1
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
2
|
Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2016; 140:359-367. [PMID: 27889917 DOI: 10.1111/jnc.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:413-49. [PMID: 24373245 DOI: 10.1016/b978-0-12-800101-1.00013-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Rajesh Amin
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Wayhs CAY, Mescka CP, Vanzin CS, Ribas GS, Guerreiro G, Nin MS, Manfredini V, Barros HMT, Vargas CR. Brain effect of insulin and clonazepam in diabetic rats under depressive-like behavior. Metab Brain Dis 2013; 28:563-70. [PMID: 23532706 DOI: 10.1007/s11011-013-9397-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/10/2013] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia resulting from defects on insulin secretion, insulin action, or both. It has recently become clear that the central nervous system is not spared from the deleterious effects of diabetes, since diabetic encephalopathy was recognized as a complication of this heterogeneous metabolic disorder. There is a well recognized association between depression and diabetes, once prevalence of depression in diabetic patients is higher than in general population, and clonazepam is being used to treat this complication. Oxidative stress is widely accepted as playing a key mediatory role in the development and progression of diabetes and its complications. In this work we analyzed DNA damage by comet assay and lipid damage in prefrontal cortex, hippocampus and striatum of streptozotocin-induced diabetic rats submitted to the forced swimming test. It was verified that the diabetic group presented DNA and lipid damage in the brain areas evaluated, when compared to the control groups. Additionally, a significant reduction of the DNA and lipid damage in animals treated with insulin and/or clonazepam was observed. These data suggest that the association of these two drugs could protect against DNA and lipid damage in diabetic rats submitted to the forced swimming test, an animal model of depression.
Collapse
|
5
|
Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012; 2012:959737. [PMID: 22988465 PMCID: PMC3440949 DOI: 10.1155/2012/959737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|
6
|
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012:384017. [PMID: 22500228 PMCID: PMC3303591 DOI: 10.1155/2012/384017] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Duarte
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I. Moreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina R. Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
7
|
Schoffelmeer ANM, Drukarch B, De Vries TJ, Hogenboom F, Schetters D, Pattij T. Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior. J Neurosci 2011; 31:1284-91. [PMID: 21273413 PMCID: PMC6623632 DOI: 10.1523/jneurosci.3779-10.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/25/2010] [Accepted: 11/18/2010] [Indexed: 11/21/2022] Open
Abstract
Because insulin acutely enhances the function of dopamine transporters, the tyrosine kinase receptors activated by this hormone may modulate transporter-dependent neurochemical and behavioral effects of psychoactive drugs. In this respect, we examined the effects of insulin on exocytotic monoamine release and the efficacy of the monoamine transporter blocker cocaine in rat nucleus accumbens. Whereas insulin reduced electrically evoked exocytotic [(3)H]dopamine release in nucleus accumbens slices, the hormone potentiated the release-enhancing effect of cocaine thereon. The phosphatidylinositol 3-kinase inhibitor LY294002 abolished these effects, indicating the involvement of insulin receptors. Similar insulin effects were observed on the release of [(3)H]norepinephrine in nucleus accumbens slices, but not on that of [(3)H]serotonin, and were also apparent in medial prefrontal cortex slices. As might then be expected, insulin also potentiated the dopamine and norepinephrine release-enhancing effects of the selective monoamine uptake inhibitors GBR12909 and desmethylimipramine, respectively. In subsequent behavioral experiments, we investigated the role of insulin in motor impulsivity that depends on monoamine neurotransmission in the nucleus accumbens. Intracranial administration of insulin in the nucleus accumbens alone reduced premature responses in the five-choice serial reaction time task and enhanced the stimulatory effect of peripheral cocaine administration on impulsivity, resembling the observed neurochemical effects of the hormone. In contrast, cocaine-induced locomotor activity remained unchanged by intra-accumbal insulin application. These data reveal that insulin presynaptically regulates cocaine-sensitive monoamine transporter function in the nucleus accumbens and, as a consequence, impulsivity. Therefore, insulin signaling proteins may represent targets for the treatment of inhibitory control deficits such as addictive behaviors.
