1
|
Monoclonal antibodies to fetal bovine serum acetylcholinesterase distinguish between acetylcholinesterases from ruminant and non-ruminant species. Chem Biol Interact 2020; 330:109225. [PMID: 32795450 DOI: 10.1016/j.cbi.2020.109225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Two types of cholinesterases (ChEs) are present in mammalian blood and tissues: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE regulates neurotransmission by hydrolyzing acetylcholine at the postsynaptic membranes and neuromuscular junctions, BChE in plasma has been suggested to be involved in detoxifying toxic compounds. This study was undertaken to establish the identity of circulating ChE activity in plasmas from domestic animals (bovine, ovine, caprine, porcine and equine) by assessing sensitivity to AChE-specific inhibitors (BW284c51 and edrophonium) and BChE-specific inhibitors (dibucaine, ethopropazine and Iso-OMPA) as well as binding to anti-FBS AChE monoclonal antibodies (MAbs). Based on the inhibition of ChE activity by ChE-specific inhibitors, it was determined that bovine, ovine and caprine plasma predominantly contain AChE, while porcine and equine plasma contain BChE. Three of the anti-FBS AChE MAbs, 4E5, 5E8 and 6H9, inhibited 85-98% of enzyme activity in bovine, ovine and caprine plasma, confirming that the esterase in these plasmas was AChE. These MAbs did not bind to purified recombinant human or mouse AChE, demonstrating that these MAbs were specific for AChEs from ruminant species. These MAbs did not inhibit the activity of purified human BChE, or ChE activity in porcine and equine plasma, confirming that the ChE in these plasmas was BChE. Taken together, these results demonstrate that anti-FBS AChE MAbs can serve as useful tools for distinguishing between AChEs from ruminant and non-ruminant species and BChEs.
Collapse
|
2
|
Characterization of butyrylcholinesterase in bovine serum. Chem Biol Interact 2017; 266:17-27. [PMID: 28189703 DOI: 10.1016/j.cbi.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 μg/mL in FBS, and 0.03 μg/mL in adult bovine serum, values lower than the 4 μg/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Collapse
|
3
|
Schopfer LM, Lockridge O, Brimijoin S. Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. Gen Comp Endocrinol 2015; 224:61-8. [PMID: 26073531 DOI: 10.1016/j.ygcen.2015.05.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
The ghrelin hormone is a 28 amino acid peptide esterified on serine 3 with octanoic acid. Ghrelin is inactivated by hydrolysis of the ester bond. Previous studies have relied on inhibitors to identify human butyrylcholinesterase (BChE) as the hydrolase in human plasma that converts ghrelin to desacyl ghrelin. The reaction of BChE with ghrelin is unusual because the rate of hydrolysis is very slow and the substrate is ten times larger than standard BChE substrates. These unusual features prompted us to re-examine the reaction, using human BChE preparations that were more than 98% pure. Conversion of ghrelin to desacyl ghrelin was monitored by MALDI TOF mass spectrometry. It was found that 5 different preparations of pure human BChE all hydrolyzed ghrelin, including BChE purified from human plasma, from Cohn fraction IV-4, BChE immunopurified by binding to monoclonals mAb2 and B2 18-5, and recombinant human BChE purified from culture medium. We reasoned that it was unlikely that a common contaminant that could be responsible for ghrelin hydrolysis would appear in all of these preparations. km was <1 μM, and kcat was ~1.4 min(-1). A Michaelis-Menten analysis employing these kinetic values together with serum concentrations of ghrelin and BChE demonstrated that BChE could hydrolyze all of the ghrelin in serum in ~1 h. It was concluded that BChE is physiologically relevant for the hydrolysis of ghrelin.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Peng H, Brimijoin S, Hrabovska A, Krejci E, Blake TA, Johnson RC, Masson P, Lockridge O. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma. Chem Biol Interact 2015; 243:82-90. [PMID: 26585590 DOI: 10.1016/j.cbi.2015.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022]
Abstract
Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals.
Collapse
Affiliation(s)
- Hong Peng
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Anna Hrabovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Eric Krejci
- Université Paris Descartes CNRS SSA COGNAC G UMR 8257 45 rue des Saints Pères, 75006, Paris, France.
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA.
