1
|
Sabeti F, Thomson K, Maddess T, Karouta C, Leung M, Anstice N, Jong T, Ashby R. Retinal Function in Young Adults Following Topical Application of Levodopa to the Eye. Transl Vis Sci Technol 2024; 13:12. [PMID: 39374001 PMCID: PMC11463705 DOI: 10.1167/tvst.13.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Levodopa has been investigated as a therapeutic solution for ocular disorders involving dysregulation of the dopaminergic system, especially in the context of myopia. However, given the critical role dopamine plays in normal vision, this phase I trial examined whether levodopa/carbidopa eye drops induce any regional changes in retinal structure and function. Methods Twenty-nine healthy male subjects 18 to 30 years of age were randomly assigned to receive either a low (1.4/0.34 µmoles/day, n = 14) or high (2.7/0.68 µmoles/day, n = 15) dose of levodopa/carbidopa eye drops in 1 eye for 28 consecutive days. A placebo solution was applied to all fellow eyes. Measures included visual acuity, regional frequency doubling perimetry, regional multifocal electroretinogram (mfERG) and optical coherence tomography (retinal thickness). Outcome measures were undertaken at baseline, end-of-treatment (4 weeks), and at a follow-up (4 months post-treatment). Results For low dose treated eyes, regional analysis showed a small, statistically significant change in mfERG recordings (increase in ring 5 amplitude in low dose treated eyes, P < 0.05) and the retinal thickness map (localized retinal thinning in low dose treated eyes, P < 0.05). These changes were not clinically significant. No significant changes were observed in high dose treated eyes. Pharmacokinetic analysis (rabbits) demonstrated that levodopa was not detectable within blood and peaked within the eye at 15 to 30 minutes (and eliminated within 4 hours). Conclusions No clinically significant effects of levodopa/carbidopa eye drops were found with regard to normal retinal structure and function following short-term use. Translational Relevance This study further demonstrates the safety of topical levodopa, which may support its use in the treatment of ocular disorders in which the dopamine system is dysregulated.
Collapse
Affiliation(s)
- Faran Sabeti
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
- John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, Australia
| | - Kate Thomson
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Ted Maddess
- John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, Australia
| | - Cindy Karouta
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Myra Leung
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicola Anstice
- Discipline of Optometry, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Tina Jong
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Zhang X, Liu L, Li Y, Li X, Wang K, Han S, Wang M, Zhang Y, Zheng G, Cheng J, Wen B. Integrative neurovascular coupling and neurotransmitter analyses in anisometropic and visual deprivation amblyopia children. iScience 2024; 27:109988. [PMID: 38883835 PMCID: PMC11177132 DOI: 10.1016/j.isci.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
The association between visual abnormalities and impairments in cerebral blood flow and brain region potentially results in neural dysfunction of amblyopia. Nevertheless, the differences in the complex mechanisms of brain neural network coupling and its relationship with neurotransmitters remain unclear. Here, the neurovascular coupling mechanism and neurotransmitter activity in children with anisometropic amblyopia (AA) and visual deprivation amblyopia (VDA) was explored. The neurovascular coupling of 17 brain regions in amblyopia children was significantly abnormal than in normal controls. The classification abilities of coupling units in brain regions differed between two types of amblyopia. Correlations between different coupling effects and neurotransmitters were different. The findings of this study demonstrate a correlation between the neurovascular coupling and neurotransmitter in children with AA and VDA, implying their impaired neurovascular coupling function and potential molecular underpinnings. The neuroimaging evidence revealed herein offers potential for the development of neural therapies for amblyopia.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadong Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kejia Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhu Wang
- MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Restless legs syndrome in multiple sclerosis is related to retinal thinning. Photodiagnosis Photodyn Ther 2022; 40:103169. [PMID: 36272508 DOI: 10.1016/j.pdpdt.2022.103169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Restless legs syndrome (RLS) is one of the most frequent comorbidities accompanying multiple sclerosis. Patients with multiple sclerosis (MS) show thinning in the retinal layers throughout the disease. The thinning is related to acute attacks and progression and atrophy of the brain. Optical coherence tomography (OCT) provides relevant information on the pathophysiology of MS. We aimed to evaluate OCT parameters in patients with MS to investigate any changes related to the coexistence of RLS. METHODS We consecutively enrolled 75 adults with relapsing-remitting MS. Participants were assessed by using demographic and clinical parameters along with the excessive sleepiness in the daytime (ESS), fatigue severity scale (FSS), and RLS severity scale (IRLSSG). The thickness of the peripapillary retinal nerve fiber layer (pRNFL), macular thickness (MT), and macular ganglion cell - inner plexiform layer (MGCIPL) complex was measured with spectral-domain OCT. RESULTS Of the 75 participants, 20 were found to have RLS, and 55 did not. Scores of ESS, FSS, and MS disability (EDSS) were worse in patients with RLS. There was no significant difference in retinal nerve fiber layer thickness except for the inferior quadrant(p = 0.029). The mean inferior pRNFL thickness was 104.5 ± 22.6 μm in the RLS (+) group and 114.2 ± 21.6 μm in the RLS (-) group. CONCLUSION Patients with RLS had excessive daytime sleepiness, were more fatigued, had higher EDSS scores, and had a thinner retinal layer in the inferior quadrant. Overall, data from the study suggest a possible relationship between retinal volume changes in MS patients with RLS.
Collapse
|
4
|
Kose Ozlece H, Solmaz V, Özal SA, Çelik Y. Do you have restless leg syndrome? I understood from your eyes. Sleep Breath 2018; 23:551-557. [PMID: 30341586 DOI: 10.1007/s11325-018-1740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE According to many studies in the literature, there is a strong association between restless leg syndrome and dopaminergic dysfunction. Dopamine is also the major catecholamine in the retina and is also a possible transmitter of the amacrine and interplexiform cells. The aim of this study is to investigate the possible association between RLS and retinal thickness. METHODS In this study, we included 33 patients who were diagnosed with idiopathic RLS according to the "International RLS Study Group" criteria and 31 healthy subjects. All the patients and controls underwent routine ophthalmologic examination and had spectral-domain optical coherence tomography (OCT) performed. We compared the retinal thickness of the patients and control subjects. RESULTS In the RLS group, foveal thickness was thinner then controls. Also, only inferior, superior, and temporal quadrant retina nerve fiber layer (RNFL) thickness were significantly thinner in the RLS group. The parafoveal ganglion cell complex (GCC) in the superior temporal, inferior temporal, inferior nasal quadrant, and perifoveal superior nasal thickness was also significantly thinner in the patient group. Pearson correlation analyses showed that there were statistically significant negative correlations between disease duration and macular GCC and RNFL thickness. Negative correlations were also detected between parafoveal superior, temporal, inferior and nasal macular thickness, parafoveal superior nasal, inferior temporal GCC thickness, and perifoveal superior nasal GCC thickness and disease duration. CONCLUSION According to our results; most retinal layers are thinner in RLS patients, so it can be considered that OCT has a predictive value for progression of RLS.
Collapse
Affiliation(s)
| | - Volkan Solmaz
- Department of Neurology, Private Konak Hospital, Sakarya, Turkey.
| | - Sadık Altan Özal
- Department of Eye Disease, Trakya University Medical Faculty, Edirne, Turkey
| | - Yahya Çelik
- Department of Neurology, Adatıp Private Hospital, Sakarya, Turkey
| |
Collapse
|
5
|
Wilk MA, Huckenpahler AL, Collery RF, Link BA, Carroll J. The Effect of Retinal Melanin on Optical Coherence Tomography Images. Transl Vis Sci Technol 2017; 6:8. [PMID: 28392975 PMCID: PMC5381330 DOI: 10.1167/tvst.6.2.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. Methods A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. Results The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. Conclusions The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. Translational Relevance Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images.
