosphates. For the latter, significant increases were seen for inositol mono- and bisphosphate but not inositol trisphosphate. Analysis of whole tissue phosphoinositides revealed significantly reduced radioactivity in phosphatidylinositol and phosphatidylinositol 4-phosphate, whereas myelin showed decreases in those as well as phosphatidylinositol 4,5-bisphosphate. These effects were blocked by atropine. Stimulation of the tissue slices with elevated K+ resulted in increased formation of inositol phosphate and decreased radioactivity in phosphatidylinositol. The effect was not blocked by atropine and in the presence of this agent, which reduced background reaction, all 3 phosphoinositides showed significant K+-induced loss of label. Elevated K+ and carbachol thus function through different mechanisms in this system. Carbachol is believed to affect myelin phosphoinositides through direct interaction with muscarinic receptors which were recently shown to be present in this membrane.
Collapse
Affiliation(s)
- J N Larocca
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
14
|
Deshmukh DS, Kuizon S, Brockerhoff H. Effect of phenobarbital on metabolism of polyphosphoinositides of rat brain synaptosomes. Life Sci 1987; 41:2121-6. [PMID: 2823040 DOI: 10.1016/0024-3205(87)90530-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis and degradation of polyphosphoinositides in a rat brain synaptosome preparation were depressed by phenobarbital. Phosphatidylinositol-4-phosphate kinase (PIP-kinase), the enzyme which synthesizes phosphatidylinositol-4,5-bisphosphate (PIP2) was most strongly affected (50% inhibition at 3 mM phenobarbital); phosphatidylinositol (PI-kinase) followed (50% at 15 mM). The phosphoesterases were less sensitive: PIP-monoesterase (50% at 39 mM), PIP2-monoesterase (at 47 mM), and, least inhibited, PIP-diesterase (50% at 65 mM) and PIP2-diesterase (at 68 mM). Phenobarbital by inhibiting PIP-kinase may reduce the membrane concentration of PIP2 and thus dampen the stimulus-response which leads to the hydrolysis of PIP2 and the formation of the second messenger, inositol-1,4,5-trisphosphate (IP3), involved in mobilization of intracellular Ca2+.
Collapse
Affiliation(s)
- D S Deshmukh
- New York State Office of Mental Retardation and Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | |
Collapse
|
15
|
Abstract
To probe the activities of various pathways of lipid metabolism in peripheral nerve, six phospholipid-directed precursors were individually injected into the exposed sciatic nerves of adult mice, and their incorporation into phospholipids and proteins was studied over a 2-week period. Tritiated choline, inositol, ethanolamine, serine, and glycerol were mainly used in phospholipid synthesis; in contrast, methyl-labeled methionine was primarily incorporated into protein. Phosphatidylcholine was the main lipid formed from tritiated choline, glycerol, and methionine precursors. Phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol were the main lipids formed from serine, ethanolamine, and inositol, respectively. With time there was a shift in label among phospholipids, with higher proportions of choline appearing in sphingomyelin, glycerol in phosphatidylserine, ethanolamine in phosphatidylethanolamine (plasmalogen), and inositol in polyphosphoinositides, especially phosphatidylinositol 4,5-bisphosphate. We suggest that the delay in formation of these phospholipids, which are concentrated in peripheral nerve myelin, may, at least in part, be due to their formation at a site(s) distant from the sites where the bulk of Schwann cell lipids are made. We propose that separating the synthesis of these myelin-destined lipids to near the Schwann cell's plasma membrane would facilitate their concentration in peripheral nerve myelin sheaths. At earlier labeling times, ethanolamine and glycerol were more actively incorporated into phosphatidylcholine and phosphatidylinositol, respectively, than later. The transient labeling of these phospholipids may reflect some unique role in peripheral nerve function.
Collapse
|
16
|
Saltiel AR, Fox JA, Sherline P, Sahyoun N, Cuatrecasas P. Purification of phosphatidylinositol kinase from bovine brain myelin. Biochem J 1987; 241:759-63. [PMID: 3036072 PMCID: PMC1147628 DOI: 10.1042/bj2410759] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme.
Collapse
|
17
|
Imai A, Rebecchi MJ, Gershengorn MC. Differential regulation by phosphatidylinositol 4,5-bisphosphate of pituitary plasma-membrane and cytosolic phosphoinositide kinases. Biochem J 1986; 240:341-8. [PMID: 3028374 PMCID: PMC1147423 DOI: 10.1042/bj2400341] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.