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA.
| | - Patrick Masson
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Peng H, Brimijoin S, Hrabovska A, Targosova K, Krejci E, Blake TA, Johnson RC, Masson P, Lockridge O. Comparison of 5 monoclonal antibodies for immunopurification of human butyrylcholinesterase on Dynabeads: KD values, binding pairs, and amino acid sequences. Chem Biol Interact 2015; 240:336-45. [PMID: 26343001 DOI: 10.1016/j.cbi.2015.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/13/2015] [Accepted: 08/28/2015] [Indexed: 01/29/2023]
Abstract
Human butyrylcholinesterase (HuBChE) is a stoichiometric bioscavenger of nerve agents and organophosphorus pesticides. Mass spectrometry methods detect stable nerve agent adducts on the active site serine of HuBChE. The first step in sample preparation is immunopurification of HuBChE from plasma. Our goal was to identify monoclonal antibodies that could be used to immunopurify HuBChE on Dynabeads Protein G. Mouse anti-HuBChE monoclonal antibodies were obtained in the form of ascites fluid, dead hybridoma cells stored frozen at -80 °C for 30 years, or recently frozen hybridoma cells. RNA from 4 hybridoma cell lines was amplified by PCR for determination of their nucleotide and amino acid sequences. Full-length light and heavy chains were expressed, and the antibodies purified from culture medium. A fifth monoclonal was purchased. The 5 monoclonal antibodies were compared for ability to capture HuBChE from human plasma on Dynabeads Protein G. In addition, they were evaluated for binding affinity by Biacore and ELISA. Epitope mapping by pairing analysis was performed on the Octet Red96 instrument. The 5 monoclonal antibodies, B2 12-1, B2 18-5, 3E8, mAb2, and 11D8, had similar KD values of 10(-9) M for HuBChE. Monoclonal B2 18-5 outperformed the others in the Dynabeads Protein G assay where it captured 97% of the HuBChE in 0.5 ml plasma. Pairing analysis showed that 3E8 and B2 12-1 share the same epitope, 11D8 and B2 18-5 share the same epitope, but mAb2 and B2 12-1 or mAb2 and 3E8 bind to different epitopes on HuBChE. B2 18-5 was selected for establishment of a stable CHO cell line for production of mouse anti-HuBChE monoclonal.
Collapse
Affiliation(s)
- Hong Peng
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Anna Hrabovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 83232, Slovakia.
| | - Katarina Targosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 83232, Slovakia.
| | - Eric Krejci
- Université Paris Descartes CNRS UMR 8194, 45 Rue des Saints Pères, 75006 Paris, France.
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Patrick Masson
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2014; 148:34-46. [PMID: 25448037 DOI: 10.1016/j.pharmthera.2014.11.011] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Phase I clinical trials have shown that pure human butyrylcholinesterase (BChE) is safe when administered to humans. A potential therapeutic use of BChE is for prevention of nerve agent toxicity. A recombinant mutant of BChE that rapidly inactivates cocaine is being developed as a treatment to help recovering cocaine addicts avoid relapse into drug taking. These clinical applications rely on knowledge of the structure, stability, and properties of BChE, information that is reviewed here. Gene therapy with a vector that sustains expression for a year from a single injection is a promising method for delivering therapeutic quantities of BChE.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
7
|
Characterization of a novel BCHE "silent" allele: point mutation (p.Val204Asp) causes loss of activity and prolonged apnea with suxamethonium. PLoS One 2014; 9:e101552. [PMID: 25054547 PMCID: PMC4108472 DOI: 10.1371/journal.pone.0101552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of suxamethonium leading to the discovery of a novel BCHE variant (c.695T>A, p.Val204Asp). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation disrupts the catalytic triad and determines a “silent” phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with heterozygous atypical silent genotype. Electrophoretic analysis of plasma BChE of the proband and his mother showed that patient has a reduced amount of tetrameric enzyme in plasma and that minor fast-moving BChE components: monomer, dimer, and monomer-albumin conjugate are missing. Kinetic analysis showed that the p.Val204Asp/p.Asp70Gly-p.Ala539Thr BChE displays a pure Michaelian behavior with BTC as the substrate. Both catalytic parameters Km = 265 µM for BTC, two times higher than that of the atypical enzyme, and a low Vmax are consistent with the absence of activity against suxamethonium. Molecular dynamic (MD) simulations showed that the overall effect of the mutation p.Val204Asp is disruption of hydrogen bonding between Gln223 and Glu441, leading Ser198 and His438 to move away from each other with subsequent disruption of the catalytic triad functionality regardless of the type of substrate. MD also showed that the enzyme volume is increased, suggesting a pre-denaturation state. This fits with the reduced concentration of p.Ala204Asp/p.Asp70Gly-p.Ala539Thr tetrameric enzyme in the plasma and non-detectable fast moving-bands on electrophoresis gels.
