1
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
2
|
Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson's Disease. ASN Neuro 2019; 10:1759091418781889. [PMID: 29932343 PMCID: PMC6024349 DOI: 10.1177/1759091418781889] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder involving the selective loss of dopamine-producing neurons in the substantia nigra (SN). Differences in disease presentation, prevalence, and age of onset have been reported between males and females with PD. The content and composition of the major glycosphingolipids, phospholipids, and cholesterol were evaluated in the SN from 12 PD subjects and in 18 age-matched, neurologically normal controls. Total SN ganglioside sialic acid content and water content (%) were significantly lower in the male PD subjects than in the male controls. The content of all major gangliosides were reduced in the male PD subjects to some degree, but the neuronal-enriched gangliosides, GD1a and GT1b, were most significantly reduced. The distribution of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was also significantly lower in the male PD subjects than in the male controls. However, the distribution of myelin-enriched cerebrosides and sulfatides was significantly higher in the male PD subjects than in the male controls suggesting myelin sparing in the male PD subjects. No elevation was detected for astrocytosis-linked GD3. These neurochemical changes provide evidence of selective neuronal loss in SN of the males with PD without robust astrocytosis. In contrast to the SN lipid abnormalities found in the male PD subjects, no significant abnormalities were found in the female PD subjects for SN water content or for any major SN lipids. These data indicate sex-related differences in SN lipid abnormalities in PD.
Collapse
Affiliation(s)
- T N Seyfried
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - H Choi
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - A Chevalier
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - D Hogan
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Z Akgoc
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - J S Schneider
- 2 Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Intraventricular Sialidase Administration Enhances GM1 Ganglioside Expression and Is Partially Neuroprotective in a Mouse Model of Parkinson's Disease. PLoS One 2015; 10:e0143351. [PMID: 26629687 PMCID: PMC4668049 DOI: 10.1371/journal.pone.0143351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Preclinical and clinical studies have previously shown that systemic administration of GM1 ganglioside has neuroprotective and neurorestorative properties in Parkinson’s disease (PD) models and in PD patients. However, the clinical development of GM1 for PD has been hampered by its animal origin (GM1 used in previous studies was extracted from bovine brains), limited bioavailability, and limited blood brain barrier penetrance following systemic administration. Objective To assess an alternative therapeutic approach to systemic administration of brain-derived GM1 to enhance GM1 levels in the brain via enzymatic conversion of polysialogangliosides into GM1 and to assess the neuroprotective potential of this approach. Methods We used sialidase from Vibrio cholerae (VCS) to convert GD1a, GD1b and GT1b gangliosides to GM1. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. After the first week of infusion, animals received MPTP injections (20 mg/kg, s.c., twice daily, 4 hours apart, for 5 consecutive days) and were euthanized 2 weeks after the last injection. Results VCS infusion resulted in the expected change in ganglioside expression with a significant increase in GM1 levels. VCS-treated animals showed significant sparing of striatal dopamine (DA) levels and substantia nigra DA neurons following MPTP administration, with the extent of sparing of DA neurons similar to that achieved with systemic GM1 administration. Conclusion The results suggest that enzymatic conversion of polysialogangliosides to GM1 may be a viable treatment strategy for increasing GM1 levels in the brain and exerting a neuroprotective effect on the damaged nigrostriatal DA system.
Collapse
|
4
|
Influence of Serum and Hypoxia on Incorporation of [14C]-d-Glucose or [14C]-l-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids 2015; 50:1167-84. [DOI: 10.1007/s11745-015-4075-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
|
5
|
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol (PtdGro) with an unusual sn-1:sn-1' fatty acyl configuration and is found almost exclusively in late endosomes/lysosomes. BMP comprises only about 1-2% of the total phospholipids in most mammalian cells, but accumulates in tissues of humans and animals with lysosomal storage disorders including the gangliosidoses. Total BMP content was significantly greater in cells of macrophage/microglial origin than in cells of macroglial origin. BMP composition was similar in tumorigenic/metastatic macrophages and non-tumorigenic macrophages/microglia. Finally, BMP fatty acid composition differed between cells grown in culture and obtained in vivo suggesting an influence from growth environment.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Biology Department, Boston College, 140 Commonwealth Ave, MA, 02467, Chestnut Hill, USA,
| | | | | |
Collapse
|
6
|
Akgoc Z, Sena-Esteves M, Martin DR, Han X, d'Azzo A, Seyfried TN. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses. J Lipid Res 2015; 56:1006-13. [PMID: 25795792 DOI: 10.1194/jlr.m057851] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/24/2023] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Douglas R Martin
- Scott-Ritchey Research Center and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | | | | |
Collapse
|
7
|
Heinecke KA, Luoma A, d'Azzo A, Kirschner DA, Seyfried TN. Myelin abnormalities in the optic and sciatic nerves in mice with GM1-gangliosidosis. ASN Neuro 2015; 7:7/1/1759091415568913. [PMID: 25694553 PMCID: PMC4342369 DOI: 10.1177/1759091415568913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve.
Collapse
Affiliation(s)
| | - Adrienne Luoma
- Department of Biology, Boston College, Chestnut Hill, MA, USA Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, IL, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
8
|
Muthupalani S, Torres PA, Wang BC, Zeng BJ, Eaton S, Erdelyi I, Ducore R, Maganti R, Keating J, Perry BJ, Tseng FS, Waliszewski N, Pokras M, Causey R, Seger R, March P, Tidwell A, Pfannl R, Seyfried T, Kolodny EH, Alroy J. GM1-gangliosidosis in American black bears: clinical, pathological, biochemical and molecular genetic characterization. Mol Genet Metab 2014; 111:513-21. [PMID: 24581871 DOI: 10.1016/j.ymgme.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
Abstract
G(M1)-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American black bears (Ursus americanus) found in the Northeast United States suffering from G(M1)-gangliosidosis. This report describes the clinical features, brain MRI, and morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of a G(M1)-mouse. The bears presented at ages 10-14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T(2)-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of the brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1-2% of control values. In the brain, ganglioside-bound sialic acid was increased more than 2-fold with G(M1)-ganglioside predominating. G(A1) content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in the G(M1)-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the G(M1) mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T(1042) to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several black bears with G(M1)-gangliosidosis in the same geographic area suggests increased frequency of a founder mutation in this animal population.