Collapse
|
18
|
Ananth US, Ramakrishnan CV, Hauser G. Effects of pre-weaning undernutrition and post-weaning rehabilitation on polyphosphoinositide pools in rat brain regions. Neurochem Res 1986; 11:1383-95. [PMID: 3024044 DOI: 10.1007/bf00966218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In order to assess the effects of undernutrition during the pre-weaning period on polyphosphoinositide (PolyPI) pools in rat cerebral cortex, brain stem, and cerebellum, dams were fed 5% (L-) or 22% (L+) protein diets from birth to weaning and the pups were used at this age for analyses. To examine rehabilitation post-weaning, L- and L+ pups were fed 22% protein diets (P+) for an additional six week period. Rats were decapitated and the dissection begun either immediately ("0 min" samples) or 10 min later (10 min samples). Body and tissue weights, and cerebroside levels were determined in addition ot PolyPI concentrations. In brain the extent of disappearance of PolyPI during the 10 min post-mortem period paralleled the content of gray matter: cerebral cortex greater than cerebellum greater than brain stem in all groups regardless of diet. Levels of PtdIns4P and PtdIns4,5P2 were decreased by 40% and 70% respectively in cerebral cortex of L- "0 min" samples. Deficits of both lipids in brain stem and cerebellum were 40-50%. In the L- 10 min samples, deficits were 20-30% in all three regions as compared with L+ 10 min levels, indicating the presence of a portion of both lipids affected only moderately by nutritional insufficiency. The effects on this relatively inert pool, much of it localized in myelin, were reversed on nutritional rehabilitation. The PolyPI pool lost post-mortem in L+ brain regions was practically absent in L- brain regions and was not restored in L-P+ animals. Thus, this study indicates that a metabolically labile pool, primarily located in gray matter structures, is more sensitive to nutritional deprivation during the pre-weaning period than the more stable pool. The precise role and function of these pools remain to be determined.
Collapse
|
19
|
Helmkamp GM. Phosphatidylinositol transfer proteins: structure, catalytic activity, and physiological function. Chem Phys Lipids 1985; 38:3-16. [PMID: 2998636 DOI: 10.1016/0009-3084(85)90053-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Among the diverse lipid transfer proteins which are found in tissues and biological fluids are those which exhibit a specificity toward phosphatidylinositol and phosphatidylcholine, with a preference for the former. Phosphatidylinositol transfer proteins (PI-TPs) have been purified from several eukaryotic sources; those present in bovine brain and heart have been extensively studied. This review examines the tissue distribution of PI-TPs and the means by which transfer activity is measured using natural and artificial membranes. The interaction of these proteins with lipid monolayers and bilayers is discussed in terms of phospholipid fatty acyl and polar head group compositions. The inhibition of transfer activity by sulfhydryl agents and amphiphilic amines is summarized. The metabolism of the phosphoinositides is considered and a role for PI-TPs is proposed.
Collapse
|
20
|
Abstract
As indicated in the Introduction, the many significant developments in the recent past in our knowledge of the lipids of the nervous system have been collated in this article. That there is a sustained interest in this field is evident from the rather long bibliography which is itself selective. Obviously, it is not possible to summarize a review in which the chemistry, distribution and metabolism of a great variety of lipids have been discussed. However, from the progress of research, some general conclusions may be drawn. The period of discovery of new lipids in the nervous system appears to be over. All the major lipid components have been discovered and a great deal is now known about their structure and metabolism. Analytical data on the lipid composition of the CNS are available for a number of species and such data on the major areas of the brain are also at hand but information on the various subregions is meagre. Such investigations may yet provide clues to the role of lipids in brain function. Compared to CNS, information on PNS is less adequate. Further research on PNS would be worthwhile as it is amenable for experimental manipulation and complex mechanisms such as myelination can be investigated in this tissue. There are reports correlating lipid constituents with the increased complexity in the organization of the nervous system during evolution. This line of investigation may prove useful. The basic aim of research on the lipids of the nervous tissue is to unravel their functional significance. Most of the hydrophobic moieties of the nervous tissue lipids are comprised of very long chain, highly unsaturated and in some cases hydroxylated residues, and recent studies have shown that each lipid class contains characteristic molecular species. Their contribution to the properties of neural membranes such as excitability remains to be elucidated. Similarly, a large proportion of the phospholipid molecules in the myelin membrane are ethanolamine plasmalogens and their importance in this membrane is not known. It is firmly established that phosphatidylinositol and possibly polyphosphoinositides are involved with events at the synapse during impulse propagation, but their precise role in molecular terms is not clear. Gangliosides, with their structural complexity and amphipathic nature, have been implicated in a number of biological events which include cellular recognition and acting as adjuncts at receptor sites. More recently, growth promoting and neuritogenic functions have been ascribed to gangliosides. These interesting properties of gangliosides wIll undoubtedly attract greater attention in the future.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
