1
|
Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017; 7:17922. [PMID: 29263397 PMCID: PMC5738385 DOI: 10.1038/s41598-017-17911-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Collapse
|
2
|
Chan WKB, Chen VP, Luk WKW, Choi RCY, Tsim KWK. N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase. Neurosci Lett 2012; 523:71-5. [PMID: 22750213 DOI: 10.1016/j.neulet.2012.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/01/2022]
Abstract
Acetylcholinesterase (AChE) is organized into globular tetramers (G(4)) by a structural protein called proline-rich membrane anchor (PRiMA), anchoring it into the cell membrane of neurons in the brain. The assembly of AChE tetramers with PRiMA requires the presence of a C-terminal "t-peptide" in the AChE catalytic subunit (AChE(T)). The glycosylation of AChE(T) is known to be required for its proper assembly and trafficking; however, the role of PRiMA glycosylation in the oligomer assembly has not been revealed. PRiMA is a glycoprotein containing two putative N-linked glycosylation sites. By using site-directed mutagenesis, the asparagine-43 was identified to be the N-linked glycosylation site of PRiMA. Abolishing glycosylation on mouse PRiMA appeared not to affect its assembly with AChE(T), the enzymatic properties of AChE, and the membrane trafficking of PRiMA-linked AChE tetramers. This result is contrary to the reports that glycosylation is essential for conformation and trafficking of membrane glycoproteins.
Collapse
Affiliation(s)
- Wallace K B Chan
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region
| | | | | | | | | |
Collapse
|
3
|
Abstract
Kolinesteraze: struktura, uloga, inhibicijaAcetilkolinesteraza (AChE; E.C. 3.1.1.7) i butirilkolinesteraza (BChE; E.C. 3.1.1.8) enzimi su koji se zbog svoje uloge u organizmu intenzivno istražuju unutar područja biomedicine i toksikologije. Iako strukturno homologni, ovi enzimi razlikuju se prema katalitičkoj aktivnosti, odnosno specifičnosti prema supstratima koje mogu hidrolizirati te selektivnosti za vezanje mnogih liganada. U ovom radu dan je pregled dosadašnjih istraživanja kolinesteraza i njihovih interakcija s ligandima i inhibitorima te su izdvojene aminokiseline aktivnog mjesta koje sudjeluju u tim interakcijama.
Collapse
|
4
|
Xie HQ, Leung KW, Chen VP, Chan GK, Xu SL, Guo AJ, Zhu KY, Zheng KY, Bi CW, Zhan JY, Chan WK, Choi RC, Tsim KW. PRiMA directs a restricted localization of tetrameric AChE at synapses. Chem Biol Interact 2010; 187:78-83. [DOI: 10.1016/j.cbi.2010.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/24/2022]
|
5
|
Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 2010; 187:10-22. [PMID: 20138030 DOI: 10.1016/j.cbi.2010.01.042] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 11/28/2022]
Abstract
By rapid hydrolysis of the neurotransmitter, acetylcholine, acetylcholinesterase terminates neurotransmission at cholinergic synapses. Acetylcholinesterase is a very fast enzyme, functioning at a rate approaching that of a diffusion-controlled reaction. The powerful toxicity of organophosphate poisons is attributed primarily to their potent inhibition of acetylcholinesterase. Acetylcholinesterase inhibitors are utilized in the treatment of various neurological disorders, and are the principal drugs approved thus far by the FDA for management of Alzheimer's disease. Many organophosphates and carbamates serve as potent insecticides, by selectively inhibiting insect acetylcholinesterase. The determination of the crystal structure of Torpedo californica acetylcholinesterase permitted visualization, for the first time, at atomic resolution, of a binding pocket for acetylcholine. It also allowed identification of the active site of acetylcholinesterase, which, unexpectedly, is located at the bottom of a deep gorge lined largely by aromatic residues. The crystal structure of recombinant human acetylcholinesterase in its apo-state is similar in its overall features to that of the Torpedo enzyme; however, the unique crystal packing reveals a novel peptide sequence which blocks access to the active-site gorge.
Collapse
Affiliation(s)
- Hay Dvir
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
6
|
Provenzano C, Marino M, Scuderi F, Evoli A, Bartoccioni E. Anti-acetylcholinesterase antibodies associate with ocular myasthenia gravis. J Neuroimmunol 2010; 218:102-6. [DOI: 10.1016/j.jneuroim.2009.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
|
7
|
Liang D, Nunes-Tavares N, Xie HQ, Carvalho S, Bon S, Massoulié J. Protein CutA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase. J Biol Chem 2008; 284:5195-207. [PMID: 19049969 DOI: 10.1074/jbc.m806260200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian protein CutA was first discovered in a search for the membrane anchor of mammalian brain acetylcholinesterase (AChE). It was co-purified with AChE, but it is distinct from the real transmembrane anchor protein, PRiMA. CutA is a ubiquitous trimeric protein, homologous to the bacterial CutA1 protein that belongs to an operon involved in resistance to divalent ions ("copper tolerance A"). The function of this protein in plants and animals is unknown, and several hypotheses concerning its subcellular localization have been proposed. We analyzed the expression and the subcellular localization of mouse CutA variants, starting at three in-frame ATG codons, in transfected COS cells. We show that CutA produces 20-kDa (H) and 15-kDa (L) components. The H component is transferred into the secretory pathway and secreted, without cleavage of a signal peptide, whereas the L component is mostly cytosolic. We show that expression of the longer CutA variant reduces the level of AChE, that this effect depends on the AChE C-terminal peptides, and probably results from misfolding. Surprisingly, CutA increased the secretion of a mutant possessing a KDEL motif at its C terminus; it also increased the formation of AChE homotetramers. We found no evidence for a direct interaction between CutA and AChE. The longer CutA variant seems to affect the processing and trafficking of secretory proteins, whereas the shorter one may have a distinct function in the cytoplasm.
Collapse
Affiliation(s)
- Dong Liang
- Laboratoire de Neurobiologie, CNRS UMR 8544, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Noureddine H, Carvalho S, Schmitt C, Massoulié J, Bon S. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA. J Biol Chem 2008; 283:20722-32. [PMID: 18511416 DOI: 10.1074/jbc.m801364200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase tetramers are inserted in the basal lamina of neuromuscular junctions or anchored in cell membranes through the interaction of four C-terminal t peptides with proline-rich attachment domains (PRADs) of cholinesterase-associated collagen Q (ColQ) or of the transmembrane protein PRiMA (proline-rich membrane anchor). ColQ and PRiMA differ in the length of their proline-rich motifs (10 and 15 residues, respectively). ColQ has two cysteines upstream of the PRAD, which are disulfide-linked to two AChE(T) subunits ("heavy" dimer), and the other two subunits are disulfide-linked together ("light" dimer). In contrast, PRiMA has four cysteines upstream of the PRAD. We examined whether these cysteines could be linked to AChE(T) subunits in complexes formed with PRiMA in transfected COS cells and in the mammalian brain. For comparison, we studied complexes formed with N-terminal fragments of ColQ, N-terminal fragments of PRiMA, and chimeras in which the upstream regions containing the cysteines were exchanged. We also compared the effect of mutations in the t peptides on their association with the two PRADs. We report that the two PRADs differ in their interaction with AChE(T) subunits; in complexes formed with the PRAD of PRiMA, we observed light dimers, but very few heavy dimers, even though such dimers were formed with the PQ chimera in which the N-terminal region of PRiMA was associated with the PRAD of ColQ. Complexes with PQ or with PRiMA contained heavy components, which migrated abnormally in SDS-PAGE but probably resulted from disulfide bonding of four AChE(T) subunits with the four upstream cysteines of the associated protein.