Collapse
Affiliation(s)
- Melissa A Wilk
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Alison L Huckenpahler
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Firsov ML, Astakhova LA. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Tanaka G, Parker AR, Hasegawa Y, Siveter DJ, Yamamoto R, Miyashita K, Takahashi Y, Ito S, Wakamatsu K, Mukuda T, Matsuura M, Tomikawa K, Furutani M, Suzuki K, Maeda H. Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish. Nat Commun 2014; 5:5920. [DOI: 10.1038/ncomms6920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/21/2014] [Indexed: 11/09/2022] Open
|
8
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
9
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
10
|
Orisme W, Li J, Goldmann T, Bolch S, Wolfrum U, Smith WC. Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP. Cell Signal 2010; 22:447-56. [PMID: 19887106 DOI: 10.1016/j.cellsig.2009.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation. Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation. In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light. Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input.
Collapse
Affiliation(s)
- Wilda Orisme
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610-0284, USA
| | | | | | | | | | | |
Collapse
|
11
|
Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina. J Neurosci 2009; 29:15178-86. [PMID: 19955370 DOI: 10.1523/jneurosci.3517-09.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrical coupling of neurons is widespread throughout the CNS and is observed among retinal photoreceptors from essentially all vertebrates. Coupling dampens voltage noise in photoreceptors and rod-cone coupling provides a means for rod signals to enter the cone pathway, extending the dynamic range of rod-mediated vision. This coupling is dynamically regulated by a circadian rhythm and light adaptation. We examined the molecular mechanism that controls photoreceptor coupling in zebrafish retina. Connexin 35 (homologous to Cx36 of mammals) was found at both cone-cone and rod-cone gap junctions. Photoreceptors showed strong Neurobiotin tracer coupling at night, extensively labeling the network of cones. Tracer coupling was significantly reduced in the daytime, showing a 20-fold lower diffusion coefficient for Neurobiotin transfer. The phosphorylation state of Cx35 at two regulatory phosphorylation sites, Ser110 and Ser276, was directly related to tracer coupling. Phosphorylation was high at night and low during the day. Protein kinase A (PKA) activity directly controlled both phosphorylation state and tracer coupling. Both were significantly increased in the day by pharmacological activation of PKA and significantly reduced at night by inhibition of PKA. The data are consistent with direct phosphorylation of Cx35 by PKA. We conclude that the magnitude of photoreceptor coupling is controlled by the dynamic phosphorylation and dephosphorylation of Cx35. Furthermore, the nighttime state is characterized by extensive coupling that results in a well connected cone network.
Collapse
|
12
|
Kennedy B, Malicki J. What drives cell morphogenesis: a look inside the vertebrate photoreceptor. Dev Dyn 2009; 238:2115-38. [PMID: 19582864 DOI: 10.1002/dvdy.22010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further specialized for sensing light in low and high illumination, respectively. To enable visual function, these photoreceptors have developed elaborate morphological domains for the detection of light (outer segments), for changing cell shape (inner segments), and for communication with neighboring retinal neurons (synaptic terminals). Furthermore, rod and cone subtypes feature unique morphological variations of these specialized characteristics. Here, we review the major aspects of vertebrate photoreceptor morphology and key genetic mechanisms that drive their formation. These mechanisms are necessary for cell differentiation as well as function. Their defects lead to cell death.
Collapse
Affiliation(s)
- Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | | |
Collapse
|
13
|
Phatarpekar PV, Durdan SF, Copeland CM, Crittenden EL, Neece JD, García DM. Molecular and pharmacological characterization of muscarinic receptors in retinal pigment epithelium: role in light-adaptive pigment movements. J Neurochem 2005; 95:1504-20. [PMID: 16269010 DOI: 10.1111/j.1471-4159.2005.03512.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscarinic receptors are the predominant cholinergic receptors in the central and peripheral nervous systems. Recently, activation of muscarinic receptors was found to elicit pigment granule dispersion in retinal pigment epithelium isolated from bluegill fish. Pigment granule movement in retinal pigment epithelium is a light-adaptive mechanism in fish. In the present study, we used pharmacological and molecular approaches to identify the muscarinic receptor subtype and the intracellular signaling pathway involved in the pigment granule dispersion in retinal pigment epithelium. Of the muscarinic receptor subtype-specific antagonists used, only antagonists specific for M1 and M3 muscarinic receptors were found to block carbamyl choline (carbachol)-induced pigment granule dispersion. A phospholipase C inhibitor also blocked carbachol-induced pigment granule dispersion, and a similar result was obtained when retinal pigment epithelium was incubated with an inositol trisphosphate receptor inhibitor. We isolated M2 and M5 receptor genes from bluegill and studied their expression. Only M5 was found to be expressed in retinal pigment epithelium. Taken together, pharmacological and molecular evidence suggest that activation of an odd subtype of muscarinic receptor, possibly M5, on fish retinal pigment epithelium induces pigment granule dispersion.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adaptation, Ocular
- Alkaloids
- Animals
- Behavior, Animal
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Cloning, Molecular/methods
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Perciformes
- Phylogeny
- Pigment Epithelium of Eye/drug effects
- Pigment Epithelium of Eye/metabolism
- Pigment Epithelium of Eye/radiation effects
- Pigments, Biological/physiology
- RNA, Messenger/biosynthesis
- Receptors, Muscarinic/classification
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA/methods
- Sequence Analysis, Protein/methods
- Sesquiterpenes/pharmacology
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wellard JW, Morgan IG. Inhibitory modulation of photoreceptor melatonin synthesis via a nitric oxide-mediated mechanism. Neurochem Int 2004; 45:1143-53. [PMID: 15380624 DOI: 10.1016/j.neuint.2004.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) has been suggested to have many physiological functions in the vertebrate retina, including a role in light-adaptive processes. The aim of this study was to examine the influence of the NO-donor sodium nitroprusside (SNP) on the activity of arylalkylamine-N-acetyltransferase (AA-NAT; EC. 2.3.1.87), the activity of which responds to light and reflects the changes in retinal melatonin synthesis--a key feature of light-adaptive responses in photoreceptors. Incubation of dark-adapted and dark-maintained retinas with SNP lead to the NO-specific suppression of AA-NAT activity, with NO suppressing AA-NAT activity to a level similar to that seen in the presence of dopaminergic agonists or light. Increased levels of cGMP appeared to be causally involved in the suppression of AA-NAT activity by SNP, as non-hydrolysable analogues of cGMP and the cGMP-specific phosphodiesterase (PDE) inhibitor zaprinast also significantly suppressed AA-NAT activity, while an inhibitor of soluble guanylate cyclase blocked the effect of SNP. While this chain of events may not be part of the normal physiology of the retina, it could be important in pathological circumstances that are associated with marked increase in levels of cGMP, as is found to be the case in certain forms photoreceptor degeneration, which are produced by defects in cGMP phosphodiesterase activity.
Collapse
Affiliation(s)
- John W Wellard
- Visual Sciences Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | |
Collapse
|
15
|
González A, Crittenden EL, García DM. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill. BMC Neurosci 2004; 5:23. [PMID: 15251036 PMCID: PMC499547 DOI: 10.1186/1471-2202-5-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 07/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. RESULTS The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. CONCLUSIONS Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.