Collapse
Affiliation(s)
- Anton N M Schoffelmeer
- Department of Anatomy and Neurosciences, VU University Medical Center, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Mielke JG, Wang YT. Insulin, synaptic function, and opportunities for neuroprotection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:133-86. [PMID: 21199772 DOI: 10.1016/b978-0-12-385506-0.00004-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A steadily growing number of studies have begun to establish that the brain and insulin, while traditionally viewed as separate, do indeed have a relationship. The uptake of pancreatic insulin, along with neuronal biosynthesis, provides neural tissue with the hormone. As well, insulin acts upon a neuronal receptor that, although a close reflection of its peripheral counterpart, is characterized by unique structural and functional properties. One distinction is that the neural variant plays only a limited part in neuronal glucose transport. However, a number of other roles for neural insulin are gradually emerging; most significant among these is the modulation of ligand-gated ion channel (LGIC) trafficking. Notably, insulin has been shown to affect the tone of synaptic transmission by regulating cell-surface expression of inhibitory and excitatory receptors. The manner in which insulin regulates receptor movement may provide a cellular mechanism for insulin-mediated neuroprotection in the absence of hypoglycemia and stimulate the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- John G Mielke
- Faculty of Applied Health Sciences, Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
9
|
Lee CC, Huang CC, Wu MY, Hsu KS. Insulin Stimulates Postsynaptic Density-95 Protein Translation via the Phosphoinositide 3-Kinase-Akt-Mammalian Target of Rapamycin Signaling Pathway. J Biol Chem 2005; 280:18543-50. [PMID: 15755733 DOI: 10.1074/jbc.m414112200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptors are highly enriched at neuronal synapses, but whose function remains unclear. Here we present evidence that brief incubations of rat hippocampal slices with insulin resulted in an increased protein expression of dendritic scaffolding protein postsynaptic density-95 (PSD-95) in area CA1. This insulin-induced increase in the PSD-95 protein expression was inhibited by the tyrosine kinase inhibitor, AG1024, phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, translational inhibitors, anisomycin and rapamycin, but not by LY303511 (an inactive analogue of LY294002), and transcriptional inhibitor, actinomycin D, suggesting that insulin regulates the translation of PSD-95 by activating the receptor tyrosine kinase-PI3K-mammalian target of rapamycin (mTOR) signaling pathway. A similar insulin-induced increase in the PSD-95 protein expression was detected after stimulation of the synaptic fractions isolated from the hippocampal neurons. Furthermore, insulin treatment did not affect the PSD-95 mRNA levels. In agreement, insulin rapidly induced the phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (Akt), and mTOR, effects that were prevented by the AG1024 and LY294002. We also show that insulin stimulated the phosphorylation of 4E-binding protein 1 (4E-BP1) and p70S6 kinase (p70S6K) in a mTOR-dependent manner. Finally, we demonstrate the constitutive expression of PSD-95 mRNA in the synaptic fractions isolated from hippocampal neurons. Taken together, these findings suggest that activation of the PI3K-Akt-mTOR signaling pathway is essential for the insulin-induced up-regulation of local PSD-95 protein synthesis in neuronal dendrites and indicate a new molecular mechanism that may contribute to the modulation of synaptic function by insulin in hippocampal area CA1.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
10
|
Han Y, Kim SJ. Memory enhancing actions of Asiasari radix extracts via activation of insulin receptor and extracellular signal regulated kinase (ERK) I/II in rat hippocampus. Brain Res 2003; 974:193-201. [PMID: 12742637 DOI: 10.1016/s0006-8993(03)02580-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain insulin receptor and ERK I/II are suggested to play a role in memory formation. We designed a series of experiments to explore if Asiasari radix (AR) extracts could display memory enhancing actions possibly via the activation of insulin receptor and ERK I/II in mice and rats. Methanol extract of AR had significantly increased survival time in the NaNO(2) intoxication assay in mice. Methanol extract of Asiasari radix (fraction 1) and its subfractions, chloroform-soluble fraction (fraction 2) and chloroform-insoluble, methanol-soluble fraction (fraction 4) were further tested for memory formation. In eight-arm radial maze experiments, both reference memory errors and working memory errors were significantly decreased in mice by fractions 1, 2 and 4. In addition, these fractions were also effective in promoting memory in the passive avoidance test in mice and rats. To gain insight into the mechanism of memory enhancing effects by Asiasari radix extracts, the activities of hippocampal insulin receptors and ERK I/II were tested in mice and rats. Fraction 1 significantly stimulated tyrosine phosphorylation of the insulin receptor, whereas ERK I/II were stimulated by fractions 1, 2 and 4. These fractions also inhibited cholinesterase activities in rats. These results suggest that Asiasari radix extracts may exert memory enhancing effects via activation of insulin receptor and ERK I/II as well as decreasing cholinesterase activity.