21
|
|
22
|
Alberghina M, Viola M, Giuffrida AM. Myelination process in the rat sciatic nerve during regeneration and development: molecular species composition and acyl group biosynthesis of choline-, ethanolamine-, and serine-glycerophospholipids of myelin fractions. Neurochem Res 1984; 9:887-902. [PMID: 6504228 DOI: 10.1007/bf00964521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The content of alkenyl-acyl, alkyl-acyl and diacyl types of the three major myelin glycerophospholipids such as PtdCho, PtdEtn and PtdSer was determined in myelin fractions prepared from sciatic nerve segments of rats at 12, 25 and 45 days after birth, and of adult rats (6-month-old) 90 days after crush injury. The biosynthesis and metabolic heterogeneity of lipid classes and types were also studied by incubation with [1-14C] acetate of nerve segments of young rats at different ages as well as crushed and sham-operated control nerve segments of adult rats. The analysis of composition and positional distribution in major individual molecular species extracted from light myelin and myelin-related fraction suggest that the metabolism of alkenyl-acyl-glycerophosphorylethanolamines and unsaturated species of PtdCho and PtdSer may not be regulated in the same manner during peripheral nerve myelination of developing rat and remyelination of regenerating nerve in the adult animal. The 14C-radioactivity incorporation into lipid classes and alkyl and acyl moieties of the three major phospholipids of sciatic nerve segments during the developmental period investigated revealed that Schwann cells were capable of synthesizing acyl-linked fatty acids in both myelin fractions at a decreasing rate and with different patterns during development. In regenerating sciatic nerve of adult animals the labeling of myelin lipid classes and types of remyelinating nerve segment distal to the crush site was markedly higher than that of sham-operated normal one; however, the magnitude and the pattern of the specific radioactivity never approached those observed during active myelination of the nerve in young animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
23
|
Kunishita T, Ledeen RW. Phospholipid biosynthesis in myelin: presence of CTP:phosphoethanolamine cytidylyltransferase in purified myelin of rat brain. J Neurochem 1984; 42:326-33. [PMID: 6319597 DOI: 10.1111/j.1471-4159.1984.tb02682.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Highly purified myelin from rat brain was previously shown to contain the ethanolaminephosphotransferase which completes the synthesis of phosphatidyl ethanolamine. We have now obtained evidence for the presence in myelin of CTP:phosphoethanolamine cytidylyltransferase, the enzyme catalyzing formation of CDP-ethanolamine. Myelin was isolated by two different procedures, one based on the Norton-Poduslo method and the other involving repetitive gradients with osmotic shocking deferred to the end. The fact that activity remained constant through all but the earliest steps suggested that the enzyme is intrinsic to myelin. Comparison of subcellular fractions revealed that approximately half the total activity was in the supernatant, the remainder being distributed among the particulate fractions. Relative specific activity of myelin was 27-31% that of microsomes, thus eliminating the possibility of appreciable contamination by the latter. The possibility of adsorption of the soluble enzyme by myelin was rendered unlikely by retention of activity after washing the myelin with buffered sodium chloride or sodium taurocholate. Furthermore, relative specific activity of the cytidylyltransferase was 10-fold higher than that of lactate dehydrogenase (a cytosolic marker) in myelin. The apparent Km for CTP was approximately the same for myelin and microsomes, but that for phosphoethanolamine was significantly higher for myelin.
Collapse
|
24
|
Deshmukh DS, Kuizon S, Brockerhoff H. Mutual stimulation by phosphatidylinositol-4-phosphate and myelin basic protein of their phosphorylation by the kinases solubilized from rat brain myelin. Life Sci 1984; 34:259-64. [PMID: 6198580 DOI: 10.1016/0024-3205(84)90597-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Myelin basic protein and phosphatidylinositol-4-phosphate are phosphorylated in vitro by ATP and solubilized rat brain myelin. When both substrates are present together, the rate of phosphorylation of each is increased about eight-fold. It appears likely that the phosphate turnover of myelin basic protein and of phosphatidylinositol-4-phosphate are coupled in vivo.
