1
|
Wu W, Yang Q, Fung KM, Humphreys MR, Brame LS, Cao A, Fang YT, Shih PT, Kropp BP, Lin HK. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer. Mol Cell Endocrinol 2014; 383:69-79. [PMID: 24296312 DOI: 10.1016/j.mce.2013.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/25/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression.
Collapse
Affiliation(s)
- Weijuan Wu
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qing Yang
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | | | - Lacy S Brame
- Department of Psychology, University of Oklahoma, Norman, OK 73019, USA
| | - Amy Cao
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu-Ting Fang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan, ROC
| | - Pin-Tsen Shih
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan, ROC
| | - Bradley P Kropp
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hsueh-Kung Lin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Naderi N, Ahmad-Molaei L, Aziz Ahari F, Motamedi F. Modulation of anticonvulsant effects of cannabinoid compounds by GABA-A receptor agonist in acute pentylenetetrazole model of seizure in rat. Neurochem Res 2011; 36:1520-5. [PMID: 21516342 DOI: 10.1007/s11064-011-0479-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2011] [Indexed: 11/26/2022]
Abstract
Cannabinoid system plays an important role in controlling neuronal excitability and brain function. On the other hand, modulation of gamma-aminobutyric acid (GABA) transmission is one of the initial strategies for the treatment of seizure. The aim of the present study was to evaluate possible interaction between cannabinoidergic and GABAergic systems in pentylenetetrazole (PTZ)-induced acute seizure in rat. Drugs were administered by intracerebroventricular (i.c.v.) administration 20 min before a single intraperitoneal (i.p.) injection of PTZ and the latency to the first generalized tonic-clonic seizure was measured. Both the cannabinoid receptor agonist WIN55212-2 (10, 30, 50 and 100 μg/rat) and the GABA-A receptor agonist isoguvacine (IGN; 10, 30 and 50 μg/rat) significantly increased the latency of seizure occurrence. Moreover, the fatty acid amide hydrolase inhibitor URB597 showed no anticonvulsive effect while the monoacyl glycerol lipase (MAGL) inhibitor URB602 (10, 50 and 100 μg/rat) protected rats against PTZ-induced seizure. Moreover, co-administration of IGN and cannabinoid compounds attenuated the anticonvulsant action of both WIN55212-2 and IGN in this model of seizure. Our data suggests that exogenous cannabinoid WIN55212-2 and MAGL inhibitor URB602 imply their antiseizure action in part through common brain receptorial system. Moreover, the antagonistic interaction of cannabinoids and IGN in protection against PTZ-induced seizure could suggest the involvement of GABAergic system in their anticonvulsant action.
Collapse
Affiliation(s)
- Nima Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| | | | | | | |
Collapse
|
3
|
Nasrallah FA, Griffin JL, Balcar VJ, Rae C. Understanding your inhibitions: effects of GABA and GABAAreceptor modulation on brain cortical metabolism. J Neurochem 2009; 108:57-71. [DOI: 10.1111/j.1471-4159.2008.05742.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Shen KZ, Johnson SW. Potentiation of GABA(A) receptor agonists by GABA uptake inhibitors in the rat ventral midbrain. Eur J Pharmacol 2001; 428:1-7. [PMID: 11779025 DOI: 10.1016/s0014-2999(01)01218-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whole-cell patch recordings were made from dopamine-containing neurons in the ventral tegmental area (VTA) and substantia nigra zona compacta (SNC). Isoguvacine evoked an outward current (at -60 mV) in a concentration-dependent manner with an EC50 of 62+/-8 microM. The gamma-aminobutyric acid (GABA) uptake inhibitor 1-(2(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride (NO 711) (3 microM) shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 22+/-4 microM. L-Arginine (3 mM) also shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 29+/-5 microM. L-Arginine (3 mM) increased the currents evoked by GABA (100 microM) and muscimol (1 microM) by 208% and 261%, respectively. The GABA uptake inhibitor 4,5,6,7,-tetrahydroisoxazolo[4,5-c]-pyridin-3-ol hydrobromide (THPO) (300 microM) not only mimicked but also occluded the ability of L-arginine (3 mM) to potentiate currents evoked by isoguvacine. Equimolar replacement of Na+ with choline increased GABA-evoked currents, suggesting that a low Na+ concentration has an inhibitory effect on GABA transport. Low Na+ concentration (25 mM) inhibited isoguvacine currents but still occluded the potentiating effects of L-arginine. We conclude that GABA uptake inhibitors potentiate the actions of the GABA(A) receptor agonists, isoguvacine and muscimol, probably because they are effective substrates for GABA transporters in the ventral midbrain.