Collapse
Affiliation(s)
- Hiba Noureddine
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, UMR 8544, Ecole Normale Supérieure, 46 Rue d'Ulm, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Noureddine H, Schmitt C, Liu W, Garbay C, Massoulié J, Bon S. Assembly of acetylcholinesterase tetramers by peptidic motifs from the proline-rich membrane anchor, PRiMA: competition between degradation and secretion pathways of heteromeric complexes. J Biol Chem 2006; 282:3487-97. [PMID: 17158452 DOI: 10.1074/jbc.m607221200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound form of acetylcholinesterase (AChE) constitutes the major component of this enzyme in the mammalian brain. These molecules are hetero-oligomers, composed of four AChE catalytic subunits of type T (AChE(T)), associated with a transmembrane protein of type 1, called PRiMA (proline-rich membrane anchor). PRiMA consists of a signal peptide, an extracellular domain that contains a proline-rich motif (14 prolines with an intervening leucine, P4LP10), a transmembrane domain, and a cytoplasmic domain. Expression of AChE(T) subunits in transfected COS cells with a truncated PRiMA, without its transmembrane and cytoplasmic domains (P(stp54) mutant), produced secreted heteromeric complexes (T4-P(stp54)), instead of membrane-bound tetramers. In this study, we used a series of deletions and point mutations to analyze the interaction between the extracellular domain of PRiMA and AChE(T) subunits. We confirmed the importance of the polyproline stretches and defined a peptidic motif (RP4LP10RL), which induces the assembly and secretion of a heteromeric complex with four AChE(T) subunits, nearly as efficiently as the entire extracellular domain of PRiMA. It is noteworthy that deletion of the N-terminal segment preceding the prolines had little effect. Interestingly, short PRiMA mutants, truncated within the proline-rich motif, reduced both cellular and secreted AChE activity, suggesting that their interaction with AChE(T) subunits induces their intracellular degradation.
Collapse
Affiliation(s)
- Hiba Noureddine
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris
| | | | | | | | | | | |
Collapse
|
10
|
Massoulié J, Bon S, Perrier N, Falasca C. The C-terminal peptides of acetylcholinesterase: Cellular trafficking, oligomerization and functional anchoring. Chem Biol Interact 2005; 157-158:3-14. [PMID: 16257397 DOI: 10.1016/j.cbi.2005.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vertebrates, the catalytic domain of acetylcholinesterase (AChE) may be associated with several C-terminal peptides generated by alternative splicing in the 3' region of transcripts. The "readthrough" (R) variant results from a lack of splicing after the last exon encoding the catalytic domain. Such a variant has been observed in Torpedo and in mammals; its C-terminal r peptide, also called "AChE Related Peptide" (ARP), is poorly conserved between rodents and humans. In rodents, it is significantly expressed in embryonic tissues and at a very low level in the brain of adult mice; it may be increased under various stress conditions, but remains very low. The "hydrophobic" (H) variant generates glycolipid (GPI)-anchored dimers, which are expressed in muscles of Torpedo, and in blood cells of mammals; H variants exist in Torpedo and in mammals, but apparently not in other vertebrate classes, suggesting that they were lost during evolution of early vertebrates and re-appeared independently in mammals. The "tailed" (T) variant exists in all vertebrate cholinesterases and their C-terminal t peptides are strongly conserved; in mammals, AChE(T) subunits represent the major type of acetylcholinesterase in cholinergic tissues. They produce a wide variety of oligomeric forms, ranging from monomers to heteromeric assemblies containing the anchoring proteins ColQ (collagen-tailed forms) and PRiMA (membrane-bound tetramers), which constitute the major functional enzyme species in mammalian muscles and brain, respectively. The oligomerization of AChE(T) subunits depends largely on the properties of their C-terminal t peptide. These peptides contain seven conserved aromatic residues, including three tryptophans, and are organized in an amphiphilic alpha helix in which these residues form a hydrophobic cluster. The presence of a cysteine is required for dimerization, while aromatic residues are necessary for tetramerization. In the collagen-tailed molecules, four t peptides form a coiled coil around a proline-rich motif (PRAD) located in the N-terminal region of ColQ. The t peptide also strongly influences the folding and cellular trafficking of AChE(T) subunits: the presence of hydrophobic residues induces partial misfolding leading to inactive protein, while aromatic residues, organized or not in an amphiphilic helix, induce intracellular degradation through the "Endoplasmic Reticulum Associated Degradation" (ERAD) pathway, rather than secretion. It has been proposed that the r and t C-terminal peptides, or fragments of these peptides, may exert independent, non cholinergic biological functions: this interesting possibility still needs to be documented, especially in view of their various degrees of evolutionary conservation.
Collapse
Affiliation(s)
- Jean Massoulié
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | | | |
Collapse
|
11
|
Falasca C, Perrier N, Massoulié J, Bon S. Determinants of the t Peptide Involved in Folding, Degradation, and Secretion of Acetylcholinesterase. J Biol Chem 2005; 280:878-86. [PMID: 15452125 DOI: 10.1074/jbc.m409201200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal 40-residue t peptide of acetylcholinesterase (AChE) forms an amphiphilic alpha helix with a cluster of seven aromatic residues. It allows oligomerization and induces a partial degradation of AChE subunits through the endoplasmic reticulum-associated degradation pathway. We show that the t peptide induces the misfolding of a fraction of AChE subunits, even when mutations disorganized the cluster of aromatic residues or when these residues were replaced by leucines, indicating that this effect is due to hydrophobic residues. Mutations in the aromatic-rich region affected the cellular fate of AChE in a similar manner, with or without mutations that prevented dimerization. Degradation was decreased and secretion was increased when aromatic residues were replaced by leucines, and the opposite occurred when the amphiphilic alpha helix was disorganized. The last two residues (Asp-Leu) somewhat resembled an endoplasmic reticulum retention signal and caused a partial retention but only in mutants possessing aromatic residues in their t peptide. Our results suggested that several "signals" in the catalytic domain and in the t peptide act cooperatively for AChE quality control.
Collapse
Affiliation(s)
- Cinzia Falasca
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
12
|
Dvir H, Harel M, Bon S, Liu WQ, Vidal M, Garbay C, Sussman JL, Massoulié J, Silman I. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J 2004; 23:4394-405. [PMID: 15526038 PMCID: PMC526459 DOI: 10.1038/sj.emboj.7600425] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/31/2004] [Indexed: 11/08/2022] Open
Abstract
Functional localization of acetylcholinesterase (AChE) in vertebrate muscle and brain depends on interaction of the tryptophan amphiphilic tetramerization (WAT) sequence, at the C-terminus of its major splice variant (T), with a proline-rich attachment domain (PRAD), of the anchoring proteins, collagenous (ColQ) and proline-rich membrane anchor. The crystal structure of the WAT/PRAD complex reveals a novel supercoil structure in which four parallel WAT chains form a left-handed superhelix around an antiparallel left-handed PRAD helix resembling polyproline II. The WAT coiled coils possess a WWW motif making repetitive hydrophobic stacking and hydrogen-bond interactions with the PRAD. The WAT chains are related by an approximately 4-fold screw axis around the PRAD. Each WAT makes similar but unique interactions, consistent with an asymmetric pattern of disulfide linkages between the AChE tetramer subunits and ColQ. The P59Q mutation in ColQ, which causes congenital endplate AChE deficiency, and is located within the PRAD, disrupts crucial WAT-WAT and WAT-PRAD interactions. A model is proposed for the synaptic AChE(T) tetramer.