Collapse
Affiliation(s)
- Yong Han
- Department of Pharmacology, School of Dentistry, Kyung Hee University, Seoul 130-701, South Korea
| | | |
Collapse
|
11
|
Abstract
1. While many questions remained unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease. 2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition. 3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system. 4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas. 5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melancortins, and neuropeptide Y (NPY) is suggested. 6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.
Collapse
|
12
|
Abstract
As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.
Collapse
Affiliation(s)
- W Q Zhao
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Johns Hopkins University, Academic & Research Building, 3rd Floor, Rockville, MD 20858, USA.
| | | |
Collapse
|
13
|
Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 1999; 274:34893-902. [PMID: 10574963 DOI: 10.1074/jbc.274.49.34893] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence accumulated from clinical and basic research has indirectly implicated the insulin receptor (IR) in brain cognitive functions, including learning and memory (Wickelgren, I. (1998) Science 280, 517-519). The present study investigates correlative changes in IR expression, phosphorylation, and associated signaling molecules in the rat hippocampus following water maze training. Although the distribution of IR protein matched that of IR mRNA in most forebrain regions, a dissociation of the IR mRNA and protein expression patterns was found in the cerebellar cortex. After training, IR mRNA in the CA1 and dentate gyrus of the hippocampus was up-regulated, and there was increased accumulation of IR protein in the hippocampal crude synaptic membrane fraction. In the CA1 pyramidal neurons, changes in the distribution pattern of IR in particular cellular compartments, such as the nucleus and dendritic regions, was observed only in trained animals. Although IR showed a low level of in vivo tyrosine phosphorylation, an insulin-stimulated increase of in vitro Tyr phosphorylation of IR was detected in trained animals, suggesting that learning may induce IR functional changes, such as enhanced receptor sensitivity. Furthermore, a training-induced co-immunoprecipitation of IR with Shc-66 was detected, along with changes in in vivo Tyr phosphorylation of Shc and mitogen-activated protein kinase, as well as accumulation of Shc-66, Shc-52, and Grb-2 in hippocampal synaptic membrane fractions following training. These findings suggest that IR may participate in memory processing through activation of its receptor Tyr kinase activity, and they suggest possible engagement of Shc/Grb-2/Ras/mitogen-activated protein kinase cascades.