Collapse
Affiliation(s)
- Sureshkumar Muthupalani
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Paola A Torres
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Betty C Wang
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Bai Jin Zeng
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Samuel Eaton
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Ildiko Erdelyi
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rebecca Ducore
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rajanikarath Maganti
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - John Keating
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Bain J Perry
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Florina S Tseng
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Nicole Waliszewski
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Mark Pokras
- Wild Life Clinic, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Robert Causey
- Animal Disease Diagnostic Laboratory, University of Maine, Orono, ME, USA
| | - Rita Seger
- Animal Disease Diagnostic Laboratory, University of Maine, Orono, ME, USA
| | - Philip March
- Department of Clinical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Amy Tidwell
- Department of Clinical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Rolf Pfannl
- Department of Pathology, Tufts University School of Medicine, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA
| | - Thomas Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Edwin H Kolodny
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| | - Joseph Alroy
- Section of Pathology, Department of Biomedical Science, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA; Department of Pathology, Tufts University School of Medicine, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity. Lipids 2013; 49:113-7. [PMID: 24243001 DOI: 10.1007/s11745-013-3857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4 and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.
Collapse
|
10
|
Kreutz F, Petry FDS, Camassola M, Schein V, Guma FC, Nardi NB, Trindade VMT. Alterations of membrane lipids and in gene expression of ganglioside metabolism in different brain structures in a mouse model of mucopolysaccharidosis type I (MPS I). Gene 2013; 527:109-14. [DOI: 10.1016/j.gene.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
|
11
|
Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 2013; 21:1306-15. [PMID: 23689599 DOI: 10.1038/mt.2013.86] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 12/25/2022] Open
Abstract
Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of β-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and β-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.
Collapse
|
12
|
Heinecke KA, Peacock BN, Blazar BR, Tolar J, Seyfried TN. Lipid composition of whole brain and cerebellum in Hurler syndrome (MPS IH) mice. Neurochem Res 2011; 36:1669-76. [PMID: 21253856 DOI: 10.1007/s11064-011-0400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
Hurler syndrome (MPS IH) is caused by a mutation in the gene encoding alpha-L-iduronidase (IDUA) and leads to the accumulation of partially degraded glycosaminoglycans (GAGs). Ganglioside content is known to increase secondary to GAG accumulation. Most studies in organisms with MPS IH have focused on changes in gangliosides GM3 and GM2, without the study of other lipids. We evaluated the total lipid distribution in the whole brain and cerebellum of MPS IH (Idua⁻/⁻) and control (Idua(+/?)) mice at 6 months and at 12 months of age. The content of total sialic acid and levels of gangliosides GM3, GM2, and GD3 were greater in the whole brains of Idua⁻/⁻ mice then in Idua (+/?) mice at 12 months of age. No other significant lipid differences were found in either whole brain or in cerebellum at either age. The accumulation of ganglioside GD3 suggests that neurodegeneration occurs in the Idua⁻/⁻) mouse brain, but not to the extent seen in human MPS IH brain.
Collapse
Affiliation(s)
- Karie A Heinecke
- Department of Biology, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA 02467, USA
| | | | | | | | | |
Collapse
|
13
|
Denny CA, Desplats PA, Thomas EA, Seyfried TN. Cerebellar lipid differences between R6/1 transgenic mice and humans with Huntington’s disease. J Neurochem 2010; 115:748-58. [DOI: 10.1111/j.1471-4159.2010.06964.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Denny CA, Heinecke KA, Kim YP, Baek RC, Loh KS, Butters TD, Bronson RT, Platt FM, Seyfried TN. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 2010; 113:1525-35. [PMID: 20374428 DOI: 10.1111/j.1471-4159.2010.06733.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baek RC, Martin DR, Cox NR, Seyfried TN. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2008; 44:197-205. [PMID: 19034545 DOI: 10.1007/s11745-008-3268-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
Sandhoff disease (SD) is a glycosphingolipid (GSL) storage disease that arises from an autosomal recessive mutation in the gene for the beta-subunit of beta-Hexosaminidase A (Hexb gene), which catabolizes ganglioside GM2 within lysosomes. Accumulation of GM2 and asialo-GM2 (GA2) occurs primarily in the CNS, leading to neurodegeneration and brain dysfunction. We analyzed the total lipids in the brains of SD mice, cats, and humans. GM2 and GA2 were mostly undetectable in the normal mouse, cat, and human brain. The lipid abnormalities in the SD cat brain were generally intermediate to those observed in the SD mouse and the SD human brains. GM2 comprised 38, 67, and 87% of the total brain ganglioside distribution in the SD mice, cats, and humans, respectively. The ratio of GA2-GM2 was 0.93, 0.13, and 0.27 in the SD mice, cats, and humans, respectively, suggesting that the relative storage of GA2 is greater in the SD mouse than in the SD cat or human. Finally, the myelin-enriched lipids, cerebrosides and sulfatides, were significantly lower in the SD brains than in the control brains. This study is the first comparative analysis of brain lipids in mice, cats, and humans with SD and will be important for designing therapies for Sandhoff disease patients.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
16
|
Seyfried TN, Heinecke KA, Mantis JG, Denny CA. Brain lipid analysis in mice with Rett syndrome. Neurochem Res 2008; 34:1057-65. [PMID: 19002580 DOI: 10.1007/s11064-008-9874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2008] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RS) is an X-linked neurodevelopmental disorder mostly involving mutations in the gene for methyl-CpG-binding protein 2 (MECP2). Ganglioside abnormalities were previously found in cerebrum and cerebellum in RS patients. We evaluated total lipid distribution in cerebrum/brainstem, hippocampus, and cerebellum in male mice carrying either the Mecp2 (tm1.1Bird) knockout mutation or the Mecp2 (308/y) deletion mutation. The concentration of the neuronal enriched ganglioside GD1a was significantly lower in the cerebrum/brainstem of Mecp2 (tm1.1Bird) mice than in that of age matched controls, but was not reduced in the Mecp2 (308/y) mice. No other differences in brain lipid content, including myelin-enriched cerebrosides, were detected in mice with either type of Mecp2 mutation. These findings indicate that the poor motor performance previously reported in the RS mutant mice is not associated with major brain lipid abnormalities and that most previous brain lipid abnormalities observed in RS patients were not observed in the Mecp2 (tm1.1Bird) or the Mecp2 (308/y) RS mice.
Collapse
|
17
|
Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 2007; 52:1125-33. [PMID: 18207611 DOI: 10.1016/j.neuint.2007.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 11/17/2022]
Abstract
Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
18
|
McNally MA, Baek RC, Avila RL, Seyfried TN, Strichartz GR, Kirschner DA. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis. J Negat Results Biomed 2007; 6:8. [PMID: 17623103 PMCID: PMC1976615 DOI: 10.1186/1477-5751-6-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/10/2007] [Indexed: 01/25/2023] Open
Abstract
Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system. Results We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-). Conclusion Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.