Collapse
Affiliation(s)
- Alfredo González
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA
| | | | - Dana M García
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA
| |
Collapse
|
16
|
Angotzi AR, Hirano J, Vallerga S, Djamgoz MBA. Role of nitric oxide in control of light adaptive cone photomechanical movements in retinas of lower vertebrates: a comparative species study. Nitric Oxide 2002; 6:200-4. [PMID: 11890744 DOI: 10.1006/niox.2001.0401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible role of nitric oxide (NO) as a novel light adaptive neuromodulator of cone plasticity (photomechanical movements) in retinae of two contrasting species of fish (freshwater carp and marine bream) and an example of an amphibian (Xenopus laevis) was studied pharmacologically by cytomorphometric measurements. Application of a NO donor [S-nitroso-N-acetyl-d, l-penicillamine] (500-700 microM) to dark-adapted retinae induced contraction of cones with an efficiency (CE) relative to full light adaptation of around 54% in all three species. Pretreatment with a NO scavenger [2-(4-Carboxyphenyl)-4,4,5,5-tetrametylimidazoline-1-oxil-3-oxide] (30-35 microM) produced a consistent significant inhibition of the light adaptation-induced cone contraction (CE = 15-20%). These results strongly suggest the involvement of endogenous NO in the cone contractions that occur in freshwater and marine fish and amphibian retinae as a part of the light adaptation process.
Collapse
Affiliation(s)
- A R Angotzi
- Sensory Ecology Group, John Lythgoe Laboratory, International Marine Centre, Torregrande, 09072 Oristano, Italy
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- B Burnside
- Department of Molecular and Cell Biology, University of California, Berkeley, 335LSA #3200, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
18
|
Haamedi SN, Karten HJ, Djamgoz MB. Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish. J Comp Neurol 2001; 431:397-404. [PMID: 11223810 DOI: 10.1002/1096-9861(20010319)431:4<397::aid-cne1078>3.0.co;2-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent evidence suggests that neurotrophins can be involved in short-term synaptic plasticity in parts of the central nervous system. In the present study, the possible role of nerve growth factor (NGF) in inducing morphologic (cellular and subcellular) changes in the outer retina of carp was assessed. The effects of NGF on cone photomechanical movements (PMMs) and horizontal cell (HC) spinule formation were measured. NGF-induced cone contraction and formation of HC spinules in the dark-adapted retina were consistent with its role in light adaptation. These effects were dose dependent in the range of 5--250 nM. Because cone contraction and HC spinule formation have previously been shown to be controlled by dopamine (DA), nitric oxide (NO), or both, the possibility that the effects of NGF could be occurring by means of release of DA and/or NO was tested. Haloperidol (HAL), a nonspecific DA receptor blocker, or 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide potassium (cPTIO), a NO scavenger, was applied in combination with NGF to dark-adapted eyecups. The results showed that both HAL and cPTIO significantly blocked the effects of NGF on cone PMMs and HC spinule formation. In conclusion, (1) NGF represents a novel light-adaptive signalling mechanism in the outer retina of fish; and (2) NGF-induced cone contraction and HC spinule formation in the retina together with our previous observation would suggest that the effects of NGF may be mediated through NO by means of DA.
Collapse
Affiliation(s)
- S N Haamedi
- Neurobiology Group, Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | |
Collapse
|
19
|
Alonso-Gómez AL, Valenciano AI, Alonso-Bedate M, Delgado MJ. Melatonin synthesis in the greenfrog retina in culture: II. Dopaminergic and adrenergic control. Life Sci 2000; 66:687-95. [PMID: 10680577 DOI: 10.1016/s0024-3205(99)00640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Serotonin N-acetyltransferase (NAT) activity and melatonin show a daily rhythm with high levels at night. Although the rhythmic properties of NAT and melatonin are similar in pineal gland and retina, great differences in the light perception and transmission mechanisms exist. We have analyzed the effects of adrenergic and dopaminergic agents on greenfrog (Rana perezi) eyecup culture, in order to identify the receptors involved in the regulation of retinal melatonin synthesis. A D2-like receptor is directly involved in the regulation of NAT activity and melatonin release in R. perezi retina. Quinpirole mimics the effect of light, reducing the darkness-stimulated NAT activity and melatonin release, while sulpiride antagonized these actions. Neither D1-agonist (SKF 38393) nor D1-antagonist (SCH 23390) had effect on NAT activity. However, a significant inhibition of darkness-evoked melatonin release was produced by SKF 38393 after 6 hours of culture. The beta- and antagonist1-agonists showed a clear inhibition. However, a direct effect of beta, alpha1 and D1-agonists on photoreceptors is unproven, being more probable that the adrenergic actions imply a non-photoreceptor retinal cell. In conclusion, eyecup culture of Rana perezi revealed a dopaminergic control of melatonin synthesis and a possible modulation of dopaminergic tone by adrenergic receptors. Melatonin release is a more sensitive parameter than NAT activity to the action of neuroactive agents, suggesting that melatonin synthesis can be regulated by more than one enzymatic step in Rana perezi.
Collapse
Affiliation(s)
- A L Alonso-Gómez
- Dpto. Biología Animal II, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| | | | | | | |
Collapse
|
20
|
Ryan JS, Baldridge WH, Kelly ME. Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells. J Physiol 1999; 520 Pt 3:745-59. [PMID: 10545141 PMCID: PMC2269618 DOI: 10.1111/j.1469-7793.1999.00745.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We used whole-cell patch clamp and fluorescent calcium imaging techniques to investigate the effects of adenosine 5'-triphosphate (ATP) on membrane currents and intracellular calcium concentration ([Ca2+]i)in rat retinal pigment epithelial (RPE) cells. In 62 % of RPE cells, application of 100 microM ATP elicited a fast inward current at negative membrane potentials. In 38 % of RPE cells recorded, a biphasic response to ATP was observed in which activation of the fast inward current was followed by activation of a delayed outward current. 2. The ATP-activated inward current was a non-selective cation (NSC) current that showed inward rectification, reversed at -1.5 +/- 1 mV and was permeable to monovalent cations. The NSC current was insensitive to the P2 purinoceptor antagonists, suramin or PPADS but was activated by the purinoceptor agonists UTP, ADP and 2MeSATP. 3. The outward current activated by ATP reversed at -68 +/- 3 mV (equilibrium potential for potassium (EK) = -84 mV) and was blocked by Ba2+ ions, consistent with the activation of a K+ conductance. The outward K+ conductance was also reduced by the maxi-KCa channel blocker iberiotoxin (IbTX; 10 nM), suggesting that ATP activated an outward Ca2+-activated K+ channel in rat RPE cells. The Ca2+-activated K+ current (IK(Ca)) was also activated by the purinoceptor agonists UTP, ADP and 2MeSATP. 4. In fluo-3 or fluo-4 loaded RPE cells, ATP and the pyrimidine agonist UTP elevated [Ca2+]i. The increase in Ca2+ was not dependent on extracellular Ca2+ influx, but was sensitive to the Ca2+-ATPase inhibitor thapsigargin, confirming the involvement of intracellular Ca2+ stores release. 5. These results suggest that rat RPE cells express both P2X purinoceptors that gate activation of a non-selective cation conductance and G protein-coupled P2Y purinoceptors that mediate Ca2+ release from intracellular stores and activation of a calcium-activated K+ current.
Collapse
Affiliation(s)
- J S Ryan
- Laboratory for Retina and Optic Nerve Research and Departments of Pharmacology, Anatomy and Neurobiology and Ophthalmology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | | | | |
Collapse
|
21
|
Nguyen-Legros J, Versaux-Botteri C, Vernier P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol 1999; 19:181-204. [PMID: 10495103 DOI: 10.1007/bf02821713] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
After a short history of dopamine receptor discovery in the retina and a survey on dopamine receptor types and subtypes, the distribution of dopamine receptors in the retinal cells is described and correlated with their possible role in cell and retinal physiology. All the retinal cells probably bear dopamine receptors. For example, the recently discovered D1B receptor has a possible role in modulating phagocytosis by the pigment epithelium and a D4 receptor is likely to be involved in the inhibition of melatonin synthesis in photoreceptors. Dopamine uncouples horizontal and amacrine cell-gap junctions through D1-like receptors. Dopamine modulates the release of other transmitters by subpopulations of amacrine cells, including that of dopamine through a D2 autoreceptor. Ganglion cells express dopamine receptors, the role of which is still uncertain. Müller cells also are affected by dopamine. A puzzling action of dopamine is observed in the ciliary retina, in which D1- and D2-like receptors are likely to be involved in the cyclic regulation of intraocular pressure. Most of the dopaminergic actions appear to be extrasynaptic and the signaling pathways remain uncertain. Further studies are needed to better understand the multiple actions of dopamine in the retina, especially those that implicate rhythmic regulations.