Collapse
Affiliation(s)
- Hay Dvir
- Dapartment of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Dapartment of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Harel
- Dapartment of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wang-Qing Liu
- Laboratoire de Pharmacochimie Moléculaire et Structurale, Faculté de Pharmacie, Paris, France
| | - Michel Vidal
- Laboratoire de Pharmacochimie Moléculaire et Structurale, Faculté de Pharmacie, Paris, France
| | - Christiane Garbay
- Laboratoire de Pharmacochimie Moléculaire et Structurale, Faculté de Pharmacie, Paris, France
| | - Joel L Sussman
- Dapartment of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 4531; Fax: +972 8 934 4159; E-mail:
| | | | - Israel Silman
- Dapartment of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 3649; Fax: +972 8 934 6017; E-mail:
| |
Collapse
|
13
|
Perrier NA, Khérif S, Perrier AL, Dumas S, Mallet J, Massoulié J. Expression of PRiMA in the mouse brain: membrane anchoring and accumulation of 'tailed' acetylcholinesterase. Eur J Neurosci 2003; 18:1837-47. [PMID: 14622217 DOI: 10.1046/j.1460-9568.2003.02914.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed the expression of PRiMA (proline-rich membrane anchor), the membrane anchor of acetylcholinesterase (AChE), by in situ hybridization in the mouse brain. We compared the pattern of PRiMA transcripts with that of AChE transcripts, as well as those of choline acetyltransferase and M1 muscarinic receptors which are considered pre- and postsynaptic cholinergic markers. We also analysed cholinesterase activity and its molecular forms in several brain structures. The results suggest that PRiMA expression is predominantly or exclusively related to the cholinergic system and that anchoring of cholinesterases to cell membranes by PRiMA represents a limiting factor for production of the AChE tailed splice variant (AChET)-PRiMA complex, which represents the major AChE component in the brain. This enzyme species is mostly associated with cholinergic neurons because the pattern of PRiMA mRNA expression largely coincides with that of ChAT. We also show that, in both mouse and human, PRiMA proteins exist as two alternative splice variants which differ in their cytoplasmic regions.
Collapse
Affiliation(s)
- Noël A Perrier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Bon S, Ayon A, Leroy J, Massoulié J. Trimerization domain of the collagen tail of acetylcholinesterase. Neurochem Res 2003; 28:523-35. [PMID: 12675141 DOI: 10.1023/a:1022821306722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the collagen-tailed forms of cholinesterases, each subunit of a specific triple helical collagen, ColQ, may be attached through a proline-rich domain (PRAD) situated in its N-terminal noncollagenous region, to tetramers of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). This heteromeric assembly ensures the functional anchoring of AChE in extracellulare matrices, for example, at the neuromuscular junction. In this study, we analyzed the influence of deletions in the noncollagenous C-terminal region of ColQ on its capacity to form a triple helix. We show that an 80-residue segment located downstream of the collagenous regions contains the trimerization domain, that it can form trimers without the collagenous regions, and that a pair of cysteines located at the N-boundary of this domain facilitates oligomerization, although it is not absolutely required. We further show that AChE subunits can associate with nonhelical collagen ColQ monomers, forming ColQ-associated tetramers (G4-Q), which are secreted or are anchored at the cell surface when the C-terminal domain of ColQ is replaced by a GPI-addition signal.
Collapse
Affiliation(s)
- Suzanne Bon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
15
|
Abstract
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.
Collapse
Affiliation(s)
- Anselme L Perrier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
16
|
Morel N, Leroy J, Ayon A, Massoulié J, Bon S. Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion. J Biol Chem 2001; 276:37379-89. [PMID: 11443120 DOI: 10.1074/jbc.m103192200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) exists as AChE(H) and AChE(T) subunits, which differ by their C-terminal H or T peptides, generating glycophosphatidylinositol-anchored dimers and various oligomers, respectively. We introduced mutations in the four-helix bundle interface of glycophosphatidylinositol-anchored dimers, and analyzed their effect on the production and oligomerization of AChE(H), of AChE(T), and of truncated subunits, AChE(C) (without H or T peptide). Dimerization was reduced for all types of subunits, showing that they interact through the same contact zone; the formation of amphiphilic tetramers (Torpedo AChE(T)) and 13.5 S oligomers (rat AChE(T)) was also suppressed. Oligomerization appeared totally blocked by introduction of an N-linked glycan on the surface of helix alpha(7,8). Other point mutations did not affect the synthesis or the catalytic properties of AChE but reduced or blocked the secretion of AChE(T) subunits. Secretion of AChE(T) was partially restored by co-expression with Q(N), a secretable protein containing a proline-rich attachment domain (PRAD); Q(N) organized PRAD-linked tetramers, except for the N-glycosylated mutants. Thus, the simultaneous presence of an abnormal four-helix bundle zone and an exposed T peptide targeted the enzyme toward degradation, indicating a cross-talk between the catalytic and tetramerization domains.
Collapse
Affiliation(s)
- N Morel
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
The discovery of the first neurotransmitter--acetylcholine--was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.
Collapse
|
18
|
Perrier AL, Cousin X, Boschetti N, Haas R, Chatel JM, Bon S, Roberts WL, Pickett SR, Massoulié J, Rosenberry TL, Krejci E. Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface. J Biol Chem 2000; 275:34260-5. [PMID: 10954708 DOI: 10.1074/jbc.m004289200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian brain, acetylcholinesterase (AChE) exists mostly as a tetramer of 70-kDa catalytic subunits that are linked through disulfide bonds to a hydrophobic subunit P of approximately 20 kDa. To characterize P, we reduced the disulfide bonds in purified bovine brain AChE and sequenced tryptic fragments from bands in the 20-kDa region. We obtained sequences belonging to at least two distinct proteins: the P protein and another protein that was not disulfide-linked to catalytic subunits. Both proteins were recognized in Western blots by antisera raised against specific peptides. We cloned cDNA encoding the second protein in a cDNA library from bovine substantia nigra and obtained rat and human homologs. We call this protein mCutA because of its homology to a bacterial protein (CutA). We could not demonstrate a direct interaction between mCutA and AChE in vitro in transfected cells. However, in a mouse neuroblastoma cell line that produced membrane-bound AChE as an amphiphilic tetramer, the expression of mCutA antisense mRNA eliminated cell surface AChE and decreased the level of amphiphilic tetramer in cell extracts. mCutA therefore appears necessary for the localization of AChE at the cell surface; it may be part of a multicomponent complex that anchors AChE in membranes, together with the hydrophobic P protein.
Collapse
Affiliation(s)
- A L Perrier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Navaratnam DS, Fernando FS, Priddle JD, Giles K, Clegg SM, Pappin DJ, Craig I, Smith AD. Hydrophobic protein that copurifies with human brain acetylcholinesterase: amino acid sequence, genomic organization, and chromosomal localization. J Neurochem 2000; 74:2146-53. [PMID: 10800960 DOI: 10.1046/j.1471-4159.2000.0742146.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of attachment of acetylcholinesterase (AChE) to neuronal membranes in interneuronal synapses is poorly understood. We have isolated, sequenced, and cloned a hydrophobic protein that copurifies with AChE from human caudate nucleus and that we propose forms a part of a complex of membrane proteins attached to this enzyme. It is a short protein of 136 amino acids and has a molecular mass of 18 kDa. The sequence contains stretches of both hydrophobic and hydrophilic amino acids and two cysteine residues. Analysis of the genomic sequence reveals that the coding region is divided among five short exons. Fluorescence in situ hybridization localizes the gene to chromosome 6p21.32-p21.2. Northern blot analysis shows that this gene is widely expressed in the brain with an expression pattern that parallels that of AChE.