Collapse
Affiliation(s)
- W Zhao
- Laboratory of Adaptive Systems, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Carver FM, Shibley IA, Miles DS, Pennington JS, Pennington SN. Increased intracellular localization of brain GLUT-1 transporter in response to ethanol during chick embryogenesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E750-9. [PMID: 10516136 DOI: 10.1152/ajpendo.1999.277.4.e750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal exposure to ethanol is associated with growth retardation of the developing central nervous system. We have previously described a chick model to study the molecular mechanism of ethanol effects on glucose metabolism in ovo. Total membrane fractions were prepared from day 4, day 5, and day 7 chick embryos exposed in ovo to ethanol or to vehicle. By Western blotting analysis, ethanol exposure caused a mean 7- to 10-fold increase in total GLUT-1 and a 2-fold increase in total GLUT-3. However, glucose uptake by ethanol-treated cells increased by only 10%. Analysis of isolated plasma (PM) and intracellular (IM) membranes from day 5 cranial tissue revealed a mean 25% decrease in GLUT-1 in the PM and a 66% increase in the IM in the ethanol group vs. control. The amount of PM GLUT-3 was unchanged but that of IM GLUT-3 was significantly decreased. The data suggest that GLUT-3 cell surface expression may be resistant to the suppressive effects of ethanol in the developing brain of ethanol-treated embryos. The overall increase in GLUT-1 may reflect a deregulation of the transporter induced by ethanol exposure. The increased IM localization and decreased amount of PM GLUT-1 may be a mechanism used by the ethanol-treated cell to maintain normal glucose uptake despite the overall increased level of the transporter.
Collapse
Affiliation(s)
- F M Carver
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | |
Collapse
|
15
|
Ohsawa M, Tanaka S, Kamei J. Possible mechanisms for insulin-induced attenuation of the antinociceptive effect of [D-Ala2, N-MePhe4, Gly-ol5]enkephalin. Eur J Pharmacol 1999; 373:181-6. [PMID: 10414437 DOI: 10.1016/s0014-2999(99)00273-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of pretreatment with protein kinase C and protein kinase A inhibitors on the intraventricular insulin-induced attenuation of the antinociceptive effect of [D-Ala2, N-MePhe4, Gly-ol5]enkephalin (DAMGO) were studied in mice. Intracerebroventricular (i.c.v.) pretreatment with insulin dose- and time-dependently attenuated the antinociceptive effect of i.c.v. DAMGO (5.6 ng) in mice. Intracerebroventricular pretreatment with a highly selective tyrosine kinase inhibitor, herbimycin A, at doses of 200 and 600 ng for 70 min, dose-dependently reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. Furthermore, i.c.v. pretreatment with serine/threonin kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride (H7), at doses of 3-30 nmol for 60 min, dose-dependently reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. Intracerebroventricular pretreatment with selective protein kinase C inhibitor, calphostin C, at doses of 1 and 3 pmol for 60 min, but not with a highly protein kinase A inhibitor, (8R, 9S, 11S)-(-)-9-hydroxy-9-n-hexyloxy-carbonyl-8-methyl-2, 3, 9, 20-tetrahydro-8, 11-epoxy-1H, 8H, 11H-2, 7b, 11a-triaqzadibenzo[a, g]cycloocta[c, d, e]-trinden-1-one (KT5720), at dose of 10 pmol for 60 min, reversed the attenuation of the antinociceptive effect of DAMGO (5.6 ng, i.c.v.) caused by insulin. These results suggest that the reduction of DAMGO-induced antinociception by insulin in mice may be, in part, due to the activation of protein kinase C followed by the activation of tyrosine kinase.
Collapse
Affiliation(s)
- M Ohsawa
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Catalán RE, Martínez AM, Aragonés MD, Fernández I, Miguel BG. Inhibitory effect of insulin and cytoplasmic factor(s) on brain (Na(+) + K+) ATPase. Neurosci Res 1992; 13:139-45. [PMID: 1316592 DOI: 10.1016/0168-0102(92)90094-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
(Na+ + K+)ATPase activity in cerebral cortex was modulated by insulin action depending on the Mg2+ concentration. Thus, in homogenates in the presence of 1-3 mM Mg2+, insulin stimulated the enzyme, whereas in the presence of 4-6 mM Mg2+ inhibition was observed. Exposure of synaptosomal membranes to the soluble fraction resulted in inhibition of ATPase activity in a dose-dependent manner. The inhibitory effect of insulin was regulated by a cytoplasmic factor in a dose-dependent manner. Similar variations to those obtained with a crude synaptosomal fraction were obtained by using a partially purified ATPase. These results indicated the importance of soluble factors in the modulation of ATPase by insulin and add more evidence in support for a role of insulin as a neuromodulator.