Collapse
Affiliation(s)
- K Z Shen
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
5
|
Abstract
Exocytosis is commonly viewed as the only secretory process able to account for quantal forms of fast synaptic transmission. However, the demonstrated variability and composite properties of miniature postsynaptic signals are not easily explained by all-or-none exocytotic discharge of transmitter in solution from inside vesicles. Recent studies of endocrine secretion have shown that hormone release does not coincide with exocytosis due to its trapping in the core matrix of the granule. Thus, we tested whether the synaptic transmitter GABA could also be held in a matrix before being released. Using confocal microscopy and flow cytometry of embryonic rat hippocampal neurons, we found a GABA immunoreaction at the surface of live cell bodies and growth cones that coincided spatially and quantitatively with the binding of tetanus toxin fragment C (TTFC). TTFC binds predominantly at membrane sites containing the trisialoglycosphingolipid GT1b. Using flow cytometry, GT1b-containing liposomes preincubated in 100 nM GABA exhibited the same relationship between GABA and TTFC surface binding as found on neurons and growth cones. Embryonic neurons differentiated in culture expressed initially a tonic, and after 3-5 days, transient, postsynaptic signals mediated by GABA acting at GABA(A) receptor/Cl(-) channels. A stream of saline applied to the neuronal surface rapidly and reversibly suppressed both tonic and transient signals. A brief application of the GABAmimetic isoguvacine immediately transformed both tonic and transient GABAergic signals into tonic and transient isoguvacinergic signals. These results and those in the literature are consistent with an immediately releasable compartment of transmitter accessible from the presynaptic surface.
Collapse
Affiliation(s)
- J Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
6
|
Detection and Characterization of Epalon Receptors: Novel Recognition Sites for Neuroactive Steroids That Modulate the GABAA Receptor Complex. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-185292-4.50019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
DeLorey TM, Brown GB. gamma-Aminobutyric acidA receptor pharmacology in rat cerebral cortical synaptoneurosomes. J Neurochem 1992; 58:2162-9. [PMID: 1315378 DOI: 10.1111/j.1471-4159.1992.tb10959.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Equilibrium binding interactions at the gamma-aminobutyric acid (GABA) and benzodiazepine recognition sites on the GABAA receptor-Cl- ionophore complex were studied using a vesicular synaptoneurosome (microsacs) preparation of rat brain in a physiological HEPES buffer similar to that applied successfully in recent GABAergic 36Cl- flux measurements. NO 328, a GABA reuptake inhibitor, was included in the binding assays to prevent the uptake of [3H]muscimol. Under these conditions, the equilibrium dissociation constant (KD) values for [3H]muscimol and [3H]diazepam bindings are 1.9 microM and 40 nM, respectively. Binding affinities for these and other GABA and benzodiazepine agonists and antagonists correlate well with the known physiological doses required to elicit functional activity. This new in vitro binding protocol coupled with 36Cl- flux studies should prove to be of value in reassessing the pharmacology of the GABAA receptor complex in a more physiological environment.
Collapse
Affiliation(s)
- T M DeLorey
- Department of Chemistry, University of Alabama, Birmingham
| | | |
Collapse
|
8
|
Erecińska M. The neurotransmitter amino acid transport systems. A fresh outlook on an old problem. Biochem Pharmacol 1987; 36:3547-55. [PMID: 2890354 DOI: 10.1016/0006-2952(87)90001-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Erecińska
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
9
|
Bakke HK, Murison R, Walther B. Effect of central noradrenaline depletion on corticosterone levels and gastric ulcerations in rats. Brain Res 1986; 368:256-61. [PMID: 3697726 DOI: 10.1016/0006-8993(86)90569-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Effects of central noradrenergic depletion on the stress responses of rats were explored using the new selective neurotoxin (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)). Noradrenergic depletion using DSP-4 was followed by a reduction in basal corticosterone levels after 7 days. Three weeks after DSP-4 treatment, animals exhibited less severe and fewer gastric ulcerations than control animals following 23 h immobilization stress, but stress levels of corticosterone were similar for the two groups. No differences could be found in the peripheral gastric levels of noradrenaline between experimental and control animals, while central noradrenaline was reduced to approximately 30% of control levels. The data support previous findings using other methods that central noradrenaline is an important factor in stress-induced gastric ulceration. The peripheral mechanisms for the protective effects of DSP-4 remain to be elucidated, and studies of these may cast light on the efferent pathways between the central nervous system and gastric mucosa which are involved in stress-induced gastric pathology.