Collapse
Affiliation(s)
- Melanie A McNally
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
19
|
Denny CA, Alroy J, Pawlyk BS, Sandberg MA, d'Azzo A, Seyfried TN. Neurochemical, morphological, and neurophysiological abnormalities in retinas of Sandhoff and GM1 gangliosidosis mice. J Neurochem 2007; 101:1294-302. [PMID: 17442056 DOI: 10.1111/j.1471-4159.2007.04525.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Retinal abnormalities are well documented in patients with ganglioside storage diseases. The total content and distribution of retinal glycosphingolipids was studied for the first time in control mice and in Sandhoff disease (SD) and GM1 gangliosidosis mice. Light and electron microscopy of the SD and the GM1 retinas revealed storage in ganglion cells. Similar to previous findings in rat retina, GD3 was the major ganglioside in mouse retina, while GM2 and GM1 were minor species. Total ganglioside content was 44% and 40% higher in the SD and the GM1 retinas, respectively, than in the control retinas. Furthermore, GM2 and GM1 content were 11-fold and 51-fold higher in the SD and the GM1 retinas than in the control retinas, respectively. High concentrations of asialo-GM2 and asialo-GM1 were found in the SD and the GM1 retinas, respectively, but were undetectable in the control retinas. The GSL abnormalities in the SD and the GM1 retinas reflect significant reductions in beta-hexosaminidase and beta-galactosidase enzyme activities, respectively. Although electroretinograms appeared normal in the SD and the GM1 mice, visual evoked potentials were subnormal in both mutants, indicating visual impairments. Our findings present a model system for assessing retinal pathobiology and therapies for the gangliosidoses.
Collapse
Affiliation(s)
- Christine A Denny
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | |
Collapse
|
20
|
Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried TN, Thomas EA. Glycolipid and ganglioside metabolism imbalances in Huntington's disease. Neurobiol Dis 2007; 27:265-77. [PMID: 17600724 PMCID: PMC2082128 DOI: 10.1016/j.nbd.2007.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022] Open
Abstract
We have explored genome-wide expression of genes related to glycobiology in exon 1 transgenic Huntington's disease (HD) mice using a custom-designed GLYCOv2 chip and Affymetrix microarray analyses. We validated, using quantitative real-time PCR, abnormal expression levels of genes encoding glycosyltransferases in the striatum of R6/1 transgenic mice, as well as in postmortem caudate from human HD subjects. Many of these genes show differential regional expression within the CNS, as indicated by in situ hybridization analysis, suggesting region-specific regulation of this system in the brain. We further show disrupted patterns of glycolipids (acidic and neutral lipids) and/or ganglioside levels in both the forebrain of the R6/1 transgenic mice and caudate samples from human HD subjects. These findings reveal novel disruptions in glycolipid/ganglioside metabolic pathways in the pathology of HD and suggest that the development of new targets to restore glycosphingolipid balance may act to ameliorate some symptoms of HD.
Collapse
Affiliation(s)
- Paula A. Desplats
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Christine A. Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kristi E. Kass
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Tim Gilmartin
- Department of Research Services, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R. Head
- Department of Research Services, The Scripps Research Institute, La Jolla, California, USA
| | - J. Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Thomas N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Elizabeth A. Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
21
|
Denny CA, Kasperzyk JL, Gorham KN, Bronson RT, Seyfried TN. Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res 2006; 83:1028-38. [PMID: 16521125 DOI: 10.1002/jnr.20798] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Caloric restriction (CR), which improves health and increases longevity, was studied as a therapy in a hexosaminidase beta knockout mouse model of Sandhoff disease (SD), an incurable neurodegenerative disease involving accumulation of brain ganglioside GM2 and asialo-GM2 (GA2). Adult mice were fed a rodent chow diet either ad libitum (AL) or restricted to reduce body weight by 15-18% (CR). Although GM2 and GA2 were elevated, no significant differences were seen between the Hexb-/- and the Hexb+/- mice for most brain phospholipids and cholesterol. Cerebrosides and sulfatides were reduced in the Hexb-/- mice. In addition, rotorod performance was significantly worse in the Hexb-/- mice than in the Hexb+/- mice. CR, which decreased circulating glucose and elevated ketone bodies, significantly improved rotorod performance and extended longevity in the Hexb-/- mice but had no significant effect on brain lipid composition or on cytoplasmic neuronal vacuoles. The expression of CD68 and F4/80 was significantly less in the CR-fed than in the AL-fed Hexb-/- mice. We suggest that the CR delays disease progression in SD and possibly in other ganglioside storage diseases through anti-inflammatory mechanisms.
Collapse
MESH Headings
- 3-Hydroxybutyric Acid/blood
- Age Factors
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Behavior, Animal/physiology
- Blood Glucose
- Blotting, Western/methods
- Body Weight/physiology
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Caloric Restriction
- Cell Count/methods
- Chromatography, High Pressure Liquid/methods
- Disease Models, Animal
- Hexosaminidase B
- Immunohistochemistry/methods
- Lipids
- Mice
- Mice, Knockout
- Motor Activity/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rotarod Performance Test/methods
- Sandhoff Disease/genetics
- Sandhoff Disease/metabolism
- Sandhoff Disease/physiopathology
- beta-N-Acetylhexosaminidases/deficiency
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
22
|
Kasperzyk JL, d'Azzo A, Platt FM, Alroy J, Seyfried TN. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 2005; 46:744-51. [PMID: 15687347 DOI: 10.1194/jlr.m400411-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.
Collapse
Affiliation(s)
- J L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
23
|
Kasperzyk JL, El-Abbadi MM, Hauser EC, D'Azzo A, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 2004; 89:645-53. [PMID: 15086521 DOI: 10.1046/j.1471-4159.2004.02381.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction therapy aims to decrease the rate of GSL biosynthesis to counterbalance the impaired rate of catabolism. The imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ) is a competitive inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in GSL biosynthesis. Neonatal C57BL/6J (B6) and beta-gal knockout (-/-) mice were injected daily from post-natal day 2 (p-2) to p-5 with either vehicle or NB-DGJ at 600 mg or 1200 mg/kg body weight. These drug concentrations significantly reduced total brain ganglioside and GM1 content in the B6 and the beta-gal (-/-) mice. Drug treatment had no significant effect on viability, body weight, brain weight, or brain water content in the B6 and beta-gal (-/-) mice. Significant elevations in neutral lipids (GA1, ceramide, and sphingomyelin) were observed in the NB-DGJ-treated beta-gal (-/-) mice, but were not associated with adverse effects. Also, NB-DGJ treatment of B6 and beta-gal (-/-) mice from p-2 to p-5 had no subsequent effect on brain ganglioside content at p-21. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM1 content at early neonatal ages. These findings suggest that substrate reduction therapy using NB-DGJ may be an effective early intervention for GM1 gangliosidosis and possibly other GSL lysosomal storage diseases.