Collapse
Affiliation(s)
- J Nguyen-Legros
- Laboratoire de Neurocytologie Oculaire, Inserm U 86, Paris, France
| | | | | |
Collapse
|
22
|
Abstract
The presence of receptors for ATP has not been established in any native preparation of retinal neurons or glia. In the present study, we used conventional electrophysiological and [Ca2+]in fluorescence imaging techniques to investigate the effects of ATP added to Ringer's solution perfusing the retinal-facing (apical) membrane of freshly isolated monolayers of bovine retinal pigment epithelium (RPE). ATP (or UTP) produced large, biphasic voltage and resistance changes with a Kd of approximately 5 microM for ATP and approximately 1 microM for UTP. Electrical and pharmacological evidence indicates that the first and second phases of the response are attributable to an increase in basolateral membrane Cl conductance and a decrease in apical membrane K conductance, respectively. The ATP-induced responses were not affected by adenosine, but were reduced by the P2-purinoceptor blocker suramin. ATP also produced a large, transient increase in [Ca2+]in that was blocked by cyclopiazonic acid, an inhibitor of endoplasmic reticulum Ca2+-ATPases. The calcium buffer BAPTA attenuated the voltage effects of ATP. We also found that apical DIDS significantly inhibited the ATP-evoked [Ca2+]in and electrical responses, suggesting that DIDS blocked the purinoceptor. Measurements of fluid movement across the RPE using the capacitance probe technique demonstrated a significant increase in fluid absorption by apical UTP. These data indicate the presence of metabotropic P2Y/P2U-purinoceptors at the RPE apical membrane and implicate extracellular ATP in vivo as a retinal signaling molecule that could help regulate the hydration and chemical composition of the subretinal space.
Collapse
|
23
|
Ryan JS, Kelly ME. Activation of a nonspecific cation current in rat cultured retinal pigment epithelial cells: involvement of a G(alpha i) subunit protein and the mitogen-activated protein kinase signalling pathway. Br J Pharmacol 1998; 124:1115-22. [PMID: 9720781 PMCID: PMC1565492 DOI: 10.1038/sj.bjp.0701936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Whole-cell patch-clamp recording techniques were used to investigate the G protein subtype and related signalling molecules involved in activation of a nonspecific cation (NSC) current in rat cultured retinal pigment epithelial (RPE) cells. 2. Under control conditions, in 130 mM NaCl with K+ aspartate in the pipette, cytosolic dialysis with guanosine-5'-O-(3-triphosphate) (GTPgammaS, 0.1 mM) activated a large non-inactivating NSC current in 80% of the cells recorded from. 3. Loading RPE cells with antibodies (10 microg-ml(-1)) against the alpha subunit of all PTX-sensitive G proteins (G(alpha i/o/t/z)) reduced NSC current activation to 11%, while loading RPE cells with antibodies directed specifically against the alpha subunits of the Gi subclass (G(alpha i-3)) completely abolished current activation. In RPE cells loaded with anti-G(alpha s) activation of the NSC current was unaffected. 4. Investigation of the potential downstream mediators in the G(alpha i) NSC channel pathway revealed that activation of the cation conductance was unaffected by treatment of RPE cells with the selective protein kinase C inhibitor GF 109203X (3 microM) or the selective CaM kinase II inhibitor KN-93 (50 microM). However, NSC current activation was delayed and the current amplitude reduced in the presence of the nonselective kinase inhibitor H-7 (100 microM) or the selective inhibitor of MAPKK (MEK) activation, PD 98059 (50 microM). 5. In the absence of GTPgammaS, the NSC current was not activated by superfusion of the cells with the cyclic GMP kinase activator dibutyryl-cyclic GMP or with the adenylate cyclase activator forskolin. 6. These results support the involvement of a G protein of the G(alpha i) subclass in the activation of a NSC current in rat RPE cells, and suggest a potential modulatory role for MAP kinase-dependent phosphorylation in current regulation.
Collapse
Affiliation(s)
- J S Ryan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
24
|
Strother WN, Norman AB, Lehman MN. D1-dopamine receptor binding and tyrosine hydroxylase-immunoreactivity in the fetal and neonatal hamster suprachiasmatic nucleus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:137-44. [PMID: 9554985 DOI: 10.1016/s0165-3806(97)00205-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the site of an endogenous biological clock that regulates mammalian circadian rhythms. Circadian rhythms, although endogenously driven, are synchronized or entrained to daily environmental cues. Developmentally, the SCN begins to oscillate before birth and is entrained to the maternal circadian rhythm by a mechanism that is still unclear. Recent evidence in rats and hamsters suggests that a fetal dopaminergic system and D1-dopamine receptors may be involved in the process of entraining the fetal clock. The present study using [3H]SCH 23390 autoradiography and tyrosine hydroxylase (TH) immunocytochemistry determined the developmental time courses of the appearance of D1 receptor in, and catecholaminergic input to, the hamster SCN. [3H]SCH 23390 binding to D1-dopamine receptors was first detected in the fetal SCN on embryonic day (E) 15, the day before birth in this species, and persisted through adulthood. The TH immunoreactive fibers were first observed on day E15 coursing just ventral to the fetal SCN but TH-immunoreactive cells and fibers were not seen within the SCN until postnatal day (P) 5. The presence of D1-dopamine receptor binding in the fetal hamster SCN is consistent with the role of these receptors in entrainment of the fetal circadian pacemaker to maternal cues. However, a receptor-transmitter mismatch exists between D1-dopamine receptors and TH-immunoreactive fibers in the fetal SCN suggesting that the role of dopamine in maternal-fetal entrainment may be as a paracrine or humoral signal.
Collapse
Affiliation(s)
- W N Strother
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, OH 45267, USA.
| | | | | |
Collapse
|
25
|
Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00037-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Abstract
A number of modern techniques now allow histologists to characterize subpopulations of retinal neurons by their neurotransmitters. The morphologies and connections of these chemically defined neurons can be analyzed precisely at both light and electron microscope levels and lead to a better understanding of retinal circuitry. The dopaminergic neurons form a loose population of special wide-field amacrine cells bearing intraretinal axons within the inner plexiform layer. One subtype, the interplexiform cell, sends an axon to the outer plexiform and outer nuclear layers. The number of interplexiform cells is variable throughout mammalian species. The GABAergic neurons form a dense and heterogeneous population of amacrine cells branching at all levels of the inner plexiform layer. The presence of GABA in horizontal cells seems to be species-dependent. Close relationships occur between dopaminergic and GABAergic cells. GABA antagonizes a number of dopaminergic actions by inhibiting both the release and synthesis of dopamine. This inhibition can be supported by GABA synapses onto dopaminergic cells, but GABA can also diffuse to its targets. Finally, GABA is also contained and synthesized in dopaminergic cells. This colocalization might be the basis of an intracellular modulation of dopamine by GABA.