Collapse
Affiliation(s)
- D S Navaratnam
- Department of Pharmacology, University of Oxford, England.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 1999; 119-120:29-42. [PMID: 10421436 DOI: 10.1016/s0009-2797(99)00011-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular forms of acetylcholinesterase (AChE) correspond to various quaternary structures and modes of anchoring of the enzyme. In vertebrates, these molecules are generated from a single gene: the catalytic domain may be associated with several types of C-terminal peptides, that define distinct types of catalytic subunits (AChE(S), AChE(H), AChE(T)) and determine their post-translational maturation. AChE(S) generates soluble monomers, in the venom of Elapid snakes. AChE(H) generates GPI-anchored dimers, in Torpedo muscles and on mammalian blood cells. AChE(T) is the only type of catalytic subunit that exists in all vertebrate cholinesterases; it produces the major forms in adult brain and muscle. AChE(T) generates multiple structures, ranging from monomers and dimers to collagen-tailed and hydrophobic-tailed forms, in which catalytic tetramers are associated with anchoring proteins that attach them to the basal lamina or to cell membranes. In the collagen-tailed forms, AChE(T) subunits are associated with a specific collagen, ColQ, which is encoded by a single gene in mammals. ColQ contains a short peptidic motif, the proline-rich attachment domain (PRAD), that triggers the formation of AChE(T) tetramers, from monomers and dimers. The critical feature of this motif is the presence of a string of prolines, and in fact synthetic polyproline shows a similar capacity to organize AChE(T) tetramers. Although the COLQ gene produces multiple transcripts, it does not generate the hydrophobic tail. P, which anchors AChE in mammalian brain membranes. The coordinated expression of AChE(T) subunits and anchoring proteins determines the pattern of molecular forms and therefore the localization and functionality of the enzyme.
Collapse
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Simon S, Krejci E, Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J 1998; 17:6178-87. [PMID: 9799227 PMCID: PMC1170944 DOI: 10.1093/emboj/17.21.6178] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major type of acetylcholinesterase in vertebrates (AChET) is characterized by the presence of a short C-terminal domain of 40 residues, the 'tryptophan amphiphilic tetramerization' (WAT) domain. The presence of this domain is not necessary for catalytic activity but is responsible for hydrophobic interactions and for the capacity of AChET subunits to form quaternary associations with anchoring proteins, thereby conditioning their functional localization. In the collagen tail of asymmetric forms, we characterized a small conserved region that is sufficient for binding an AChET tetramer, the proline-rich attachment domain (PRAD). We show that the WAT domain alone is sufficient for association with the PRAD, and that it can attach foreign proteins (alkaline phosphatase, GFP) to a PRAD-containing construct with a glycophosphatidylinositol anchor (GPI), and thus anchor them to the cell surface. Furthermore, we show that isolated WAT domains, or proteins containing a WAT domain, can replace individual AChET subunits in PRAD-linked tetramers. This suggests that the four WAT domains interact with the PRAD in a similar manner. These quaternary interactions can form without intercatenary disulfide bonds. The common catalytic domains of AChE are not necessary for tetrameric assembly, although they may contribute to the stability of the tetramer.
Collapse
Affiliation(s)
- S Simon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
22
|
Matsuda Y, Nagao M, Takatori T, Niijima H, Nakajima M, Iwase H, Kobayashi M, Iwadate K. Detection of the sarin hydrolysis product in formalin-fixed brain tissues of victims of the Tokyo subway terrorist attack. Toxicol Appl Pharmacol 1998; 150:310-20. [PMID: 9653062 DOI: 10.1006/taap.1998.8428] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the hydrolysis products of sarin (isopropyl methylphosphonofluoridate) was detected in formalin-fixed brain tissues of victims poisoned in the Tokyo subway terrorist attack. Part of this procedure, used for the detection of sarin hydrolysis products in erythrocytes of sarin victims, has been described previously. The test materials were four individual cerebellums, which had been stored in formalin fixative for about 2 years. Sarin-bound acetylcholinesterase (AChE) was solubilized from these cerebellums, purified by immunoaffinity chromatography, and digested with trypsin. Then the sarin hydrolysis products bound to AChE were released by alkaline phosphatase digestion, subjected to trimethylsilyl derivatization (TMS), and detected by gas chromatography-mass spectrometry. Peaks at m/z 225 and m/z 240, which are indicative of TMS-methylphosphonic acid, were observed within the retention time range of authentic methylphosphonic acid. However, no isopropyl methylphosphonic acid was detected in the formalin-fixed cerebellums of these 4 sarin victims, probably because the isopropoxy group of isopropyl methylphosphonic acid underwent chemical hydrolysis during storage. This procedure will be useful for the forensic diagnosis of poisoning by protein-bound, highly toxic agents, such as sarin, which are easily hydrolysed. This appears to be the first time that intoxication by a nerve agent has been demonstrated by analyzing formalin-fixed brains obtained at autopsy.
Collapse
Affiliation(s)
- Y Matsuda
- Department of Forensic Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:183-90. [PMID: 9789805 DOI: 10.1016/s0928-4257(98)80007-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase (AChE) possesses short C-terminal peptides that are not necessary for catalytic activity. These peptides belong to different classes (R, H, T, S) and define the post-translational processing and targeting of the enzyme. In vertebrates, subunits of type H (AChEH) and of type T (AChET) are the most important: AChEH subunits produce glycolipid (GPI)-anchored dimers and AChET subunits produce hetero-oligomeric forms such as membrane-bound tetramers in the mammalian brain (containing a 20 kDa hydrophobic protein) and asymmetric collagen-tailed forms in neuromuscular junctions (containing a specific collagen, ColQ). The T peptide allows the formation of tetrameric assemblies with a proline-rich attachment domain (PRAD) of collagen ColQ. These complex molecular structures condition the functional localization of the enzyme in the supramolecular architecture of cholinergic synapses.
Collapse
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS-URA 1857, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Cousin X, Bon S, Massoulié J, Bon C. Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle. J Biol Chem 1998; 273:9812-20. [PMID: 9545320 DOI: 10.1074/jbc.273.16.9812] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The venom of the snake Bungarus fasciatus contains a hydrophilic, monomeric species of acetylcholinesterase (AChE), characterized by a C-terminal region that does not resemble the alternative T- or H-peptides. Here, we show that the snake contains a single gene for AChE, possessing a novel alternative exon (S) that encodes the C-terminal region of the venom enzyme, located downstream of the T exon. Alternative splicing generates S mRNA in the venom gland and S and T mRNAs in muscle and liver. We found no evidence for the presence of an H exon between the last common "catalytic" exon and the T exon, where H exons are located in Torpedo and in mammals. Moreover, COS cells that were transfected with AChE expression vectors containing the T exon with or without the preceding genomic region produced exclusively AChET subunits. In the snake tissues, we could not detect any glycophosphatidylinositol-anchored AChE form that would have derived from H subunits. In the liver, the cholinesterase activity comprises both AChE and butyrylcholinesterase components; butyrylcholinesterase corresponds essentially to nonamphiphilic tetramers and AChE to nonamphiphilic monomers (G1na). In muscle, AChE is largely predominant: it consists of globular forms (G1a and G4a) and trace amounts of asymmetric forms (A8 and A12), which derive from AChET subunits. Thus, the Bungarus AChE gene possesses alternatively spliced T and S exons but no H exon; the absence of an H exon may be a common feature of AChE genes in reptiles and birds.
Collapse
Affiliation(s)
- X Cousin
- Unité des Venins, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
25
|
Moreno RD, Campos FO, Dajas F, Inestrosa NC. Developmental regulation of mouse brain monomeric acetylcholinesterase. Int J Dev Neurosci 1998; 16:123-34. [PMID: 9762585 DOI: 10.1016/s0736-5748(98)00008-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetylcholinesterase (AChE) molecular forms were studied during mouse brain development. Mouse embryos expressed a monomeric (G1) and a tetrameric (G4) AChE form. Our results indicate that G4 AChE expressed at embryonic day (ED) 9 and ED15 could be purified by acridinium-Sepharose chromatography and shared similar biochemical and kinetic properties with the adult form. However, the G1 form expressed at either embryonic stage did not bind to acridinium, was not inhibited by excess substrate, and possessed higher K(m) and lower Vmax values than the adult G1 form. Two peripheral anionic binding site inhibitors, fasciculin and propidium, had a significantly lower affinity for the monomeric form at ED9. Results are discussed in terms of the biological significance of the embryonic G1 form, and its resemblance to the AChE activity found, associated with the senile plaques present in the brains of Alzheimer's patients.