Collapse
|
8
|
Schopfer LM, Masson P, Lamourette P, Simon S, Lockridge O. Detection of cresyl phosphate-modified butyrylcholinesterase in human plasma for chemical exposure associated with aerotoxic syndrome. Anal Biochem 2014; 461:17-26. [PMID: 24892986 DOI: 10.1016/j.ab.2014.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Flight crews complain of illness following a fume event in aircraft. A chemical in jet engine oil, the neurotoxicant tri-o-cresyl phosphate, after metabolic activation to cresyl saligenin phosphate makes a covalent adduct on butyrylcholinesterase (BChE). We developed a mass spectrometry method for detection of the cresyl phosphate adduct on human BChE as an indicator of exposure. Monoclonal mAb2, whose amino acid sequence is provided, was crosslinked to cyanogen bromide-activated Sepharose 4B and used to immunopurify plasma BChE treated with cresyl saligenin phosphate. BChE was released with acetic acid, digested with pepsin, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MSMS) on the Triple TOF 5600 mass spectrometer. Peptide FGES198AGAAS with an added mass of 170 Da from cresyl phosphate on serine 198 (Ser198) was detected as parent ion 966.4 Da. When characteristic daughter ions were monitored in the MSMS spectrum, the limit of detection was 0.1% cresyl saligenin phosphate inhibited plasma BChE. This corresponds to 2×10(-9) g in 0.5 ml or 23×10(-15) moles of inhibited BChE in 0.5 ml of plasma. In conclusion, a sensitive assay for exposure to tri-o-cresyl phosphate was developed. Laboratories that plan to use this method are cautioned that a positive result gives no proof that tri-o-cresyl phosphate is toxic at low levels.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Patrick Masson
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patricia Lamourette
- CEA Saclay, iBiTec-S/SPI, Laboratoire d'Etudes et de Recherche en Immunoanalyse, 91191 Gif sur Yvette Cedex, France
| | - Stéphanie Simon
- CEA Saclay, iBiTec-S/SPI, Laboratoire d'Etudes et de Recherche en Immunoanalyse, 91191 Gif sur Yvette Cedex, France
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Tacal O, Schopfer LM. Healthy F-16 pilots show no evidence of exposure to tri-ortho-cresyl phosphate through the on-board oxygen generating system. Chem Biol Interact 2014; 215:69-74. [DOI: 10.1016/j.cbi.2014.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
10
|
Hrabovska A, Bernard V, Krejci E. A novel system for the efficient generation of antibodies following immunization of unique knockout mouse strains. PLoS One 2010; 5:e12892. [PMID: 20886120 PMCID: PMC2944837 DOI: 10.1371/journal.pone.0012892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/18/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We wished to develop alternate production strategies to generate antibodies against traditionally problematic antigens. As a model we chose butyrylcholinesterase (BChE), involved in termination of cholinergic signaling, and widely considered as a poor immunogen. METHODOLOGY/PRINCIPAL FINDINGS Jettisoning traditional laborious in silico searching methods to define putative epitopes, we simply immunized available BChE knock-out mice with full-length recombinant BChE protein (having been produced for crystallographic analysis). Immunization with BChE, in practically any form (recombinant human or mouse BChE, BChE purified from human serum, native or denatured), resulted in strong immune responses. Native BChE produced antibodies that favored ELISA and immunostaining detection. Denatured and reduced BChE were more selective for antibodies specific in Western blots. Two especially sensitive monoclonal antibodies were found capable of detecting 0.25 ng of BChE within one min by ELISA. One is specific for human BChE; the other cross-reacts with mouse and rat BChE. Immunization of wild-type mice served as negative controls. CONCLUSIONS/SIGNIFICANCE We examined a simple, fast, and highly efficient strategy to produce antibodies by mining two expanding databases: namely those of knock-out mice and 3D crystallographic protein-structure analysis. We conclude that the immunization of knock-out mice should be a strategy of choice for antibody production.