Collapse
|
10
|
Krogsgaard-Larsen P, Falch E, Hjeds H. Heterocyclic analogues of GABA: chemistry, molecular pharmacology and therapeutic aspects. PROGRESS IN MEDICINAL CHEMISTRY 1985; 22:67-120. [PMID: 3014606 DOI: 10.1016/s0079-6468(08)70229-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Lack of a high affinity uptake system for the GABA agonists THIP and isoguvacine in neurons and astrocytes cultured from mouse brain. Neurochem Int 1985; 7:505-8. [DOI: 10.1016/0197-0186(85)90175-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1984] [Accepted: 11/02/1984] [Indexed: 11/20/2022]
|
12
|
Sharif NA. Multiple synaptic receptors for neuroactive amino acid transmitters--new vistas. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1985; 26:85-150. [PMID: 2991160 DOI: 10.1016/s0074-7742(08)60073-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Brown DA, Scholfield CN. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig. Br J Pharmacol 1984; 83:195-202. [PMID: 6237704 PMCID: PMC1987163 DOI: 10.1111/j.1476-5381.1984.tb10135.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Membrane potential and input conductance were recorded in single neurones in slices of guinea-pig olfactory cortex in vitro. gamma-Aminobutyric acid (GABA) and GABA-mimetic compounds were applied by bath-perfusion. Potency was measured as the concentration required to double the input conductance. The potency of GABA was increased (i.e. the equi-effective concentrations were reduced) by 15.5 +/- 2.3 times (mean +/- s.e. mean) on reducing external [Na+] from 144 to 20 mmol l-1, by replacement with Mg2+. Corresponding potency changes for other agonists were + 10.8 +/- 2.5 for 3-aminopropanesulphonic acid (3-APS); 3.25 +/- 1.06 for isoguvacine and 2.43 +/- 0.69 for muscimol. Nipecotic acid (0.5 mM) produced the following increases in potency: GABA 2.68 +/- 0.02; 3-aminopropanesulphonic acid, 3.11 +/- 0.07; isoguvacine, 1.92 +/- 0.34; muscimol, 2.24 +/- 0.17. The concentration of GABA in the bathing fluid necessary to double input conductance increased with increasing depth of the recording site from the cut surface. The apparent potency fell 10 times for each 60 micron depth increment up to 150 micron. The recording depth also affected the apparent potency of muscimol and 3-APS but to a lesser extent. Reduction of external [Na+] reduced the depth-dependence of both GABA and 3-APS potency. No clear change in the duration of the recurrent inhibitory postsynaptic conductance could be detected in the presence of 0.5 mmol l-1 nipecotic acid. 6 It is suggested that agonist uptake by a Na+-dependent, nipecotic acid-sensitive mechanism severely attenuates the responses of olfactory neurones to exogenous GABA and to its analogues 3-APS, muscimol and isoguvacine, but has little immediate influence on the duration of the GABA-mediated inhibitory postsynaptic conductance.
Collapse
|
14
|
Rovira C, Ben-Ari Y, Cherubini E. Somatic and dendritic actions of gamma-aminobutyric acid agonists and uptake blockers in the hippocampus in vivo. Neuroscience 1984; 12:543-55. [PMID: 6087200 DOI: 10.1016/0306-4522(84)90072-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In rats under urethane anaesthesia gamma-aminobutyric acid agonists and uptake blockers were microiontophoretically applied in the pyramidal layer of CA1 and in the apical dendrites using a twin set of multibarrelled micropipettes. Thus, the somatic and dendritic field potentials elicited by commissural stimulation were recorded simultaneously and the effects of iontophoretic applications at either site studied. Somatic applications of gamma-aminobutyric acid, isoguvacine or muscimol produced an inhibition of the somatic population spike; this showed rapid fade and was followed by an "off" response i.e. an enhancement of the population spike discharge and the occurrence of a second (and occasionally third) spike. The order of potency with regard to the "off" response was muscimol greater than isoguvacine much greater than gamma-aminobutyric acid. In contrast, the inhibition of the population spike produced by 4,5,6,7-tetrahydroisoxazolo(5,4-C) pyridin 3-OL showed little fade and no prominent "off" response. The fade and "off" response were not associated with significant changes in the dendritic field excitatory postsynaptic potential concommittantly recorded and were exclusively restricted to the immediate vicinity of the pyramidal layer. Ejection of gamma-aminobutyric acid and its agonists in the stratum radiatum produced a reduction of the field excitatory postsynaptic potential and the somatic spike, this effect however showed no fade (even during prolonged applications of high doses) and no "off" response. Somatic applications of the uptake blockers nipecotic acid or guvacine consistently produced: an increase in the effectiveness of the inhibition produced by gamma-aminobutyric acid and its analogues: a decrease in the latency to peak of the inhibition and an increase in the time to recovery; a full blockade of the fade and the "off" response. All of these effects were rapid and fully reversible without significant changes in either the field excitatory postsynaptic potential or the (control) somatic spikes. The more specific glial uptake blocker, 4,5,6,7-tetrahydroisoxazolo(4,5-C) pyridin 3-OL occasionally blocked the "off" response, however it was less potent and also tended to reduce the spike amplitude. Dendritic applications of the uptake blockers reduced the excitatory postsynaptic potential and the somatic spike but failed to produce prominent changes in the action of gamma-aminobutyric acid and its analogues.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|