Collapse
Affiliation(s)
- Julie L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, Massachussetts, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kai N, Niki H. Altered tone-induced Fos expression in the mouse inferior colliculus after early exposure to intense noise. Neurosci Res 2002; 44:305-13. [PMID: 12413659 DOI: 10.1016/s0168-0102(02)00152-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mice become highly susceptible to audiogenic seizures (AGS) after being exposed to intense, high-frequency noise during a critical period of early life (priming). To determine the critical site for AGS priming in the auditory brainstem, animals in the experimental group were primed at 21 days, and the tone-induced Fos immunoreactivity was examined 1, 7, and 14 days after priming as an index of excitability of neurons. Enhanced Fos immunoreactivity was observed in the inferior colliculus (IC) of the primed mice 7 and 14 days after priming as compared to that of non-primed mice and attenuated Fos expression was observed 1 day after priming. No significant elevation of Fos expression was observed in the cochlear nucleus and the deep layer of the superior colliculus of either type of mice. These results strongly suggest that the IC is the target site of AGS priming.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Laboratory for Neurobiology of Emotion, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-City, 351-0198, Saitama, Japan.
| | | |
Collapse
|
25
|
El-Abbadi M, Seyfried TN, Yates AJ, Orosz C, Lee MC. Ganglioside composition and histology of a spontaneous metastatic brain tumour in the VM mouse. Br J Cancer 2001; 85:285-92. [PMID: 11461091 PMCID: PMC2364034 DOI: 10.1054/bjoc.2001.1909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosphingolipid abnormalities have long been implicated in tumour malignancy and metastasis. Gangliosides are a family of sialic acid-containing glycosphingolipids that modulate cell-cell and cell-matrix interactions. Histology and ganglioside composition were examined in a natural brain tumour of the VM mouse strain. The tumour is distinguished from other metastatic tumour models because it arose spontaneously and metastasizes to several organs including brain and spinal cord after subcutaneous inoculation of tumour tissue in the flank. By electron microscopy, the tumour consisted of cells (15 to 20 microm in diameter) that had slightly indented nuclei and scant cytoplasm. The presence of smooth membranes with an absence of junctional complexes was a characteristic ultrastructural feature. No positive immunostaining was found for glial or neuronal markers. The total ganglioside sialic acid content of the subcutaneously grown tumour was low (12.6 +/- 0.9 microg per 100 mg dry wt, n = 6 separate tumours) and about 70% of this was in the form of N-glycolylneuraminic acid. In contrast, the ganglioside content of the cultured VM tumour cells was high (248.4 +/- 4.4 microg, n = 3) and consisted almost exclusively of N-acetylneuraminic acid. The ganglioside pattern of the tumour grown subcutaneously was complex, while GM3, GM2, GM1, and GD1a were the major gangliosides in the cultured tumour cells. This tumour will be a useful natural model for evaluating the role of gangliosides and other glycolipids in tumour cell invasion and metastasis.
Collapse
Affiliation(s)
- M El-Abbadi
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
26
|
Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN. N -butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 2001; 84:1107-14. [PMID: 11308262 PMCID: PMC2363859 DOI: 10.1054/bjoc.2000.1713] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abnormalities in glycosphingolipid (GSL) biosynthesis have been implicated in the oncogenesis and malignancy of brain tumours. GSLs comprise the gangliosides and the neutral GSLs and are major components of the cell surface glycocalyx. N -butyldeoxynojirimycin (N B-DNJ) is an imino sugar that inhibits the glucosyltransferase catalysing the first step in GSL biosynthesis. The influence of N B-DNJ was studied on the growth and ganglioside composition of two 20-methylcholanthrene-induced experimental mouse brain tumours, EPEN and CT-2A, which were grown in vitro and in vivo. N B-DNJ (200 microM) inhibited the proliferation of the EPEN and CT-2A cells by 50%, but did not reduce cell viability. The drug, administered in the diet (2400 mg kg(-1)) to adult syngeneic C57BL/6 mice, reduced the growth and ganglioside content of subcutaneous and intracerebral EPEN and CT-2A tumours by at least 50% compared to the untreated controls. N B-DNJ treatment also shifted the relative distribution of tumour gangliosides in accordance with the depletion of metabolic substrates. Side effects of N B-DNJ treatment were generally mild and included reductions in body and spleen weights and intestinal distension. We conclude that N B-DNJ may inhibit tumour growth through an effect on ganglioside biosynthesis and may be useful as a new chemotherapy for brain tumours.
Collapse
Affiliation(s)
- M K Ranes
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ecsedy JA, Holthaus KA, Yohe HC, Seyfried TN. Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J Neurochem 1999; 73:254-9. [PMID: 10386978 DOI: 10.1046/j.1471-4159.1999.0730254.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ganglioside sialic acid content was examined in the U87-MG human glioma grown as cultured cells and as a xenograft in severe combined immunodeficiency (SCID) mice. The cultured cells and the xenograft possessed N-glycolylneuraminic acid (NeuGc)-containing gangliosides, despite the inability of human cells to synthesize NeuGc. Human cells express only N-acetylneuraminic acid (NeuAc)-containing gangliosides, whereas mouse cells express both NeuAc- and NeuGc-containing gangliosides. Small amounts of NeuGc ganglioside sialic acid (2-3% of total ganglioside sialic acid) were detected in the cultured cells, whereas large amounts (66% of total ganglioside sialic acid) were detected in the xenograft. The NeuGc in gangliosides of the cultured cells was derived from gangliosides in the fetal bovine serum of the culture medium, whereas that in the U87-MG xenograft was derived from gangliosides of the SCID host. The chromatographic distribution of U87-MG gangliosides differed markedly between the in vitro and in vivo growth environments. The neutral glycosphingolipids in the U87-MG cells consisted largely of glucosylceramide, galactosylceramide, and lactosylceramide, and their distribution also differed in the two growth environments. Asialo-GM1 (Gg4Cer) was not present in the cultured tumor cells but was expressed in the xenograft, suggesting an origin from infiltrating cells (macrophages) from the SCID host. The infiltration of mouse host cells and the expression of mouse sialic acid on human tumor cell glycoconjugates may alter the biochemical and immunogenic properties of xenografts.