Collapse
Affiliation(s)
- R D Moreno
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
26
|
Dziri L, Puppala K, Leblanc RM. Surface and Spectroscopic Properties of Acetylcholinesterase Monolayer at the Air/Water Interface. J Colloid Interface Sci 1997; 194:37-43. [PMID: 9367582 DOI: 10.1006/jcis.1997.5069] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The behavior of the enzyme acetylcholinesterase was studied at the air/water interface. Surface pressure-area (pi-A) isotherms and UV-vis spectra recorded at different surface pressures were determined for different salt concentrations in the subphase. The ionic strength of the subphase does not influence the physical properties in consideration; however, the pH of the subphase has a great effect on its surface and optical properties. A subphase at pH 6.5 has shown that the enzyme is highly stable, based on the pi-A compression/decompression isotherms. No changes in the area per molecule were observed when the surface pressure was maintained constant at 16 mN/m for a period of 120 min. The long-term stability of acetylcholinesterase at the air/water interface was demonstrated for pH 6.5 and a salt concentration of 10(-2) M (KCl). The absorption spectra of the monolayer, measured directly at the air/water interface, are considered good evidence of the organization of the enzyme molecules. Copyright 1997 Academic Press. Copyright 1997Academic Press
Collapse
Affiliation(s)
- L Dziri
- Department of Chemistry, University of Miami, Cox Science Building, 1301 Memorial Drive, Coral Gables, Florida, 33124-0431
| | | | | |
Collapse
|
27
|
Krejci E, Thomine S, Boschetti N, Legay C, Sketelj J, Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J Biol Chem 1997; 272:22840-7. [PMID: 9278446 DOI: 10.1074/jbc.272.36.22840] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The collagen-tailed or asymmetric forms (A) represent a major component of acetylcholinesterase (AChE) in the neuromuscular junction of higher vertebrates. They are hetero-oligomeric molecules, in which tetramers of catalytic subunits of type T (AChET) are attached to the subunits of a triple-stranded collagen "tail." We report the cloning of a rat AChE-associated collagen subunit, Q. We show that collagen tails are encoded by a single gene, COLQ. The ColQ subunits form homotrimers and readily form collagen-tailed AChE, when coexpressed with rat AChET. We found that the same ColQ subunits are incorporated, in vivo, in asymmetric forms of both AChE and butyrylcholinesterase. A splice variant from the COLQ gene encodes a proline- rich AChE attachment domain without the collagen domain but does not represent the membrane anchor of the brain tetramer. The COLQ gene is expressed in cholinergic tissues, brain, muscle, and heart, and also in noncholinergic tissues such as lung and testis.
Collapse
Affiliation(s)
- E Krejci
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | |
Collapse
|
28
|
Bon S, Massoulié J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem 1997; 272:3007-15. [PMID: 9006949 DOI: 10.1074/jbc.272.5.3007] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We investigated the production of acetylcholinesterase of type T (AChET) in COS cells during transient transfection. When expressed alone, Torpedo AChET remains essentially intracellular, forming dimers and tetramers; in contrast, rat AChET is secreted and produces mostly amphiphilic monomers (G1a) and dimers (G2a), together with smaller proportions of nonamphiphilic (G4na) tetramers, amphiphilic tetramers (G4a), and an unstable higher polymer (13.7 S). The latter two forms have not been described before. We show that secreted G1a and G2a forms differ from their cellular counterparts and that proteolytic cleavage occurs at the COOH terminus of "flagged" subunits. The binding proteins QN/HC and QN/stop are constructed by associating the NH2-terminal domain of the collagen tail (QN) with a functional or truncated signal for addition of a glycolipidic anchor (glycophosphatidylinositol). Coexpression with QN/stop recruits monomers and dimers to form soluble tetramers (G4na), increasing the yield of secreted rat AChE and allowing secretion of Torpedo AChE. Using antibodies against QN or addition of a flag epitope, we showed that the secreted tetramers contain the attachment domain. Coexpression with QN/HC modifies the distribution of AChET in subcellular compartments and allows the externalization of glycophosphatidylinositol-anchored tetramers at the cell surface.
Collapse
Affiliation(s)
- S Bon
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, Unité CNRS 1857, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|
29
|
Coleman BA, Taylor P. Regulation of acetylcholinesterase expression during neuronal differentiation. J Biol Chem 1996; 271:4410-6. [PMID: 8626792 DOI: 10.1074/jbc.271.8.4410] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have examined the developmental expression of acetylcholinesterase (AChE) during the process of neuronal differentiation from a pluripotent stem cell. P19 embryonic carcinoma cells form embryoid bodies, which, when cultured with retinoic acid, are induced to differentiate into neurons and glia. No AChE activity is present in the undifferentiated stem cells, and mRNA protection analyses do not detect AChE mRNA. Commitment to a neuronal differentiation pathway results in increased levels of AChE mRNA, production of a tetrameric form of the enzyme, and secretion of AChE into the culture medium. Concomitant with subsequent morphological differentiation into neurons, enzyme secretion diminishes and AChE becomes largely tethered to the neuronal cell membranes. The enzyme is attached to the cell surface as a globular tetramer. Its hydrodynamic properties are consistent with association through a noncatalytic hydrophobic subunit rather than anchorage by a glycophospholipid tail. No change in the rate of transcription of the Ache gene was detected during the course of differentiation, suggesting that the gene is actively transcribed at very early stages of development. Results suggest that stabilization of a labile mRNA governs the increase in AChE mRNA and gene product. The studies presented indicate that an early event in neuronal differentiation is the stabilization of the mRNA leading to expression of a secreted form of AChE. A subsequent step associated with neurite outgrowth results in a transition from secretion of the tetrameric enzyme to its localization on the cell membrane.
Collapse
Affiliation(s)
- B A Coleman
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
30
|
Boschetti N, Brodbeck U. The membrane anchor of mammalian brain acetylcholinesterase consists of a single glycosylated protein of 22 kDa. FEBS Lett 1996; 380:133-6. [PMID: 8603722 DOI: 10.1016/0014-5793(96)00041-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian brain acetylcholinesterase (AChE; EC 3.1.1.7) is membrane-bound through a structural subunit of about 20 kDa. So far little is known about this anchor because it is only detectable after hydrophobic labelling. In the present study we demonstrate that the two bands migrating around 20 kDa on SDS-PAGE derive from the same protein containing the same N-terminal amino acid sequence. The difference in their mobility is due to different N-glycosidation. Radioalkylation of cysteine residues reveals that the anchor contains just the two cysteine residues involved in binding the catalytic subunits.
Collapse
Affiliation(s)
- N Boschetti
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | |
Collapse
|
31
|
Massoulié J, Legay C, Anselmet A, Krejci E, Coussen F, Bon S. Biosynthesis and integration of acetylcholinesterase in the cholinergic synapse. PROGRESS IN BRAIN RESEARCH 1996; 109:55-65. [PMID: 9009693 DOI: 10.1016/s0079-6123(08)62088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Massoulié
- Laboratorie de Neurobiologie Moléculaire et Cellulaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Anselmet A, Fauquet M, Chatel JM, Maulet Y, Massoulié J, Vallette FM. Evolution of acetylcholinesterase transcripts and molecular forms during development in the central nervous system of the quail. J Neurochem 1994; 62:2158-65. [PMID: 8189224 DOI: 10.1046/j.1471-4159.1994.62062158.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the expression of acetylcholinesterase (AChE) in the nervous system (cerebellum, optic lobes and neuroretina) of the quail at different stages of development, from embryonic day 10 (E10) to the adult. Analyzing AChE mRNAs and AChE molecular forms, we observed variations in the following: (a) production of multiple mRNA species (4.5 kb, 5.3 kb, and 6 kb); (b) translation and/or stability of the AChE protein; (c) production of active and inactive AChE molecules; (d) production of amphiphilic and nonamphiphilic AChE forms; and (e) proportions of tetrameric G4, dimeric G2, and monomeric G1 forms. The large transcripts present distinct temporal patterns and disappear in the adult, which possesses only the 4.5-kb mRNA; these changes are unlikely to be related to those observed for the AChE protein, because all transcripts seem to encode the same catalytic subunit (type T). In addition, the levels of mRNA and AChE are not correlated in the three regions, especially at the adult stage. The proportion of inactive AChE was found to be markedly higher at the hatching period (E16) than at earlier stages (E10 and E13) or in the adult. The G4 form is predominant already at E10, and in the adult its proportion reaches 80% of the activity in the cerebellum and optic lobes, and 65-70% in the neuroretina. This form is largely nonamphiphilic in embryonic tissues, but it becomes progressively more amphiphilic with development. Thus, the different processing and maturation steps appear to be regulated in an independent manner and potentially correspond to physiologically adaptative mechanisms.