Collapse
Affiliation(s)
- J Nguyen-Legros
- Laboratoire de Neurocytologie Oculaire, INSERM U-86, Paris, France
| | | | | |
Collapse
|
27
|
Cell surface receptors associated with the retinal pigment epithelium: the adenylate cyclase and phospholipase C signal transduction pathways. Prog Retin Eye Res 1996. [DOI: 10.1016/1350-9462(96)00005-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Savy C, Moussafi F, Durand J, Yelnik J, Simon A, Nguyen-Legros J. Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey. J Comp Neurol 1995; 355:392-404. [PMID: 7636021 DOI: 10.1002/cne.903550306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The morphology and distribution of dopaminergic interplexiform cells in adult rat and monkey retinas were analyzed to determine any correlation with the function of dopamine in the outer retinal layers. The retinas were processed as whole mounts for tyrosine hydroxylase immunohistochemistry. There was a network formed by the sclerally directed processes of interplexiform cells in the inner nuclear, outer plexiform, and outer nuclear layers running throughout the retina. Their density was higher in the superior retina than in the inferior retina of the rat and was especially high in the superior temporal quadrant. The external network in this quadrant was significantly less dense in the monkey than in the rat, as are the interplexiform cells. The somata of interplexiform and other dopaminergic cells were about the same size in both rats and monkeys. Computer-assisted reconstruction of external arborizations of individual cells showed that external processes lay very close to horizontal and photoreceptor cells and also to blood capillaries. Because they were long, thin, and highly varicose; branched at right angles; and often arose from an axon hillock, the external processes were identified as axons. Therefore, we define the dopaminergic interplexiform cells as multiaxonal neurons, with at least one outwardly directed axon that reaches the outer plexiform layer. The function of the network of external processes from the interplexiform dopaminergic cells is discussed in terms of modulating the release of dopamine to external layers.
Collapse
Affiliation(s)
- C Savy
- Laboratoire de Neurocytologie Oculaire, INSERM U-86, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Hare WA, Owen WG. Similar effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander. Vis Neurosci 1995; 12:443-55. [PMID: 7654602 DOI: 10.1017/s0952523800008348] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Though there is considerable evidence that dopamine is an important retinal neuromodulator that mediates many of the changes in the properties of retinal neurons that are normally seen during light adaptation, the mechanism by which dopamine release is controlled remains poorly understood. In this paper, we present evidence which indicates that dopamine release in the retina of the tiger salamander, Ambystoma tigrinum, is driven excitatorily by a cholinergic input. We compared the effects of applying carbachol to those of dopamine application on the responses of rods, horizontal cells, and bipolar cells recorded intracellularly from the isolated, perfused retina of the tiger salamander. Micromolar concentrations of dopamine reduced the amplitudes of rod responses throughout the rods' operating range. The ratio of amplitudes of the cone-driven to rod-driven components of the responses of both horizontal and bipolar cells was increased by activation of both D1 and D2 dopamine receptors. Dopamine acted to uncouple horizontal cells and also off-center bipolar cells, the mechanism in the case of horizontal cells depending only upon activation of D1 receptors. Carbachol, a specific cholinomimetic, applied in five- to ten-fold higher concentrations, produced effects that were essentially identical to those of dopamine. These effects of carbachol were blocked by application of specific dopamine blockers, however, indicating that they are mediated secondarily by dopamine. We propose that the dopamine-releasing amacrine cells in the salamander are under the control of cells, probably amacrine cells, which secrete acetylcholine as their transmitter.
Collapse
Affiliation(s)
- W A Hare
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
30
|
Witkovsky P, Zhang J, Blam O. Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells. Cell Tissue Res 1994; 278:45-56. [PMID: 7954703 DOI: 10.1007/bf00305777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presumed dopaminergic neurons were visualized in the retina of the clawed frog, Xenopus laevis, by anti-tyrosine hydroxylase (TH) immunoreactivity. The studied cells constitute a uniform population with perikarya at the junction of inner nuclear (INL) and inner plexiform (IPL) layers. Each cell body gives rise to 4-6 relatively stout processes (0.5-2.0 microns in diameter) which run for up to 1.2 mm in strata 4-5 of the IPL. These processes have a very asymmetric distribution in the horizontal plane of the retina. A dense plexus of TH fine fibers is distributed uniformly in stratum 1 of the IPL. TH cells are distributed evenly but sparsely (16-20 cells/mm2) across the retina. About 20% of the TH neurons emit 1-3 distally directed fine processes, the majority of which extend < 20 microns, which barely suffices to reach the outer plexiform layer (OPL). Other longer processes are typically unbranched; some reach the OPL, others run tangentially in the INL. The axon terminals of Golgi-impregnated bipolar cells are characterized according to the strata of the IPL in which they arborize. About 80% are confined either to strata 1-2 or 3-5, conforming to the 'off' and 'on' zones defined by Famiglietti and Kolb (1976). The remainder appear to end in both zones, some extending across the entire width of the IPL. EM examination showed that TH processes receive bipolar synaptic input in both distal and proximal portions of the IPL.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
31
|
Abstract
In the retinas of many species of lower vertebrates, retinal photoreceptors and pigment epithelium pigment granules undergo daily movements in response to both diurnal, and in the case of teleost cone photoreceptors, endogenous circadian signals. Typically, these cone movements take place at dawn and at dusk when teleosts are maintained on a cyclic light (LD) regime, and at expected dawn and expected dusk when animals are maintained in continuous darkness (DD). Because these movements are so strictly controlled, they provide an overt indicator of the stage of the underlying clock mechanism. In this study we report that both light-induced and circadian-driven cone myoid movements in the Midas cichlid (Cichlasoma citrinellum), occur normally in vitro. Many of the features of retinomotor movements found in vivo also occur in our culture conditions, including responses to light and circadian stimuli and dopamine. Circadian induced predawn contraction and maintenance of expected day position in response to circadian modulation, are also normal. Our studies suggest that circadian regulation of cone myoid movement in vitro is mediated locally by dopamine, acting via a D2 receptor. Cone myoid contraction can be induced at midnight and expected mid-day by dark culture with dopamine or the D2 receptor agonist LY171555. Further, circadian induced predawn contraction can be increased with either dopamine or LY171555, or may be reversed with the dopamine D2 antagonist, sulpiride. Sulpiride will also induce cone myoid elongation in retinal cultures at expected mid-day, but will not induce cone myoid elongation at dusk. In contrast, circadian cone myoid movements in vitro were unaffected by the D1 receptor agonist SCH23390, or the D1 receptor antagonist SKF38393. Our short-term culture experiments indicate that circadian regulation of immediate cone myoid movement does not require humoral control but is regulated locally within the retina. The inclusion of dopamine, or dopamine receptor agonists and antagonists in our cultures, has indicated that retinal circadian regulation may be mediated by endogenously produced dopamine, which acts via a D2 mechanism.
Collapse
Affiliation(s)
- C A McCormack
- Department of Optometry and Vision Sciences, University of Wales College of Cardiff, United Kingdom
| | | |
Collapse
|
32
|
Lafond G, Cao W, Drumheller A, Jolicoeur FB, Zaharia M, Realbrunette J. Selective effects of retinal dopamine depletion on partial ischemia-induced electroretinographic hyperresponses in rabbits. Doc Ophthalmol 1994; 88:89-97. [PMID: 7743916 DOI: 10.1007/bf01203705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of retinal dopamine depletion and partial ischemia on the a- and b-wave amplitudes and implicit times of the electroretinogram was examined in adult pigmented rabbits. Seven days after 6-hydroxydopamine treatment, which resulted in a depletion of the amine, partial retinal ischemia was induced by raising the intraocular pressure. As expected, moderate elevation of intraocular pressure produced increases in both a- and b-wave amplitudes. Amplitude hyperresponses were significantly reduced in dopamine-depleted retinas. These reductions were more prominent with relatively lower intensities. However, response delays were not shortened but lengthened by 6-hydroxydopamine pretreatment. Together, these results point to a selective role of dopamine in partial retinal ischemia induced by moderate elevation of intraocular pressure in rabbits.