Collapse
Affiliation(s)
- R E Catalán
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Marks JL, King MG, Baskin DG. Localization of insulin and type 1 IGF receptors in rat brain by in vitro autoradiography and in situ hybridization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 293:459-70. [PMID: 1662867 DOI: 10.1007/978-1-4684-5949-4_41] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J L Marks
- Dept. of Biological Structure, University of Washington, Seattle
| | | | | |
Collapse
|
18
|
Thorndyke MC, Purvis D, Plisetskaya EM. Insulin-like immunoreactivity in the brain of two hagfishes, Eptatretus stouti and Myxine glutinosa. Gen Comp Endocrinol 1989; 76:371-81. [PMID: 2684739 DOI: 10.1016/0016-6480(89)90132-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunocytochemical investigation of the brains of hagfish Myxine glutinosa and Eptatretus stouti with antisera raised against salmon insulin revealed the presence of groups of immunoreactive cells discretely localized in the mid- and hindbrain of both species. Subpopulations of these cells reacted weakly with antisera against Myxine islet insulin and equivocally with anti-bovine insulin serum. Extracts prepared from Myxine brain were subject to gel filtration and were found by radioimmunoassay to contain two forms of insulin-like material, one of large molecular weight (less than 66 kDa) and another smaller molecule (6 kDa). The relationship of these molecules to the insulin-related growth factor family of neurohormonal peptides is discussed and their potential function assessed in terms of a possible homology with Muller-type cells and involvement in axonal regeneration phenomena.
Collapse
Affiliation(s)
- M C Thorndyke
- Department of Biology, Royal Holloway & Bedford New College, London University, Egham, Surrey
| | | | | |
Collapse
|
19
|
Hefti F, Hartikka J, Knusel B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol Aging 1989; 10:515-33. [PMID: 2682327 DOI: 10.1016/0197-4580(89)90118-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the current knowledge of characterized neurotrophic factors, including nerve growth factor (NGF) which serves as paradigmatic example when studying novel molecules. Special consideration is given to the function of neurotrophic factors in the adult and aging brain. Strategies are discussed for the eventual development of pharmacological applications of these molecules in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Hefti
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | |
Collapse
|
20
|
Abstract
To determine the effect of starvation on brain insulin receptors, rats were fed 4 g of chow/day for 14 days and then P2 fraction membranes were prepared from different brain regions. Compared to the fed state, there was an 18% reduction of insulin binding in olfactory bulbs from starved animals, but no change in the cerebellum, frontal cortex, amygdala, medial hypothalamus or lateral hypothalamus. A 15% reduction of olfactory bulb insulin binding was obtained by totally starving animals for four days. When membrane content was measured using the plasma membrane marker Na/K ATPase, insulin binding decreased by 26% and 14% in olfactory bulb membranes from starved and totally starved animals, respectively. The starvation-induced change in olfactory bulb binding was due to a loss of binding sites and not a decrease in binding affinity. Non-specific catabolism of protein and a change in the composition of membranes following starvation were excluded as causes for this effect. As streptozotocin induced diabetes had no effect on brain insulin binding, it was concluded that hypoinsulinaemia associated with starvation had not caused the reduction in olfactory bulb binding. Under similar conditions of starvation and diabetes, insulin binding in liver plasma membranes increased 26% and 38%, respectively. At 8 and 14 days of starvation, the reductions in olfactory bulb insulin binding and body weight were similar. On refeeding for three days, there was no increase in insulin binding, although body weight increased 7%. On refeeding for eight days, olfactory bulb insulin and body weight had returned to near normal.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J L Marks
- Department of Medicine, Westmead Centre, NSW, Australia
| | | |
Collapse
|