Collapse
|
25
|
|
26
|
Schermoly MJ, Helmkamp GM. The inactivity of brain phospholipid transfer protein toward phosphatidylinositol 4-phosphate. Brain Res 1983; 268:197-200. [PMID: 6860963 DOI: 10.1016/0006-8993(83)90410-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bovine brain phosphatidylinositol transfer protein catalyzes the transport of phosphatidylinositol and, to a lesser extent, phosphatidylcholine between model phospholipid membranes. To investigate the transport of phosphorylated phosphatidylinositol derivatives, 32P-labeled lipids were isolated from guinea pig brain, separated by chromatography on a column of neomycin-coated glass beads, and incorporated into single bilayer vesicles. Under conditions where significant transfer of phosphatidylinositol was observed, no protein-catalyzed transport of phosphatidylinositol 4-phosphate was detected. Thus, the substrate specificity of the brain phospholipid transfer protein cannot be extended to phosphatidylinositol 4-phosphate.
Collapse
|
27
|
Gould RM, Spivack WD, Robertson D, Poznansky MJ. Phospholipid synthesis in the squid giant axon: enzymes of phosphatidylinositol metabolism. J Neurochem 1983; 40:1300-6. [PMID: 6300331 DOI: 10.1111/j.1471-4159.1983.tb13570.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We examined the properties of several enzymes of phospholipid metabolism in axoplasm extruded from squid giant axons. The following synthetic enzymes, CDP-diglyceride: inositol transferase (EC 2.7.8.11), ATP:diglyceride phosphotransferase, diglyceride kinase (EC 2.7.2.-), and phosphatidylinositol kinase (EC 2.7.1.67), were all present in axoplasm. Phospholipid exchange proteins, which catalyzed the transfer of phosphatidylinositol and phosphatidylcholine between membrane preparations and unilamellar lipid vesicles, were also found. However, we did not find conditions under which the synthesis of CDP-diglyceride, phosphatidylserine, and phosphatidylinositol-4,5-diphosphate could be measured. Subcellular fractionation by differential centrifugation showed that the axoplasmic inositol transferase and phosphatidylinositol kinase activities were largely "microsomal," while the diglyceride kinase and exchange protein activities were primarily "cytosolic."
Collapse
|
28
|
Abstract
Polyphosphoinositides in rat brain exist in two forms: the metabolically active form that is readily attacked by the polyphosphoinositide phosphohydrolases, and the inert form that is attacked by the enzymes at a slower rate. The two pools continue to increase even during the postweaning period, suggesting a role in glial as well as myelin development apart from their role in neurons.
Collapse
|
29
|
Dwivedy AK, Shah SN. Effect of hyperphenylalaninemia on polyphosphoinositides content of rat brain. EXPERIENTIA 1982; 38:1458-9. [PMID: 6295805 DOI: 10.1007/bf01955769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
|
31
|
Deshmukh DS, Kuizon S, Bear WD, Brockerhoff H. Polyphosphoinositide mono- and diphosphoesterases of three subfractions of rat brain myelin. Neurochem Res 1982; 7:617-26. [PMID: 6289149 DOI: 10.1007/bf00965127] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphomonoesterase and diesterase that cleave phosphatidylinositol-4-phosphate (diphosphoinositide, DPI) and phosphatidylinositol-4,5-bisphosphate (triphosphoinositide, TPI) were detected in three subfractions of purified rat brain myelin, and some properties of the enzymes were studied. Monoesterase activity was stimulated by KCl, maximally at a concentration of 25 mM, and inhibited at KCl concentrations above 50 mM. Addition of boiled pH 5 supernatant of rat brain homogenate doubled the enzymic activity; EDTA was inhibitory. The specific activities were nearly equal in the "low density", "medium density", and "heavy density" myelin fractions but about 30% lower than in whole brain homogenate. The monophosphatase could be solubilized by extraction with 0.2% Triton X-100. The phosphodiesterase activity was inhibited by EDTA and EGTA and not stimulated by KCl or pH 5 supernatant. Specific activities were nearly equal in whole brain and myelin but were by about 60 percent elevated in the "heavy density" over the "low density" myelin fractions. These results show that hydrolases operative in the fast turnover of the inositide phosphate groups are distributed over the entire myelin structure.