Collapse
Affiliation(s)
- G Lafond
- Department of Ophthalmology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Hunt RC. Intermediate filaments and other cytoskeletal structures in retinal pigment epithelial cells. Prog Retin Eye Res 1994. [DOI: 10.1016/1350-9462(94)90007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Case CP, Plummer CJ. Changing the light intensity of the visual environment results in large differences in numbers of synapses and in photoreceptor size in the retina of the young adult rat. Neuroscience 1993; 55:653-66. [PMID: 8413928 DOI: 10.1016/0306-4522(93)90431-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A quantitative light- and electron-microscopic study has been made of the retinae of rats which were exposed to different lighting conditions for between one and 15 weeks in young adulthood, having been reared in identical conditions during development. The width of the inner and outer segments of the photoreceptors and the width of the outer plexiform layer varied inversely with the light intensity under diurnal lighting conditions of 10 h light/14 h dark. Linear regression analysis showed that the widths were inversely related to the fourth root of the light intensity as measured in lux. Both central and peripheral areas of retina showed a similar change. No change was seen in the widths of the inner plexiform layer, or of the inner and outer nuclear cell layers. Nor was there a difference in the packing density or size of the nuclei in the nuclear cell layers. The number of ribbon synapses in the outer plexiform layer also varied inversely with the intensity of diurnal light. Linear regression analysis showed that the number of synapses was inversely correlated with the fourth root of the light intensity and was positively correlated with the width of the outer plexiform layer. The number of ribbon synapses was increased by up to two and a half times in constant darkness compared to diurnal light of 35 lux. The increase was present but not maximal after one week of exposure. The length of synaptic ribbons was unchanged. The nerve terminals forming such synapses were increased in size but not in number. After one week, there was little or no additional change in the retinal widths and number of synaptic ribbons with time. However, there was a progressive increase with time in nerve terminal size (two-fold in area) in constant darkness. There was some evidence of a slight decrease in nerve terminal number and increase in size of retinal nuclei with age. It is concluded that the adult retina responds to a different lighting environment by a relatively rapid change in the size of photoreceptor segments, by a progressive and large change in number of ribbon synapses and by a slower progressive and large change in the size of photoreceptor nerve terminals. The response is quantitatively determined by the strength of the stimulus but not in a linear fashion. These results are compared with the effects of environmental stimulation of other areas of the nervous system.
Collapse
Affiliation(s)
- C P Case
- Department of Anatomy, University of Bristol, U.K
| | | |
Collapse
|
35
|
Van Haesendonck E, Marc RE, Missotten L. New aspects of dopaminergic interplexiform cell organization in the goldfish retina. J Comp Neurol 1993; 333:503-18. [PMID: 8103778 DOI: 10.1002/cne.903330404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dopaminergic interplexiform cells (DA-IPCs) in the goldfish retina have been reexamined by light and electron microscopic immunocytochemistry with antisera against dopamine (DA) or tyrosine hydroxylase (TH). Successful immunostaining with a specific anti-DA antiserum offers further direct support for DA-IPCs. Anti-DA immunocytochemistry in combination with [3H]-DA autoradiography shows 92% colocalization of the two markers, indicating that [3H]-DA autoradiography is a reliable technique for identification of DA-IPCs. Incubations with anti-TH antiserum show that immunoreactive DA-IPCs have a homogeneous distribution, with an average frequency of 71 +/- 8 cells/mm2 in retinas of 14-15 cm long goldfish. Their arrangement is distinctly nonrandom. Electron microscopy of TH-immunoreactive cell processes confirms that horizontal cell axons synapse onto DA-IPCs and adds the following junctional arrangements to the circuit diagram of the DA-IPC: 1) adjacent serial synapses between DA-IPCs, external horizontal cells, and putative glycinergic interplexiform cells, 2) junctional appositions between DA-IPCs and photoreceptor cells, 3) junctional appositions between neighbouring DA-IPCs, and 4) the "gap junctional complex," typically consisting of a DA-IPC process juxtaposed with a gap junction between horizontal cell axons. The gap junction is flanked by clusters of small, round vesicles and groups of electron-dense structures resembling intermediate filaments. These morphological results support the functional involvement of DA-IPCs in adaptive retinomotor movements and in horizontal cell gap junction modulation and/or dynamics. They also suggest particular interaction between the dopaminergic and the glycinergic IPC system in the outer plexiform layer of goldfish retina.
Collapse
|
36
|
Witkovsky P, Nicholson C, Rice ME, Bohmaker K, Meller E. Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc Natl Acad Sci U S A 1993; 90:5667-71. [PMID: 8516316 PMCID: PMC46782 DOI: 10.1073/pnas.90.12.5667] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dopamine reaches targets in the outer retina of the clawed frog (Xenopus laevis) by diffusion from a network of dopaminergic cells and processes located predominantly at the junction of inner nuclear and inner plexiform layers. We obtained values for the steady-state release, uptake, and extracellular concentration of dopamine in the retina by a combination of HPLC (with electrochemical detection), scintillation spectroscopy, and fast-scan cyclic voltammetry. Vitreal concentrations of dopamine varied from 564 +/- 109 nM in light-adapted eyes near the time of subjective dawn to 156 +/- 12 nM in dark-adapted eyes. The data are consistent with a simple model for steady-state dopamine diffusion from an appropriately sited thin-sheet source. This model was used to generate a profile of extracellular dopamine concentration as a function of retinal depth. The model predicted an increase in the dopamine concentration from the vitreous to the layer of dopaminergic cells, remaining constant from that layer to the distal tips of the photoreceptors. This prediction was borne out by comparing fast-scan voltammetric measures of dopamine at the distal tips of the receptors with the vitreal concentrations determined by HPLC using electrochemical detection.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | | | | | | | |
Collapse
|
37
|
Wagner HJ, Luo BG, Ariano MA, Sibley DR, Stell WK. Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies. J Comp Neurol 1993; 331:469-81. [PMID: 8509505 DOI: 10.1002/cne.903310404] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine plays an important role in modulating various aspects of retinal signal processing. The morphology of dopaminergic neurons and its physiological effects are well characterized. Two classes of receptor molecules (D1 and D2) were shown pharmacologically to mediate specific actions, with differences between individual groups of vertebrates. In an attempt to better understand dopaminergic mechanisms at the cellular level, we used antisera against D2 receptors and investigated the localization of the dopamine D2 receptor in the retinae of rat, rabbit, cow, chick, turtle, frog, and two fish species with immunofluorescence techniques. Antisera were raised in rabbits to two oligopeptides predicted from rat D2 receptor cDNA; one specific for the splice-variant insertion in the third cytoplasmic loop and the other directed towards the extracellular amino terminal region shared by both short and long isoforms. Preadsorption with the synthetic peptide resulted in a significant reduction of label, indicating the presence of specific binding in all species except turtle and goldfish. The pattern of labelling produced by the two antisera was essentially identical; however, the staining obtained with antiserum to the extracellular motif was always more intense. Specific staining was present in photoreceptor inner and outer segments, and in the outer and inner plexiform layers of all species. In mammals and chick, strongly fluorescent perikarya were observed in the ganglion cell layer and at the proximal margin of the inner nuclear layer. Label may be present in the pigment epithelium but could not be established beyond doubt. This pattern of labelling is in accordance with previous observations on D2 receptor localization by means of radioactive ligand binding and in situ hybridization techniques. It suggests that retinal dopamine acts as a neuromodulator as well as a transmitter. In the distal retina, it may reach its targets via diffusion over considerable distances, even crossing the outer limiting membrane; in the inner and outer plexiform layers, conventional synaptic transmission seems to coexist with paracrine addressing of more distant targets, and D2 receptors are expressed by both amacrine and ganglion cells.