Collapse
Affiliation(s)
- J A Ecsedy
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467-3811, USA
| | | | | | | |
Collapse
|
28
|
Tumor-infiltrating macrophages influence the glycosphingolipid composition of murine brain tumors. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32477-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Seyfried TN, el-Abbadi M, Ecsedy JA, Griffin ME, Yohe HC. Ganglioside composition of a mouse brain tumor grown in the severe combined immunodeficiency (SCID) mouse. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 33:27-37. [PMID: 9493174 DOI: 10.1007/bf02815857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The content and composition of gangliosides were examined in an experimental mouse brain tumor, EPEN, that was grown subcutaneously in the flank of the syngeneic C57BL/6J (B6) host and in the B6 severe combined immunodeficiency (SCID) host. SCID mice lack functional T- and B-lymphocytes, but have a normal complement of macrophages. The content and distribution of the brain tumor gangliosides were similar whether the tumor was grown in the immunocompetent B6 host or in the B6-SCID host. N-acetylneuraminic acid- (NeuAc) containing GM3 was the major ganglioside in the subcutaneous tumors and in the cultured EPEN cells. Significant amounts of N-glycolylneuraminic acid- (NeuGc) containing gangliosides were found in the tumor grown in both mouse hosts. NeuGc-containing gangliosides are not expressed in normal mouse brain, but are present in macrophages and serum. An extremely complex pattern of minor gangliosides was found in the subcutaneous tumors on two-dimensional, high-performance thin-layer chromatograms. Most of the minor gangliosides comigrated with those found in mouse macrophages. The results show that the absence of functional T- and B-lymphocytes does not markedly affect brain tumor ganglioside composition and suggest that NeuGc-containing gangliosides in the EPEN can be derived from tumor infiltrating host cells (mostly macrophages) and from the extracellular milieu (serum).
Collapse
Affiliation(s)
- T N Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA 02167-3811, USA
| | | | | | | | | |
Collapse
|
30
|
Matsuda J, Suzuki O, Oshima A, Ogura A, Noguchi Y, Yamamoto Y, Asano T, Takimoto K, Sukegawa K, Suzuki Y, Naiki M. Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj J 1997; 14:729-36. [PMID: 9337086 DOI: 10.1023/a:1018573518127] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GM1-gangliosidosis is a progressive neurological disease in humans caused by deficiency of lysosomal acid beta-galactosidase, which hydrolyses the terminal beta-galactosidic residue from ganglioside GM1 and other glycoconjugates. In this study, we generated a mouse model for GM1-gangliosidosis by gene targeting in embryonic stem cells. The mouse homozygous for the disrupted beta-galactosidase gene showed beta-galactosidase deficiency, presented with progressive spastic diplegia, and died of emaciation at 7-10 months of age. Pathologically, PAS-positive intracytoplasmic storage was observed in neuronal cells of various areas in the brain. Biochemical analysis revealed a marked accumulation of ganglioside GM1 and asialo GM1 in brain tissue. This animal model will be useful for pathogenetic analysis and therapeutic trial of human GM1-gangliosidosis.
Collapse
Affiliation(s)
- J Matsuda
- Department of Veterinary Science, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bai H, Seyfried TN. Influence of ganglioside GM3 and high density lipoprotein on the cohesion of mouse brain tumor cells. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Prasad VV. Postnatal development of glycosidases and gangliosides in the rat central nervous system. Int J Dev Neurosci 1996; 14:481-7. [PMID: 8884381 DOI: 10.1016/0736-5748(95)00103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The developmental profiles of sialidase, beta-galactosidase, beta-hexosaminidase and beta-glucosidase were compared to those of the gangliosides in rat brain and spinal cord. The glycosidase activities (enzyme units/g wet tissue), except beta-galactosidases, were found to be higher in brain than spinal cord, in adult rats. Among the hydrolases, beta-hexosaminidase showed a higher level of activity in both brain and spinal cord. In brain, the hydrolases, except beta-glucosidase, followed a similar developmental pattern, showing an increase from birth to 21 days, and then decreased to adult values by day 90. In the spinal cord, sialidase, beta-galactosidase, pH 3.1, and beta-hexosaminidase activities increased from birth to 21 days, reaching peak values. These activities then declined to adult values by 90 days of age. However, beta-galactosidase, pH 4.5, and beta-glucosidase activities showed a peak at day 14. Brain total ganglioside concentration (microgram N-acetylneuraminic acid/g tissue) increased slowly between birth and 7 days of age, followed by a rapid phase of increase to attain a peak value by day 21. The concentration of total gangliosides in the spinal cord is less when compared to the brain. The proportions of individual gangliosides in the central nervous system also vaired during development. The rapid phase of increase in enzyme activities between 0-7 and 14-21 days and a decrease thereafter is consistent with the turnover rate of gangliosides, which in rat brain is reported to be highest between 10 and 20 days.
Collapse
Affiliation(s)
- V V Prasad
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, India
| |
Collapse
|
33
|
Miyakawa T, Yagi T, Taniguchi M, Matsuura H, Tateishi K, Niki H. Enhanced susceptibility of audiogenic seizures in Fyn-kinase deficient mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 28:349-52. [PMID: 7723633 DOI: 10.1016/0169-328x(94)00251-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mice with a mutation in fyn genes were examined for their susceptibility to acoustically primed audiogenic seizures. Homozygous mutant (fynz/fynz) mice were significantly more likely to have seizures and to show the stronger seizure syndrome (clonus). These results indicate that the susceptibility of acoustically primed audiogenic seizures is enhanced in the Fyn kinase deficient mice.
Collapse
Affiliation(s)
- T Miyakawa
- Department of Psychology, Faculty of Letters, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Irvine RA, Seyfried TN. Phylogenetic conservation of ganglioside GD3 expression during early vertebrate ontogeny. Comp Biochem Physiol B Biochem Mol Biol 1994; 109:603-12. [PMID: 7881823 DOI: 10.1016/0305-0491(94)90123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gangliosides were investigated in adult brains and in 5-vesicle stage embryos of representatives belonging to the four vertebrate classes: Chondrichthyes, Amphibia, Aves and Mammalia. Considerable variability in brain ganglioside composition and concentration was observed among the adult vertebrates. The ganglioside patterns of the developmentally matched vertebrate embryos were similar in that each comprised GD3 as the predominant ganglioside. The phylogenetic conservation of abundant GD3 expression during early vertebrate ontogeny is interpreted as biochemical evidence consistent with von Baer's theory of increasing differentiation and suggests that GD3 is of critical importance for normal vertebrate development.