Collapse
|
32
|
Cammer W, Snyder DS, Zimmerman TR, Farooq M, Norton WT. Glycerol phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase: activities in oligodendrocytes, neurons, astrocytes, and myelin isolated from developing rat brains. J Neurochem 1982; 38:360-7. [PMID: 6809900 DOI: 10.1111/j.1471-4159.1982.tb08637.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glycerol phosphate dehydrogenase (GPDH), glucose-6-phosphate dehydrogenase (G6PDH), and lactate dehydrogenase (LDH) activities were determined in oligodendrocytes, neurons, and astrocytes isolated from the brains of developing rats. The activity of each enzyme was significantly lower in both neurons and astrocytes than in oligodendrocytes. The GPDH activity in oligodendrocytes increased more than 4-fold during development, and at 120 days cells of this type had 1.4-fold the specific activity of forebrain homogenates. The G6PDH activities in oligodendrocytes from 10-day-old rats were 1.4-fold the activities in the forebrain homogenates. The activities of this enzyme in oligodendrocytes were progressively lower at later ages, such that at 120 days the cells had 0.8 times the specific activities of homogenates. The oligodendrocytes had 0.6 times the homogenate activities of LDH at 10 days, and this ratio had decreased to 0.2 by 120 days. These enzymes were also measured in myelin isolated from 20-, 60-, and 120-day-old rats. By 120 days the specific activities of G6PDH and LDH in myelin were less than 8% of the respective activities in homogenates. The GPDH activity in myelin was, however, at least 20% the specific activity in the homogenates, even in the oldest animals. It is proposed that LDH could be used as a marker for oligodendroglial cytoplasm in subfractions of myelin and in myelin-related membrane vesicles.
Collapse
|
33
|
Chapter 7 Inositol phospholipids. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/s0167-7306(08)60011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Jolles J, Schrama LH, Gispen WH. Calcium-dependent turnover of brain polyphosphoinositides in vitro after prelabelling in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 666:90-8. [PMID: 6271236 DOI: 10.1016/0005-2760(81)90094-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rat brain phospholipids were labelled in vivo by an intraventricular injection of 32P. The radioactivity was found to accumulate predominantly in limbic structures, particularly hippocampus and diencephalon. A rapid and high specific labelling of the inositol phospholipids and phosphatidic acid was observed. The rate of incorporation into a crude myelin fraction was similar to that into a mitochondrial/synaptosomal fraction although phosphatidyl-myo-inositol 4,5-diphosphate was especially enriched in myelin. Upon incubation in vitro high specific labelling of the inositol phospholipids and phosphatidic acid was observed. The rate of incorporation into a crude myelin fraction was similar to that into a mitochondrial/synaptosomal fraction although phosphatidyl-myo-inositol 4,5-diphosphate was especially enriched in myelin. Upon incubation in vitro high specific labelling of the inositol phospholipids and phosphatidic acid was observed. The rate of incorporation into a crude myelin fraction was similar to that into a mitochondrial/synaptosomal fraction although phosphatidyl-myo-inositol 4,5-diphosphate was especially enriched in myelin. Upon incubation in vitro of the brain fraction after 2 h prelabelling in vivo, both phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-diphosphate rapidly lost their radioactivity. Half of the labile fraction of the incorporated 32P was removed within 2 min. None of the other phospholipids changed in the 30 min in vitro incubation period. The metabolism of the polyphosphoinositide proceeded at a lower rate when the temperature was lowered, and was Ca2+-dependent. Further subcellular fractionation revealed that purified synaptosomes and myelin contained highly labelled phosphatidyl-myo-inositol 4-phosphate or phosphatidyl-myo-inositol 4,5-diphosphate. Mitochondria contained highly labelled phosphatidyl-myo-inositol but no phosphatidyl-myo-inositol 4-phosphate or phosphatidyl-myo-inositol 4,5-diphosphate. ACTH1-24 did not inhibit the in vitro dephosphorylation of prelabelled polyphosphoinositide, confirming previous findings that the peptide affects the polyphosphoinositide kinases and not the respective phosphatases.