Collapse
Affiliation(s)
- H J Wagner
- Department of Anatomy, University of Calgary Faculty of Medicine, Canada
| | | | | | | | | |
Collapse
|
38
|
Muresan Z, Besharse JC. D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J Comp Neurol 1993; 331:149-60. [PMID: 8509497 DOI: 10.1002/cne.903310202] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine induces several light adaptive changes in amphibian retina via receptors with D2-like pharmacology, but the identity of the primary target cells has not been determined. Using a fluorescent probe consisting of a selective D2 antagonist, N-(p-aminophenethyl)-spiperone (NAPS), derivatized with the fluorophore Bodipy (NAPS-Bodipy), we identified the distribution of dopamine binding sites in the retina of two amphibians, post-metamorphic Xenopus laevis and larval Ambystoma tigrinum. Specific labeling was defined as staining that was displaced by D2 selective ligands (eticlopride or sulpiride), but insensitive to D1 selective drugs (SCH 23390), adrenergic catecholamines (epinephrine or norepinephrine), or serotoninergic analogues (ketanserin). Both rod and cone cells showed specific dopamine D2-like binding sites arranged in clustered arrays on discrete membrane domains of the inner segment. Labeling of photoreceptor outer segments was continuous and was not displaced by competition with D2 selective ligands; this labeling was considered nonspecific. In addition, in both species, clustered binding of the D2-probe was found on Müller cells and on a subset of inner retinal cells with the morphology of amacrine/interplexiform cells. Our data provide direct evidence for D2 receptors on both rods and cones, and suggest that the receptors may be clustered into patches within a discrete cellular domain, the inner segment.
Collapse
Affiliation(s)
- Z Muresan
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400
| | | |
Collapse
|
39
|
Rudolf G, Wioland N. Acute blockade of dopamine receptors with haloperidol: a retinal model to study impairments of dopaminergic transmission. Eur J Pharmacol 1993; 230:259-62. [PMID: 8382615 DOI: 10.1016/0014-2999(93)90559-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A pulse of dopamine produces a transient dose-correlated increase in the transepithelial potential (TEP) of the chicken eye, mimicking the light-induced response, the light peak (LP). Acute blockade of retinal dopaminergic transmission with haloperidol, a mixed antagonist, produced a dose-correlated TEP voltage decrease which was rapidly reversed by intravitreal injection of dopamine. The LP recorded thereafter was strongly reduced. These data confirm the hypothesis that dopamine released by light from amacrine cells triggers light-induced changes in the TEP of the intact chicken eye, and that these potentials could well provide an electrophysiological tool to evaluate retinal dopaminergic deficiency.
Collapse
Affiliation(s)
- G Rudolf
- Laboratoire de Neurophysiologie et de Biologie des Comportements, CNRS-UPR 419, Strasbourg, France
| | | |
Collapse
|
40
|
Adler R. Plasticity and differentiation of retinal precursor cells. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 146:145-90. [PMID: 8360011 DOI: 10.1016/s0074-7696(08)60382-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Adler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
41
|
Affiliation(s)
- S H DeVries
- Department of Neurobiology, Fairchild Science Center, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
42
|
Cohen AI, Todd RD, Harmon S, O'Malley KL. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 1992; 89:12093-7. [PMID: 1334557 PMCID: PMC50704 DOI: 10.1073/pnas.89.24.12093] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the mouse, the light-sensitive pool of cAMP can be eliminated in the dark by application of the dopamine D2-like receptor agonists LY 171555 (quinpirole), (+)-N0437 (2-[N-(n-propyl)-N-2-(thienylethylamino)-5-hydroxytetralin]) , or (+)-3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride]. The rank-order affinity of the ability of the D2-like antagonists to block the action of LY 171555 matched that of the rat D4 receptor. Reverse transcription of retina mRNA followed by DNA amplification using D4-specific nucleotides demonstrates the presence of D4 mRNA in retina. In situ hybridization studies using D4-specific digoxygenin-labeled oligonucleotides or 35S-labeled UTP RNA probes demonstrate the presence of D4 mRNA in the photoreceptor cell layer and in the inner nuclear and ganglion cell layers. The modulation by D4 ligands of the dark level of light-sensitive cAMP in photoreceptors demonstrates the physiological coupling of the D4 receptor subtype.
Collapse
Affiliation(s)
- A I Cohen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
43
|
McCormack CA, Burnside B. A role for endogenous dopamine in circadian regulation of retinal cone movement. Exp Eye Res 1992; 55:511-20. [PMID: 1426081 DOI: 10.1016/0014-4835(92)90125-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cone movements in the retina of the Midas cichlid (Cichlasoma citrinellum) take place in response both to light and endogenous circadian signals. In the normal light/dark cycle (LD) cone myoids are long at night (50-55 microns), begin to contract before expected dawn, and with light onset contract to their fully contracted positions (5 microns) which are retained throughout the day. In continuous darkness (DD) cone myoids are fully elongate at night, but undergo pre-dawn contractions to partially contracted positions which they retain throughout expected day (20-25 microns). To investigate the mechanisms by which circadian signals modulate cone myoid movements in teleost retinas, we have tested the effects on circadian cone movements of optic nerve section, intraocular injection of dopamine agonists or antagonists, and intraocular injection of melatonin. We report here that both light-induced and circadian-driven cone myoid movements can occur in the absence of efferent input from higher centres: both are retained with full amplitude after optic nerve section in vivo. Intraocular injection studies suggest that circadian regulation of cone myoid movement is mediated locally within the eye by dopamine acting via a dopaminergic D2-receptor. Cone myoid contraction can be induced at midnight in LD or DD animals by intraocular injection of dopamine or the D2-receptor agonist LY171555. The partially contracted cones of DD animals at expected mid-day can be induced to fully contract by intraocular injection of dopamine or the D2-receptor agonist, or to elongate by intraocular injection of the dopamine D2-antagonist sulpiride. Furthermore, the pre-dawn cone myoid contraction observed in both LD and DD animals in response to circadian signals can be completely blocked in DD animals by intraocular injection of the D2-antagonist sulpiride shortly before the time of expected light onset. In contrast, circadian cone myoid movements were unaffected by intraocular injection of the D1-receptor agonist SCH23390, or the D1-receptor antagonist SKF38393. In addition, we report that intraocularly injected melatonin had no effect on cone position when injected in the light at mid-day, in darkness at midnight or in darkness just before expected light onset at dawn. However, both melatonin and iodomelatonin induced cone myoid contraction (the light-adaptive movement) when injected in darkness at expected mid-day in DD animals. This paradoxical result is not consistent with observations from other species in which melatonin induces dark-adaptive photoreceptor responses.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A McCormack
- Department of Optometry and Vision Sciences, University of Wales College of Cardiff, U.K
| | | |
Collapse
|
44
|
Douglas RH, Wagner HJ, Zaunreiter M, Behrens UD, Djamgoz MB. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Vis Neurosci 1992; 9:335-43. [PMID: 1390391 DOI: 10.1017/s0952523800010749] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The retinae of lower vertebrates undergo a number of structural changes during light adaptation, including the photomechanical contraction of cone myoids and the dispersion of melanin granules within the epithelial pigment. Since the application of dopamine to dark-adapted retinae is known to produce morphological changes that are characteristic of light adaptation, dopamine is accepted as a casual mechanism for such retinomotor movements. However, we report here that in the teleost fish, Aequidens pulcher, the intraocular injection of 6-hydroxydopamine (6-OHDA), a substance known to destroy dopaminergic retinal cells, has no effect on the triggering of light-adaptive retinomotor movements of the cones and epithelial pigment and only slightly depresses the final level of light adaptation reached. Furthermore, the retina continues to show circadian retinomotor changes even after 48 h in continual darkness that are similar in both control and 6-OHDA injected fish. Biochemical assay and microscopic examination showed that 6-OHDA had destroyed dopaminergic retinal cells. We conclude, therefore, that although a dopaminergic mechanism is probably involved in the control of light-induced retinomotor movements, it cannot be the only control mechanism, nor can it be the cause of circadian retinomotor migrations. Interestingly, 6-OHDA injected eyes never reached full retinomotor dark adaptation, suggesting that dopamine has a role to play in the retina's response to darkness.