Collapse
Affiliation(s)
- R A Irvine
- Department of Biology, Boston College, MA 02167
| | | |
Collapse
|
35
|
el-Abbadi M, Seyfried TN. Influence of growth environment on the ganglioside composition of an experimental mouse brain tumor. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 21:273-85. [PMID: 8086038 DOI: 10.1007/bf02815355] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ganglioside composition was examined in an experimental mouse brain tumor growing as a solid tumor in vivo and as a cultured cell line in vitro. Gangliosides were also studied in the solid tumor rederived from the cultured tumor cell line. Although GM3-NeuAc was the major ganglioside in both the solid tumor and cultured tumor cells, several gangliosides expressed in the solid tumors (e.g., GM2-NeuGc, GM1, and GM1b) were not expressed in the cultured tumor cells. These gangliosides, however, are major components of mouse macrophages. Furthermore, significant amounts of gangliosides containing N-glycolylneuraminic acid (NeuGc) were found in the solid tumor growing in vivo, but only trace amounts were present in the cultured tumor cells. NeuGc is a common ganglioside sialic acid in mouse nonneural cells, whereas N-acetylneuraminic (NeuAc) is the predominant sialic acid in mouse brain. The trace amounts of NeuGc in the cultured cells are attributed to contamination from the fetal bovine serum. Radiolabeling of the cultured tumor cell gangliosides with [14C]galactose revealed that GM3-NeuAc was the only ganglioside synthesized by the tumor cells. The results suggest that nontumor-infiltrating cells, e.g., macrophages, lymphocytes, and endothelial cells, may contribute significantly to the total ganglioside composition of solid tumors growing in vivo.
Collapse
Affiliation(s)
- M el-Abbadi
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|
36
|
Effects of double amino-acid substitution polymorphism in acid β-galactosidase gene in two inbred strains of mice. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0167-4781(94)90123-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Cotterchio M, Seyfried TN. Serum gangliosides in mice with metastatic and non-metastatic brain tumors. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)40115-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Cotterchio M, Seyfried TN. The influence of ImuVert, a biological response modifier, on the growth and ganglioside composition of murine neural tumors. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 20:163-72. [PMID: 8297420 DOI: 10.1007/bf02815369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ImuVert is a biological response modifier (BRM) that has antitumor effects in humans and rats. The influence of ImuVert on the ganglioside composition of two experimental brain tumors, ependymoblastoma and CT-2A, was studied in C57BL/6J mice. Gangliosides are expressed on plasma membranes and can serve as markers to distinguish neural cells from nonneural cells in mouse brain tumors. N-acetylneuraminic (NeuAc) is the predominant sialic acid in mouse neural cells, whereas N-glycolylneuraminic (NeuGc) is a major sialic acid in nonneural cells, e.g., macrophages and lymphocytes. ImuVert treatment increased the NeuGc ganglioside concentration in the ependymoblastoma, but had no effect on the sialic acid concentration in the CT-2A brain tumor. ImuVert also had a slight inhibitory effect on the growth of both brain tumors.
Collapse
Affiliation(s)
- M Cotterchio
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|
39
|
Prasad VV. Alterations and recovery of rat brain gangliosides and glycosidases following long-term exposure to alcohol and rehabilitation during development. Brain Res 1993; 610:75-81. [PMID: 8518932 DOI: 10.1016/0006-8993(93)91219-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study examines effects of continuous exposure to alcohol during gestation, lactation and postweaning periods and rehabilitation on gangliosides and their catabolizing enzymes in whole brain (WB), cerebrum (C), cerebellum (CB) and brain stem (BS) of 63-day-old rats. Continuous exposure to alcohol was found to cause significant deficits in the body and brain weights. On the other hand, the concentration of total ganglioside in whole brain, cerebrum, cerebellum and brain stem showed an increase following exposure to alcohol. In agreement with the increased ganglioside concentration the activities of sialidase, beta-galactosidase, beta-glucosidase and beta-hexosaminidase, which are likely to be involved in the catabolism of gangliosides, showed reductions due to alcohol. Alcohol was also found to alter the proportions of individual gangliosides and the changes were found to be region-specific. However; the alcohol-induced alterations were reversed, at least to some extent, upon abstinence from alcohol. Body weights of control (CT), alcoholic (AC) and rehabilitated (AR) rats were 164 +/- 2, 107 +/- 7 and 139 +/- 3 (mean +/- S.E.M.), respectively. Decrease in tissue weight was significant in whole brain, cerebrum and brain stem but not in cerebellum. In AR rats significant deficits in tissue weights persisted in cerebrum and almost a complete recovery was observed in brain stem. On the other hand, the increase in the concentration of gangliosides in WB, C, CB and BS of AC rats amounted to 23, 19, 19 and 53% of controls, respectively. The corresponding values for the AR rats were 12, 14, 3 and 5%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V V Prasad
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, India
| |
Collapse
|
40
|
Neutral glycolipid abnormalities in at-complex mutant mouse embryo. Biochem Genet 1992. [DOI: 10.1007/pl00020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abstract
The content of neutral glycolipids was studied in normal and twl/twl mutant mouse embryos at embryonic day 11 (E-11). The twl mutation is part of the T/t complex on chromosome 17 and causes embryonic lethality from defects in the developing neural tube. Previous studies suggested that the mutation could involve a defect in ganglioside biosynthesis. Although the total neutral glycolipid content was similar in the normal and mutant whole embryos (approximately 80 nmol glucose/100 mg dry weight), marked differences were detected for the distribution of specific glycolipids. The content of lactosylceramide, globotriaosylceramide, and globotetraosylceramide was significantly higher in the mutant than in the normal embryos, whereas that of glucosylceramide was significantly reduced. The Forssman glycolipid was slightly elevated. The neutral glycolipid composition was similar in embryonic head and body regions of normal embryos, suggesting that the glycolipid abnormalities observed in the mutants are expressed in most embryonic cells and tissues. These and the previously reported ganglioside abnormalities in the twl/twl mutants could result from an inherited defect in glycolipid biosynthesis.