Collapse
Affiliation(s)
- A Anselmet
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Inestrosa NC, Moreno RD, Fuentes ME. Monomeric amphiphilic forms of acetylcholinesterase appear early during brain development and may correspond to biosynthetic precursors of the amphiphilic G4 forms. Neurosci Lett 1994; 173:155-8. [PMID: 7936404 DOI: 10.1016/0304-3940(94)90172-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied the development of mouse brain acetylcholinesterase (AChE). Only tetrameric (G4) and monomeric (G1) forms were detected both in vivo and in vitro. The amphiphilic G4 form increased continuously during development, whereas an amphiphilic G1 form appears transiently around embryonic day 17. A causal relationship between the monomers and tetramers was established using pulse-chase experiments with paraoxon, a reversible AChE inhibitor. We report here, for the first time, the presence of an amphiphilic monomer possibly involved in the assembly of the amphiphilic G4 AChE form during mouse brain development.
Collapse
Affiliation(s)
- N C Inestrosa
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | | | |
Collapse
|
34
|
Boschetti N, Liao J, Brodbeck U. The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor. Neurochem Res 1994; 19:359-65. [PMID: 8177377 DOI: 10.1007/bf00971586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.
Collapse
Affiliation(s)
- N Boschetti
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
35
|
Layer PG, Willbold E. Cholinesterases in avian neurogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:139-81. [PMID: 8014021 DOI: 10.1016/s0074-7696(08)62632-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P G Layer
- Technical University of Darmstadt, Institute for Zoology, Germany
| | | |
Collapse
|
36
|
Layer PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 29:1-94. [PMID: 7568907 DOI: 10.1016/s0079-6336(11)80046-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P G Layer
- Institut für Zoologie, Technische Hochschule Darmstadt, Germany
| | | |
Collapse
|
37
|
Liao J, Nørgaard-Pedersen B, Brodbeck U. Subunit association and glycosylation of acetylcholinesterase from monkey brain. J Neurochem 1993; 61:1127-34. [PMID: 8360678 DOI: 10.1111/j.1471-4159.1993.tb03629.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cercopithecus monkey brain acetylcholinesterase (AChE; EC 3.1.1.7) consists of about 15% hydrophilic, salt-soluble enzyme and 83% amphiphilic, detergent-soluble enzyme. Sucrose density gradient centrifugation showed that hydrophilic, salt-soluble AChE was composed of about 85% tetramer (10.3S) and 15% monomer (3.3S). In amphiphilic, detergent-soluble AChE, 85% tetramer (9.7S), 10% dimer (5.7S), and 5% monomer (3.2S) were seen. The enzyme is N-glycosylated, and no O-linked carbohydrate could be detected. Use of two monoclonal antibodies, one directed against the catalytic subunit and the other against the hydrophobic anchor, gave new insights into the subunit assembly of brain AChE. It is shown that in tetrameric AChE, not all of the subunits are disulfide-bonded and that two populations of tetramers exist, one carrying one and the other carrying two hydrophobic anchors.
Collapse
Affiliation(s)
- J Liao
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
38
|
Liao J, Mortensen V, Nørgaard-Pedersen B, Koch C, Brodbeck U. Monoclonal antibodies against brain acetylcholinesterases which recognize the subunits bearing the hydrophobic anchor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:333-40. [PMID: 7688303 DOI: 10.1111/j.1432-1033.1993.tb18039.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies were raised against amphiphilic detergent-soluble (DS) acetylcholinesterase (AChE) from human brain caudate nucleus. Three mAb, 132-4 (IgG1), 132-5 (IgG1) and 132-6 (IgG3), specific for brain DS-AChE were selected and subcloned. These mAb reacted with native as well as heat-denatured and SDS-denatured DS-AChE, indicating that the epitopes to which mAb bound are continuous determinants. The mAb cross-reacted with DS-AChE from bovine and mouse brain and with brain DS-AChE from river trout (Salmo trutta forma fario) and lake trout (Salmo trutta forma lacustris). No cross-reaction was detected with the following antigens: salt-soluble (SS) AChE from bovine brain, glycophospholipid-anchored AChE from human and bovine erythrocytes, DS-butyrylcholinesterase and SS-butyrylcholinesterase (BtChE) from the brains of human and bovine, DS-BtChE from chicken and BtChE from human serum. Deglycosylation of brain DS-AChE with N-glycosidase F did not abolish the binding of mAb to DS-AChE. After reduction of brain DS-AChE by dithiothreitol, the mAb no longer reacted with the antigen, indicating that a disulfide bridge is important for the epitope. Monomerization of brain DS-AChE by trypsin and limited proteinase K treatment also abolished the binding of mAb to DS-AChE. Sucrose-density-gradient centrifugation showed that mAb reacted only with native tetrameric forms, but not with dimeric and monomeric forms. Western blot, after SDS/PAGE under non-reducing conditions, showed that mAb reacted with those subunits carrying the hydrophobic anchor (i.e. tetramers, trimers and heavy dimers) but not with those devoid of it (light dimers or monomers). Since mAb 132-4, 132-5 and 132-6 recognized DS-AChE from fish up to mammalian brain in the evolutionary tree, it is concluded that the epitope to which these mAb bind, is conserved in nature.
Collapse
Affiliation(s)
- J Liao
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993; 41:31-91. [PMID: 8321908 DOI: 10.1016/0301-0082(93)90040-y] [Citation(s) in RCA: 836] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Michaelson S, Small DH. A protease is recovered with a dimeric form of acetylcholinesterase in fetal bovine serum. Brain Res 1993; 611:75-80. [PMID: 8518952 DOI: 10.1016/0006-8993(93)91779-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A protease activity which co-purified with affinity-purified fetal bovine serum acetylcholinesterase (AChE) has been shown to release the amyloid protein precursor (APP) of Alzheimer's disease from cell membranes. The nature of this protease and its relationship to AChE have not been established. In this study, the protease activity was found to be recovered with a minor dimeric form of AChE. This minor form (AChEII) was distinguished from the more abundant tetrameric form (AChEI) by a higher catalytic subunit relative molecular mass (M(r)) of 80,000 (80K), and by a lower affinity for edrophonium-Sepharose. The difference in subunit M(r) was due to differing degrees of glycosylation, as deglycosylation of both AChEI and AChEII gave rise to a similar subunit M(r) of 62K. The protease activity recovered with AChEII was not an intrinsic property of the esterase, as it was separated from the esterase by anion-exchange chromatography, and by immunoprecipitation with anti-AChE antibodies. AChEI possessed a similar subunit M(r) to the tetrameric form of AChE secreted from the bovine adrenal gland, while AChEII possessed a similar subunit molecular weight to the dimeric membrane-bound form of bovine erythrocyte AChE. Thus, it is possible that AChEII may be a solubilised form of a dimeric glycosylphosphatidyl inositol-linked AChE.