Collapse
Affiliation(s)
- R H Douglas
- Department of Optometry & Visual Science, City University, London, U.K
| | | | | | | | | |
Collapse
|
45
|
Besharse JC, Witkovsky P. Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Vis Neurosci 1992; 8:243-9. [PMID: 1547160 DOI: 10.1017/s0952523800002893] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To test the hypothesis that light-evoked cone contraction in eye cups from Xenopus laevis is controlled through a direct mechanism initiated by the cone's own photopigment, we conducted spectral-sensitivity experiments. We estimate that initiation of contraction of red absorbing cones (611 nm) is 1.5 log units more sensitive to green (533 nm) than red (650 nm) light stimuli. The difference is comparable to that predicted from the spectral-sensitivity function of the green absorbing, principal rod (523 nm). Furthermore, 480-nm and 580-nm stimuli which are absorbed nearly equally by the principal rod have indistinguishable effects on cone contraction. We also found that light blockade of nighttime cone elongation is much more sensitive to green than to red light stimuli. Our observations are inconsistent with the hypothesis tested, and suggest that light-regulated cone motility is controlled through an indirect mechanism initiated primarily by the green absorbing, principal rod.
Collapse
Affiliation(s)
- J C Besharse
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City
| | | |
Collapse
|
46
|
Dearry A, Falardeau P, Shores C, Caron MG. D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA. Cell Mol Neurobiol 1991; 11:437-53. [PMID: 1835903 DOI: 10.1007/bf00734808] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. We have obtained a cDNA clone encoding a human retinal D2 dopamine receptor. 2. The longest open reading frame (1242 bp) of this clone encodes a protein of 414 amino acids having a predicted molecular weight of 47,000 and a transmembrane topology similar to that of other G protein-coupled receptors. 3. Transient transfection of COS-7 cells with an expression vector containing the clone resulted in expression of a protein possessing a pharmacological profile similar to that of the D2 dopamine receptor found in striatum and retina. 4. Northern blot analysis indicated that, in rat brain and retina, the mRNA for this receptor was 2.9 kb in size. 5. In situ hybridization was performed to examine the distribution of the mRNA for this receptor in human retina. Specific hybridization was detected in both the inner and the outer nuclear layers. 6. These findings are consistent with prior physiological and autoradiographic studies describing the localization of D2 dopamine receptors in vertebrate retinas. Our observations suggest that photoreceptors as well as cells in the inner nuclear layer of human retinas may express the mRNA for this D2 dopamine receptor.
Collapse
Affiliation(s)
- A Dearry
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
47
|
Meister B, Arvidsson U, Hemmings HC, Greengard P, Hökfelt T. Dopamine- and adenosine-3':5'-monophosphate (cAMP)-regulated phosphoprotein of Mr 32,000 (DARPP-32) in the retina of cat, monkey and human. Neurosci Lett 1991; 131:66-70. [PMID: 1791981 DOI: 10.1016/0304-3940(91)90338-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cellular localization of a dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32) was investigated in cat, monkey and human retina by immunohistochemistry. In cat, DARPP-32-immunoreactive cell bodies identified as Müller cells were demonstrated in the inner nuclear layer (INL) with processes closely surrounding the cell soma of photoreceptors in the outer nuclear layer. Some DARPP-32-IR cells were also seen in the nerve fiber layer (NFL) sending processes to the inner plexiform layer. In monkey and human retina, DARPP-32-IR cell bodies were also demonstrated in the INL, with few cells located in the NFL.
Collapse
Affiliation(s)
- B Meister
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
48
|
Ariano MA, Kang HC, Haugland RP, Sibley DR. Multiple fluorescent ligands for dopamine receptors. II. Visualization in neural tissues. Brain Res 1991; 547:208-22. [PMID: 1884196 DOI: 10.1016/0006-8993(91)90964-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Selective dopamine receptor ligands, (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4, 5-tetrahydro-3-methyl-[1H]-3-benzazepin-7-ol, the 4'-amino derivative of the high affinity D1 receptor antagonist SCH 23390, the high affinity D2 receptor antagonist N-(p-aminophenethyl)-spiperone or NAPS, and the D2 selective agonist, 2-(N-phenethyl-N-propyl)-amino-5-hydroxytetralin or PPHT were chemically coupled to the fluorescent compounds, Bodipy, Cascade blue, coumarin, fluorescein, rhodamine, or Texas red. The utility of the 6 fluorescent moieties linked to the 3 dopamine receptor binding ligands for anatomical study of regional and cellular distribution patterns of the two dopaminergic receptor subtypes has been assessed in frozen sections of the rat striatum and compared to our previous report using the rhodamine-labeled antagonists. The regional staining for the two dopaminergic receptor binding sites supports previous work using in vitro receptor autoradiographic analyses; the D1 receptor binding was more robust than that of D2 receptors in the caudate nucleus. The cellular element which most frequently expressed striatal D1 binding sites had a medium-diameter cell body. Medium-sized cells also exhibited fluorescence for the D2 binding site, as did a much larger diameter element; potentially the cholinergic interneuron of the caudate nucleus. The pharmacological specificity for each of the different D1 fluorescent antagonist ligands in the tissues was determined by competition with 100-fold excess of unlabeled SCH 23390 (non-specific binding), spiroperidol (binding selectivity), the stereoactive paired isomers of butaclamol, and the serotonin 5-HT2 receptor antagonist ketanserin. The same criteria were used to assess the different D2 fluorescent agonist and antagonist ligand derivatives. The anatomical efficacy of these novel ligands was determined using selective dichroic filters to stimulate the fluorescent moieties in the optimal excitation wavelength, and the amount of fluorescent dopamine receptor binding was photographically measured and contrasted for each of the newly synthesized fluoroprobes. Using the most pharmacologically specific and anatomically efficient of these novel fluoroprobes, we determined the localization pattern of the D1 and D2 dopamine receptor binding sites in tissues reported to exhibit both subtypes of the receptor. The cellular distribution of the dopamine receptor binding sites was determined concurrently using fluoroprobes in the forebrain, mesencephalon, pituitary, retina, and superior cervical ganglion of the rodent, and bovine adrenal medullary chromaffin cells were examined using the rhodamine-labeled antagonists.
Collapse
Affiliation(s)
- M A Ariano
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington 05405
| | | | | | | |
Collapse
|
49
|
Jiang M, Pandey S, Tran VT, Fong HK. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells. Proc Natl Acad Sci U S A 1991; 88:3907-11. [PMID: 1902575 PMCID: PMC51562 DOI: 10.1073/pnas.88.9.3907] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensitive events. Other G alpha-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to Gi-2 alpha and Gs alpha protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G alpha gene family, at least two other G alpha subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G alpha subunits were isolated and characterized. The results indicate that this G alpha subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.
Collapse
Affiliation(s)
- M Jiang
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
50
|
Witkovsky P, Dearry A. Chapter 10 Functional roles of dopamine in the vertebrate retina. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90031-v] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|