Collapse
Affiliation(s)
- T N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167
| | | |
Collapse
|
42
|
Seyfried TN, el-Abbadi M, Roy ML. Ganglioside distribution in murine neural tumors. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1992; 17:147-67. [PMID: 1418222 DOI: 10.1007/bf03159989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ganglioside composition of seven experimental brain tumors was examined in C57BL/6J mice. The tumors were produced from 20-methylcholanthrene (20-MC) implantation into either the cerebrum or cerebellum and were maintained in serial transplants through many generations. The tumors studied were grown subcutaneously as solid tumors, and cells from two of the tumors were also studied in culture. Histologically, all of the tumors were similar and could be broadly classified as highly malignant, poorly differentiated anaplastic astrocytomas. The total ganglioside sialic acid content of the solid tumors was markedly lower than that in adult mouse brain. In addition to N-acetylneuraminic acid (NeuAc), the gangliosides in the solid tumors contained significant amounts of N-glycolylneuraminic acid (NeuGc). The seven solid tumors fell into two general groups with respect to ganglioside composition. Furthermore, the differences in ganglioside composition between the two tumor groups were strongly associated with differences in tumor cell cohesion. The tumors in one group had high levels of GM3 hematosides, low levels of oligosialogangliosides, and grew as firm cohesive tissues. The tumors in the other group, however, had lower levels of GM3 hematosides, noticeable amounts of oligosialogangliosides and grew as soft noncohesive tissues. In culture, clonal cells from one of the tumors in the first group grew as clumps or islands and contained GM3 as the only major ganglioside, whereas clonal cells from a tumor in the second group grew as sheets or monolayers and contained little GM3, but expressed several gangliosides with complex structures. In marked contrast to the gangliosides in the solid tumors, the gangliosides in the cultured tumor cells contained trace amounts of NeuGc. Since NeuGc containing gangliosides are abundant in mouse nonneural tissues, the high content of NeuGc gangliosides in the solid tumors may arise from infiltration of nonneural tissue elements, e.g., macrophages, lymphocytes, and endothelial cells.
Collapse
Affiliation(s)
- T N Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | | | |
Collapse
|
43
|
Bai H, Orlando J, Seyfried TN. Altered ganglioside composition in virally transformed rat embryo fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:23-7. [PMID: 1322707 DOI: 10.1016/0167-4889(92)90080-u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition of gangliosides was examined in a normal rat embryo fibroblast cell line (REF52) and in two viral transformants: a polyoma transformant (REF52-PyMLV) and a simian viral 40 transformant (REF52-SV40). The distribution of gangliosides in the cell lines was determined using gas-liquid chromatography and high-performance thin-layer chromatography. N-acetylneuraminic acid was the predominant sialic acid species detected in the three cell lines. The total ganglioside concentration (microgram/100 mg dry weight of cells) in the normal, PyMLV, and SV40 lines was 144.7 +/- 10.4, 153.8 +/- 9.2, and 86.1 +/- 6.8, respectively. Gangliosides GM3, GM2, GM1, and GD1a were the major species in the normal and transformed lines. The distribution of these gangliosides, however, differed markedly between the normal and the transformed lines and also between the transformed lines themselves. The transformed cells also differed from the normal cells in growth rate, morphology, and social behavior. The cell line with highest GM3 content (PyMLV) formed islands, whereas the normal and SV40 cell lines, which had lower GM3 levels, grew as monolayers. The findings suggest that PyMLV and SV40 transformation can have multiple and different effects on cellular ganglioside distribution and growth behavior.
Collapse
Affiliation(s)
- H Bai
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | | | |
Collapse
|
44
|
Unland F, Müthing J. An improved method for preparation of perbenzoylated ganglioside-derived sialic acids and nanogram detection of N-acetyl- and N-glycolylneuraminic acid by high performance liquid chromatography. Biomed Chromatogr 1992; 6:155-9. [PMID: 1525492 DOI: 10.1002/bmc.1130060312] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An improved method for the preparation of perbenzoylated ganglioside-derived sialic acids is described. After mild acid hydrolysis, isolation of sialic acids can be achieved by Folch partition (Method A) or by anion exchange chromatography (Method B). Perbenzoylated sialic acids were freed from benzoylation reagents by a second Folch partition. Total recoveries of both methods were found to be greater than or equal to 90%, calculated from metabolically labelled gangliosides. Derivatized N-acetylneuraminic and N-glycolylneuraminic acids were separated and quantified by isocratic high performance liquid chromatography using a RP18 column as the stationary phase and methanol:water (8:2) as the mobile phase. Both sialic acids were completely separated and eluted as single peaks within 15 min, monitored by UV detection. As little as 20 ng of neuraminic acid could be detected, the detector being linear up to 5 micrograms tested.
Collapse
Affiliation(s)
- F Unland
- Institut für Zellkulturtechnik, Universität Bielefeld, Germany
| | | |
Collapse
|
45
|
Prasad VV. Effect of prenatal and postnatal exposure to ethanol on rat central nervous system gangliosides and glycosidases. Lipids 1992; 27:344-8. [PMID: 1406063 DOI: 10.1007/bf02536148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the effect of maternal alcohol consumption on cell number, gangliosides and ganglioside catabolizing enzymes in the central nervous system (CNS) of the offspring. Virgin female rats of the Charles Foster strain were given 15% (v/v) ethanol in drinking water one month prior to conception and during gestation and lactation. At 21 days postnatal age, the offspring were sacrificed and the brains were separated into cerebrum, cerebellum and brain stem to investigate possible regional variations. Compared to controls, wet weight of cerebrum, cerebellum and brain stem, and of spinal cord was decreased in the pups exposed to alcohol. DNA and protein contents were also found to be lowered in all the CNS regions of the pups exposed to alcohol. Conversely, maternal alcohol consumption was found to increase the concentration and the content of total ganglioside N-acetyl-neuraminic (NANA) in CNS of the pups. In addition, alcohol treatment was found to induce alterations in the proportions of individual ganglioside fractions. Interestingly, these alterations are somewhat different than those observed in the neonatal brain and spinal cord of the pups subjected to prenatal alcohol exposure. The alterations in the proportions of ganglioside fractions were shown to be region-specific. Maternal alcohol consumption resulted in decreased activities of sialidase, beta-galactosidase, beta-glucosidase and beta-hexosaminidase. The results suggest that the alcohol-associated increases in ganglioside concentration may be at least partly due to the decreased activities of ganglioside catabolizing enzymes.