Collapse
Affiliation(s)
- S Michaelson
- Department of Pathology, University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
41
|
Legay C, Bon S, Vernier P, Coussen F, Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem 1993; 60:337-46. [PMID: 8417155 DOI: 10.1111/j.1471-4159.1993.tb05856.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We obtained a cDNA clone encoding one type of catalytic subunit of acetylcholinesterase (AChE) from rat brain (T subunit). The coding sequence shows a high frequency of (G+C) at the third position of the codons (66%), as already noted for several AChEs, in contrast with mammalian butyrylcholinesterase. The predicted primary sequence of rat AChE presents only 11 amino acid differences, including one in the signal peptide, from that of the mouse T subunit. In particular, four alanines in the mouse sequence are replaced by serine or threonine. In northern blots, a rat AChE probe indicates the presence of major 3.2- and 2.4-kb mRNAs, expressed in the CNS as well as in some peripheral tissues, including muscle and spleen. In vivo, we found that the proportions of G1, G2, and G4 forms are highly variable in different brain areas. We did not observe any glycolipid-anchored G2 form, which would be derived from an H subunit. We expressed the cloned rat AChE in COS cells: The transfected cells produce principally an amphiphilic G1a form, together with amphiphilic G2a and G4a forms, and a nonamphiphilic G4na form. The amphiphilic G1a and G2a forms correspond to type II forms, which are predominant in muscle and brain of higher vertebrates. The cells also release G4na, G2a, and G1a in the culture medium. These experiments show that all the forms observed in the CNS in vivo may be obtained from the T subunit. By co-transfecting COS cells with the rat T subunit and the Torpedo collagenic subunit, we obtained chimeric collagen-tailed forms. This cross-species complementarity demonstrates that the interaction domains of the catalytic and structural subunits are highly conserved during evolution.
Collapse
Affiliation(s)
- C Legay
- Laboratoire de Neurobiologie, CNRS UA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Massoulié J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. PROGRESS IN BRAIN RESEARCH 1993; 98:139-46. [PMID: 8248501 DOI: 10.1016/s0079-6123(08)62391-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
43
|
Andres C, el Mourabit M, Mark J, Waksman A. A unique hydrophobic domain of rat brain globular acetylcholinesterase for binding to cell membranes. Neurochem Res 1992; 17:1247-53. [PMID: 1461372 DOI: 10.1007/bf00968408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both salt-soluble and detergent-soluble rat brain globular acetylcholinesterases (SS- and DS- AChE EC 3.1.1.7) are amphiphiles, as shown by detergent dependency of enzymatic activity and binding to liposomes. Proteinase K and papain treatment transformed SS-AChE and DS-AChE into forms that, in absence of detergent, no longer aggregated nor bound to liposomes. In contrast, phosphatidylinositol-specific phospholipase C had no effect on these properties. Labeling DS-AChE with 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine ([125I]TID) revealed, by polyacrylamide gel electrophoresis under reducing conditions, one single band of 69 kD apparent molecular mass. The same pattern was previously obtained with Bolton and Hunter reagent-labeled enzyme. Proteinase K treatment transformed the 11 S [125I]TID labeled AChE into a 4 S form which no longer showed 125I-radioactivity and was unable to bind to liposomes. These results are compatible with the existence of a hydrophobic segment present both on salt-soluble and detergent-soluble 11 S AChE as well as on the minor forms 4 S and 7 S. This segment is not linked to the catalytic subunits by disulfide bounds in contrast to the 20 kD non-catalytic subunit described by Inestrosa et al.
Collapse
Affiliation(s)
- C Andres
- Centre de Neurochimie du C.N.R.S., Strasbourg, France
| | | | | | | |
Collapse
|
44
|
Kronman C, Velan B, Gozes Y, Leitner M, Flashner Y, Lazar A, Marcus D, Sery T, Papier Y, Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene 1992; 121:295-304. [PMID: 1446827 DOI: 10.1016/0378-1119(92)90134-b] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To allow for structural analysis of the human acetylcholinesterase (hAChE) subunit, a series of eukaryotic vectors was designed for efficient expression. Several eukaryotic multicistronic expression vectors were tested in various mammalian cell lines. All expression vectors contained the selectable neo gene under control of a weak promoter, while the hAChE cDNA was under control of the cytomegalovirus (CMV) immediate-early or Rous sarcoma virus long terminal repeat (RSV LTR) or simian virus 40 (SV40) early promoters. Optimal production and secretion of recombinant hAChE (rehAChE) was achieved in the embryonal kidney 293 cell line transfected either with the RSV-hAChE or with CMV-hAChE expression vectors. Clones expressing and secreting as much as 5-25 pg of enzyme per cell per 24 h were obtained without resorting to coamplification techniques or continuous maintenance of cells under selective pressure. The purified (specific activity of 6000 units per mg protein) homodimer and tetramer enzyme molecules displayed typical AChE biochemical properties: a Km value of 120 microM for acetylthiocholine; a kcat value of 3.9 x 10(5)/min, and selective by AChE-specific inhibitors. Catalytic subunit dimers (130 kDa) exhibit differential N-glycosylation patterns, and upon reduction resolve into 67- and 70-kDa monomeric subunits. These two forms appear as a single discrete 62-kDa band following deglycosylation by N-glycanase. The N-terminal amino acid sequence analysis of the purified mature enzyme suggests the existence of two alternative cleavage sites for the removal of the signal peptide, in which the 'mature' position 1 is either Ala31 or Gly33. Both of these positions conform with the consensus signal peptide recognition sequences and demonstrate bidirected processing of signal peptides on a native molecule.
Collapse
Affiliation(s)
- C Kronman
- Department of Biochemistry, Israel Institute for Biological Research, Ness-Ziona
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Duval N, Massoulié J, Bon S. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J Cell Biol 1992; 118:641-53. [PMID: 1639848 PMCID: PMC2289553 DOI: 10.1083/jcb.118.3.641] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We analyzed the production of Torpedo marmorata acetylcholinesterase (AChE) in transfected COS cells. We report that the presence of an aspartic acid at position 397, homologous to that observed in other cholinesterases and related enzymes (Krejci, E., N. Duval, A. Chatonnet, P. Vincens, and J. Massoulié. 1991. Proc. Natl. Acad. Sci. USA. 88:6647-6651), is necessary for catalytic activity. The presence of an asparagine in the previously reported cDNA sequence (Sikorav, J.L., E. Krejci, and J. Massoulié. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1865-1873) was most likely due to a cloning error (codon AAC instead of GAC). We expressed the T and H subunits of Torpedo AChE, which differ in their COOH-terminal region and correspond respectively to the collagen-tailed asymmetric forms and to glycophosphatidylinositol-anchored dimers of Torpedo electric organs, as well as a truncated T subunit (T delta), lacking most of the COOH-terminal peptide. The transfected cells synthesized similar amounts of AChE immunoreactive protein at 37 degrees and 27 degrees C. However AChE activity was only produced at 27 degrees C and, even at this temperature, only a small proportion of the protein was active. We analyzed the molecular forms of active AChE produced at 27 degrees C. The H polypeptides generated glycophosphatidylinositol-anchored dimers, resembling the corresponding natural AChE form. The cells also released non-amphiphilic dimers G2na. The T polypeptides generated a series of active forms which are not produced in Torpedo electric organs: G1a, G2a, G4a, and G4na cellular forms and G2a and G4na secreted forms. The amphiphilic forms appeared to correspond to type II forms (Bon, S., J. P. Toutant, K. Méflah, and J. Massoulié. 1988. J. Neurochem. 51:776-785; Bon, S., J. P. Toutant, K. Méflah, and J. Massoulié. 1988. J. Neurochem. 51:786-794), which are abundant in the nervous tissue and muscles of higher vertebrates (Bon, S., T. L. Rosenberry, and J. Massoulié. 1991. Cell. Mol. Neurobiol. 11:157-172). The H and T catalytic subunits are thus sufficient to account for all types of known AChE forms. The truncated T delta subunit yielded only non-amphiphilic monomers, demonstrating the importance of the T COOH-terminal peptide in the formation of oligomers, and in the hydrophobic character of type II forms.