Collapse
|
35
|
Bostwick JR, Eichberg J. Detergent solubilization and hydrophobic chromatography of rat brain phosphatidylinositol kinase. Neurochem Res 1981; 6:1053-65. [PMID: 6278347 DOI: 10.1007/bf00964412] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rat brain microsomal phosphatidylinositol kinase activity was maximally activated in the presence of either 3 mM sodium deoxycholate, 2% Triton-X-100, or 30-40 mM octylglucoside. Among these detergents, 1% Triton-X-100 was most effective in solubilizing the enzyme, and after treatment with this agent, 100% of the activity was recovered in the high speed supernatant. Octylglucoside solubilized 40% of the enzyme at concentrations below its critical micelle concentration of 25 mM and up to 80% at higher levels. Solubilized phosphatidylinositol kinase failed to absorb to adenosine nucleotide affinity resins. However, when the Triton-X-100 extract was chromatographed on an uncharged hydrophobic resin, consisting of dodecyl chains attached to Sepharose 4B by ether bonds, nearly all the enzyme activity was retained, and from 44-85% could be eluted with 8 mM sodium deoxycholate. Solubilization followed by hydrophobic chromatography resulted in several-fold purification of phosphatidylinositol kinase and may have disrupted interactions of the enzyme with other hydrophobic proteins sufficiently to allow its substantial purification by conventional or affinity chromatography techniques.
Collapse
|
36
|
Deshmukh DS, Kuizon S, Bear WD, Brockerhoff H. Rapid incorporation in vivo of intracerebrally injected 32Pi into polyphosphoinositides of three subfractions of rat brain myelin. J Neurochem 1981; 36:594-601. [PMID: 6257857 DOI: 10.1111/j.1471-4159.1981.tb01632.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
At intervals ranging from 1 to 10 min after injection of 32Pi into rat brain, myelin was prepared and separated into three subfractions: heavy, medium, and light. The radioactivity of total phospholipids and polyphosphoinositides (PPI) was then determined. There was rapid incorporation of 32Pi into PPI, which contained 50-70% of the radioactivity among total brain lipids and more than 70% among myelin lipids. The myelin fraction had incorporated 32Pi into total recovered PPI in the order of medium greater than heavy greater than light fraction; however, the order of relative specific radioactivities was heavy greater than light greater than medium. Labeling of the PPI precursors, phosphatidic acid (PA) and phosphatidylinositol (PI), was considerably lower in the purified myelin than in total brain. The di- (DPI) and triphosphoinositides (TPI) in heavy myelin exchanged 32Pi rates 2 to 3 times faster than those in medium and light myelin. DPI of all subfractions of myelin exchanged much faster than TPI. The results show that the most active phosphate turnover of myelin PPI occurs in the heavy myelin fraction (probably largely consisting of myelin appurtenant regions). However, medium and light myelin (most probably representing the closely packed layers of myelin sheaths) also showed rapid turnover of PPI.
Collapse
|
37
|
Wu PS, Ledeen RW. Evidence for the presence of CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase in rat central nervous system myelin. J Neurochem 1980; 35:659-66. [PMID: 6256494 DOI: 10.1111/j.1471-4159.1980.tb03705.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Highly purified rat brain myelin isolated by two different procedures showed appreciable activity for CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase (EC 2.7.8.1). Specific activity was close to that of total homogenate and approximately 12-16% that of brain microsomes. Three other lipid-synthesizing enzymes, cerebroside sulfotransferase, lactosylceramide sialyltransferase, and serine phospholipid exchange enzyme, were found to have less than 0.5% the specific activity in myelin compared with microsomes. Washing the myelin with buffered salt or taurocholate did not remove the phosphotransferase, but activity was lost from both myelin and microsomes by treatment with Triton X-100. It resembled the microsomal enzyme in having a pH optimum of 8.5 and a requirement for Mn2+ and detergent, but differed in showing no enhancement with EGTA. The diolein Km was similar for the two membranes (2.5-4 x 10(-4) M), but the CDP-ethanolamine Km was lower for myelin (3-4 x 10(-5) M) than for microsomes (11 - 13 x 10(-5 M). Evidence is reviewed that this enzyme is able to utilize substrate from the axon in situ.
Collapse
|
38
|
Deshmukh DS, Kuizon S, Bear WD, Brockerhoff H. Distribution of phosphoinositides among subfractions of rat brain myelin. Lipids 1980; 15:14-21. [PMID: 6244474 DOI: 10.1007/bf02534111] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rat brain myelin was separated into three subfractions, heavy, medium, and light, and the concentrations of phosphatidic acids (PA), phosphatidylinositol (PI), di- (DPI), and triphosphoinositide (TPI) in these fractions were determined. PI was evenly distributed among the fractions, and PA, DPI, and TPI occurred in highest concentrations in the "light" myelin. This result indicates that these fast metabolizing lipids play an important role in the tightly packed central lamellae of the myelin sheath.
Collapse
|