Collapse
Affiliation(s)
- V V Prasad
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, India
| |
Collapse
|
46
|
Brigande JV, Wieraszko A, Albert MD, Balkema GW, Seyfried TN. Biochemical correlates of epilepsy in the E1 mouse: analysis of glial fibrillary acidic protein and gangliosides. J Neurochem 1992; 58:752-60. [PMID: 1729417 DOI: 10.1111/j.1471-4159.1992.tb09782.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The E1 (epileptic) mouse is considered a model for complex partial seizures in humans. Seizures in E1 mice begin around 7-8 weeks of age and persist throughout life. To determine if astrocytic gliosis was present in adult seizing E1 mice, the distribution of glial fibrillary acidic protein (GFAP) was studied in the hippocampus using an antibody to GFAP. The mean number of GFAP-positive cells per square millimeter of hippocampus was approximately 15- to 40-fold higher in adult E1 mice than in nonseizing control C57BL/6J (B6) mice or in young nonseizing E1 mice. Relative GFAP concentration (expressed per milligram of total tissue protein) in hippocampus and cerebellum was estimated by densitometric scanning of peroxidase-stained western blots. GFAP concentration was 2.7-fold greater in hippocampus of adult seizing E1 mice than in the control B6 mice. No differences in GFAP content were detected between the strains in the cerebellum. Because gangliosides can serve as cell surface markers for changes in neuronal cytoarchitecture, they were analyzed to determine if the gliotic response in E1 mice was associated with changes in neural composition. Although the total ganglioside concentration of hippocampus, cerebral cortex, and cerebellum was similar in adult E1 and control B6 mice, a synaptic membrane enriched ganglioside, GD1a, was elevated in the adult E1 cerebral cortex and hippocampus. The findings indicate that E1 mice express a type of gliosis that is not accompanied by obvious neuronal loss.
Collapse
Affiliation(s)
- J V Brigande
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167
| | | | | | | | | |
Collapse
|
47
|
Prasad VV. Maternal protein deficiency in rat: effects on central nervous system gangliosides and their catabolizing enzymes in the offspring. Lipids 1991; 26:553-6. [PMID: 1943499 DOI: 10.1007/bf02536603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maternal protein deficiency imposed on rats a month prior to conception, and during gestation and lactation, resulted in a significant cell loss in cerebrum, cerebellum, brain stem and spinal cord of pups at weaning. The cerebellum was the most affected central nervous system (CNS) region; it contained only 25% of the normal cell number. Undernourished pups were also found to have a lower concentration of total gangliosides in cerebrum as compared to that of controls. However, the total ganglioside concentration was unaffected in the cerebellum, brain stem and spinal cord by maternal undernutrition. In all regions, undernutrition caused significant changes in the proportions of individual gangliosides; these alterations were region-specific. Sialidase, beta-galactosidase, beta-glucosidase, and beta-hexosaminidase, which are involved in the catabolism of gangliosides, showed higher activities in all the regions of undernourished pups, suggesting that these enzymes may play a role in maintaining the porportions of various ganglioside fractions.
Collapse
Affiliation(s)
- V V Prasad
- Department of Biochemistry, Faculty of Science, MS University, Baroda, India
| |
Collapse
|
48
|
Qi Y, Xue QM. Ganglioside levels in hypoxic brains from neonatal and premature infants. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1991; 14:87-97. [PMID: 1910361 DOI: 10.1007/bf03159929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, 13 cases of newborn term-gestational infants and six cases of premature infants who died of hypoxia were selected for the determination of ganglioside levels in several regions of brains obtained at autopsy. Cases were divided into three groups according to the hypoxic interval and gestational age: Group A, six cases of newborn infants. The average time of hypoxia was 6.4 h. Group B, seven cases of newborn infants. The average time of hypoxia was about 71 h. Group C, six cases of premature infants. The average hypoxia time was 34.7 h. Frontal cortex, forebrain, hippocampus, and parahippocampal gyrus and cerebellum of each brain were examined. The method of Ladisch and Gillard (1985) was used to purify and quantify gangliosides. The results showed that total gangliosides decreased significantly in three regions of cerebral hemispheres of group B and in four brain regions of group C, as compared with group A (p less than 0.01). The amount of gangliosides in frontal cortex in group B was lower than in group C (p less than 0.01). The four major gangliosides (GM1, GD1a, GD1b, and GT1b) were all reduced in cerebral hemispheres of group B and C. In hypoxic brains, the percentage of gangliosides also showed some alterations. There was less GD1a in the cerebral hemispheres of group B and the frontal cortex of group C. The amount of GD1b was also less in the frontal cortex and forebrain of group B than in group A or C. The results suggest that severe hypoxia might cause decreases in brain gangliosides that correlate to the severity of brain damage.
Collapse
Affiliation(s)
- Y Qi
- Department of Neurology, Beijing Friendship Hospital, China
| | | |
Collapse
|
49
|
Plomin R, McClearn GE, Gora-Maslak G, Neiderhiser JM. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav Genet 1991; 21:99-116. [PMID: 2049054 DOI: 10.1007/bf01066330] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant inbred (RI) strains are valuable not only for detecting major gene segregation and linkage but also for identifying associations between behavior and quantitative trait loci (QTL) that account for relatively small amounts of variation in behaviors for which strain distribution patterns are not bimodal. When applied to published data on genetic markers and on behavior for BXD RI strains, the RI QTL association approach suggests the presence of QTLs on chromosomes 6 and 12 for open-field activity and on chromosomes 1, 2, and 17 for high-pressure seizure susceptibility. Because the RI QTL approach does not require that the progenitor inbred strains of a particular RI series differ, researchers could focus on the BXD RI series, for which the greatest number of genetic markers are available. Focusing on BXD would capitalize on the cumulative nature of RI research which permits analyses of QTL sources of genetic correlations across studies.
Collapse
Affiliation(s)
- R Plomin
- Center for Developmental and Health Genetics, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
50
|
Abstract
The distribution of cerebellar gangliosides was studied in Purkinje cell degeneration (pcd/pcd) mutant mice at postnatal days 25, 30, 50, and 150. These mutants lose the majority of Purkinje cells between 18 and 50 days of age. A reactive gliosis accompanies Purkinje cell loss and a partial loss of granule cells occurs in pcd/pcd mice older than p50. Purkinje cell loss is associated with significant reductions in cerebellar weight and ganglioside concentration. This neuronal loss was also developmentally correlated with reductions of gangliosides (GT1a/LD1 and GT1b and with elevations of GD3. These results agree with previous findings in other cerebellar mutants that GT1a/LD1 and GT1b are concentrated in Purkinje cells and that GD3 is enriched in reactive glial cells. A slight, but significant, reduction in GD1a concentration occurred only in older pcd/pcd mice, consistent with previous findings in weaver and staggerer mice that GD1a is enriched in mature granule cells. The findings with pcd/pcd and other neurological mutants indicate that certain gangliosides can serve as cell-surface markers for monitoring changes in cerebellar cytoarchitecture that accompany development or disease.
Collapse
Affiliation(s)
- T N Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|