Collapse
Affiliation(s)
- N Duval
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique UA 295, Paris, France
| | | | | |
Collapse
|
46
|
Arpagaus M, Richier P, Berge JB, Toutant JP. Acetylcholinesterases of the nematode Steinernema carpocapsae. Characterization of two types of amphiphilic forms differing in their mode of membrane association. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:1101-8. [PMID: 1323459 DOI: 10.1111/j.1432-1033.1992.tb17147.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We analyzed the molecular forms of acetylcholinesterase (AChE) in the nematode Steinernema carpocapsae. Two major AChEs are involved in acetylcholine hydrolysis. The first class of AChE is highly sensitive to eserine (IC50 = 0.05 microM). The corresponding molecular forms are: an amphiphilic 14S form converted into a hydrophilic 14.5S form by mild proteolysis and two hydrophilic 12S and 7S forms. Reduction of the amphiphilic 14S form with 10 mM dithiothreitol produces hydrophilic 7S and 4S forms, indicating that it is an oligomer of hydrophilic catalytic subunits linked by disulfide bond(s) to a hydrophobic structural element that confers the amphiphilicity to the complex. Sedimentation coefficients suggest that 4S, 7S, 12S forms correspond to hydrophilic monomer, dimer, tetramer and that the 14S form is also a tetramer linked to one structural element. The second class of AChE is less sensitive to eserine (IC50 = 0.1 mM). Corresponding molecular forms are hydrophilic and amphiphilic 4S forms (monomers) and a major amphiphilic 7S form converted into a hydrophilic dimer by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C. This amphiphilic 7S form thus possesses a glycolipid anchor. It appears that Steinernema (a very primitive invertebrate) presents AChEs with two types of membrane association that closely resemble those described for amphiphilic G2 and G4 forms of AChE in more evolved animals.
Collapse
Affiliation(s)
- M Arpagaus
- Laboratoire de Biologie des Invertébrés, INRA, Antibes, France
| | | | | | | |
Collapse
|
47
|
Treskatis S, Ebert C, Layer PG. Butyrylcholinesterase from chicken brain is smaller than that from serum: its purification, glycosylation, and membrane association. J Neurochem 1992; 58:2236-47. [PMID: 1573404 DOI: 10.1111/j.1471-4159.1992.tb10969.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Applying a new four-step isolation procedure, we have purified butyrylcholinesterase (BChE) from chicken serum to homogeneity with more than 250 U/mg specific activity. The serum enzyme was used for producing monoclonal antibodies. These BChE-specific also recognize BChE from brain, and thus enabled us to isolate the enzymes from embryonic and adult brain that occur only in minute amounts. More than 50% of the brain BChE is membrane-bound. The catalytic and inhibition properties of brain BChE are similar to those of serum BChE. However on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the serum enzyme is represented by a double-band of 79/82 kDa, whereas the brain enzyme has a size of 74 kDa. Limited digestion of the serum and brain preparations by V8-protease leads to similar peptide patterns. Enzymatic deglycosylation shows that their core proteins consist of 59-kDa subunits and that the different molecular weights are due to different glycosylation patterns. The differently sized glycosylation parts of brain and serum BChE may indicate that they subserve different functions. Furthermore, the membrane-bound brain BChE can be solubilized by Pronase or protease K, but not by phosphatidylinositol-specific phospholipase C.
Collapse
Affiliation(s)
- S Treskatis
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, F.R.G
| | | | | |
Collapse
|
48
|
Fuentes ME, Inestrosa NC. Amphiphilic behavior of a brain tetrameric acetylcholinesterase form lacking the plasma membrane anchoring domain. Brain Res 1992; 580:1-5. [PMID: 1504788 DOI: 10.1016/0006-8993(92)90919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have studied the behavior of a mammalian brain tetrameric acetylcholinesterase (AChE) form released by proteinase K from a crude membrane fraction of bovine caudate nucleus. The solubilization of active AChE indicated the presence of a protease-sensitive site in the anchored protein. Unexpectedly, the solubilized AChE maintained its capacity to form aggregates in detergent-free gradients. We demonstrate here that this property was due neither to the presence of the hydrophobic membrane-anchoring domain still linked to the enzyme, nor to the presence of AChE activity trapped in small plasma membrane vesicles. Moreover, we found that the proteinase K-treated extract, devoid of AChE activity, induced the aggregation of purified hydrophilic AChE which usually does not form aggregates. Our results suggest the presence of an AChE aggregating factor in bovine brain extracts prepared in the presence of proteinase K. It is possible that this aggregation may reflect a process of AChE clustering on neurons.
Collapse
Affiliation(s)
- M E Fuentes
- Molecular Neurobiology Unit, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | |
Collapse
|
49
|
Heider H, Brodbeck U. Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase. Implications for hydrophobic assembly and membrane anchor attachment site. Biochem J 1992; 281 ( Pt 1):279-84. [PMID: 1731764 PMCID: PMC1130674 DOI: 10.1042/bj2810279] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tetrameric detergent-soluble bovine caudate nucleus acetylcholinesterase (AChE) was reduced and alkylated under conditions in which at least 95% of initial activity is retained. This treatment alone did not result in monomerization of AChE, nor did it create a hydrophilic enzyme. However, in the presence of SDS the enzyme became monomerized. Incubation of AChE with trypsin in the presence of the reversible inhibitor edrophonium rendered the enzyme hydrophilic and led to catalytically active monomers being produced. SDS/PAGE of this preparation in non-reducing conditions revealed only a small decrease in the subunit molecular mass. N-Terminal sequencing of the enzyme, before and after trypsin treatment, yielded identical N-termini showing that the enzyme was monomerized subsequent to C-terminal tryptic cleavage. From our results, we conclude that the most C-terminal cysteine residue is involved in inter-subunit disulphide bonding as well as in the attachment of AChE to the membrane anchor. Furthermore, the C-terminal region in the primary structure provides an area for hydrophobic contacts between the different subunits and also between the subunits and the membrane anchor.
Collapse
Affiliation(s)
- H Heider
- Institut für Biochemie und Molekularbiologie, Universität Bern, Switzerland
| | | |
Collapse
|
50
|
Oliver LJ, Chatel JM, Massoulié J, Vigny M, Vallette FM. Molecular forms of acetylcholinesterase in dystrophic (mdx) mouse tissues. Neuromuscul Disord 1992; 2:87-97. [PMID: 1422203 DOI: 10.1016/0960-8966(92)90040-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We analyzed the activity of acetylcholinesterase (AChE) and its molecular forms in the tissues of normal and dystrophic (mdx) mice, at different developmental stages. We studied the brain, the heart and the serum, in addition to four predominantly fast-twitch muscles (tibialis, plantaris, gastrocnemius and extensor digitorum longus (EDL)) and the slow-twitch, soleus muscle. We found no difference between mdx and control mice in the AChE activity of the brain and the heart. The skeletal muscles affected by the disease undergo active degeneration counterbalanced by regeneration between 3 and 14 weeks after birth. The distribution of AChE patches associated with neuromuscular junctions was abnormally scattered in mdx muscles, and in some cases (tibialis and soleus), the number of endplates was more than twice that of normal muscles. There were only minor differences in the concentration and pattern of AChE molecular forms during the acute phase of muscle degeneration and regeneration. After this period, however, we observed a marked deficit in the membrane-bound G4 molecular form of AChE in adult mdx tibialis, gastrocnemius and EDL but not in the plantaris or in the soleus, as compared with their normal counterparts. Whereas the amount of AChE markedly decreased in the serum of normal mice during the first weeks of life, it remained essentially unchanged in the serum of mdx mice. It is likely that this excess of AChE activity in serum originates from the muscles. A deficit in muscle G4 was also reported in other forms of muscular dystrophy in the mouse and chicken. Since it is not correlated to the acute phase of the disease in mdx and also occurs in genetically different dystrophies, it probably represents a secondary effect of the dystrophy.
Collapse
Affiliation(s)
- L J Oliver
- Institut de Gérontologie, INSERM U.118, Paris, France
| | | | | | | | | |
Collapse
|