Collapse
Affiliation(s)
- Anna Hrabovska
- Centre d'Etude de la Sensori-Motricité, Université Paris Descartes-CNRS-UMR8194, Paris, France.
| | | | | |
Collapse
|
11
|
Masson P, Froment MT, Gillon E, Nachon F, Darvesh S, Schopfer LM. Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1139-47. [PMID: 17690023 DOI: 10.1016/j.bbapap.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/09/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
The aryl-acylamidase (AAA) activity of butyrylcholinesterase (BuChE) has been known for a long time. However, the kinetic mechanism of aryl-acylamide hydrolysis by BuChE has not been investigated. Therefore, the catalytic properties of human BuChE and its peripheral site mutant (D70G) toward neutral and charged aryl-acylamides were determined. Three neutral (o-nitroacetanilide, m-nitroacetanilide, o-nitrophenyltrifluoroacetamide) and one positively charged (3-(acetamido) N,N,N-trimethylanilinium, ATMA) acetanilides were studied. Hydrolysis of ATMA by wild-type and D70G enzymes showed a long transient phase preceding the steady state. The induction phase was characterized by a hysteretic "burst". This reflects the existence of two enzyme states in slow equilibrium with different catalytic properties. Steady-state parameters for hydrolysis of the three acetanilides were compared to catalytic parameters for hydrolysis of esters giving the same acetyl intermediate. Wild-type BuChE showed substrate activation while D70G displayed a Michaelian behavior with ATMA as with positively charged esters. Owing to the low affinity of BuChE for amide substrates, the hydrolysis kinetics of neutral amides was first order. Acylation was the rate-determining step for hydrolysis of aryl-acetylamide substrates. Slow acylation of the enzyme, relative to that by esters may, in part, be due suboptimal fit of the aryl-acylamides in the active center of BuChE. The hypothesis that AAA and esterase active sites of BuChE are non-identical was tested with mutant BuChE. It was found that mutations on the catalytic serine, S198C and S198D, led to complete loss of both activities. The silent variant (FS117) had neither esterase nor AAA activity. Mutation in the peripheral site (D70G) had the same effect on esterase and AAA activities. Echothiophate inhibited both activities identically. It was concluded that the active sites for esterase and AAA activities are identical, i.e. S198. This excludes any other residue present in the gorge for being the catalytic nucleophile pole.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, Unité d'Enzymologie, BP 87, 38702 La Tronche cedex, France.
| | | | | | | | | | | |
Collapse
|
12
|
Koetzner L, Woods JH. Characterization of butyrylcholinesterase antagonism of cocaine-induced hyperactivity. Drug Metab Dispos 2002; 30:716-23. [PMID: 12019200 DOI: 10.1124/dmd.30.6.716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although there are several published demonstrations that exogenous butyrylcholinesterase (EC 3.1.1.8) works to antagonize cocaine in vivo, a systematic characterization of the enzyme-drug interaction is lacking as is confirmation of the mechanism of effect. This has been addressed using cocaine-induced locomotor activity in mice as a behavioral endpoint. The enzyme was effective, but the enzyme dose-antagonist effect relationship revealed an asymptotic partial maximum effect. This effect was not due to dose-dependent enzyme pharmacokinetics or to a stimulant effect of the cocaine metabolites but rather to partial metabolism of cocaine. Since neither metabolite of cocaine inhibited enzyme activity as potently as cocaine, partial metabolism is not likely due to end-product inhibition. The enzyme reduced the maximum effect of cocaine on locomotor activity. The mechanistic data are generally consistent: the enzyme was inactive against the nonester dopamine/norepinephrine uptake inhibitor, nomifensine, and a paraoxon-inactivated sample of enzyme was ineffective. However, the enzyme was effective against bupropion, a nonester dopamine uptake inhibitor.
Collapse
Affiliation(s)
- Lee Koetzner
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
13
|
Darvesh S, Kumar R, Roberts S, Walsh R, Martin E. Butyrylcholinesterase-Mediated enhancement of the enzymatic activity of trypsin. Cell Mol Neurobiol 2001; 21:285-96. [PMID: 11569538 DOI: 10.1023/a:1010947205224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are enzymes that catalyze the hydrolysis of esters of choline. 2. Both AChE and BuChE have been shown to copurify with peptidases. 3. BuChE has also been shown to copurify with other proteins such as transferrin, with which it forms a stable complex. In addition, BuChE is found in association with beta-amyloid protein in Alzheimer brain tissues. 4. Since BuChE copurifies with peptidases, we hypothesized that BuChE interacts with these enzymes and that this association had an influence on their catalytic activities. One of the peptidases that copurifies with cholinesterases has specificity similar to trypsin, hence, this enzyme was used as a model to test this hypothesis. 5. Purified BuChE causes a concentration-dependent enhancement of the catalytic activity of trypsin while trypsin does not influence the catalytic activity of BuChE. 6. We suggest that, in addition to its esterase activity, BuChE may assume a regulatory role by interacting with other proteins.
Collapse
Affiliation(s)
- S Darvesh
- Department of Medicine, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
14
|
Estrada-Mondaca S, Fournier D. Stabilization of recombinant Drosophila acetylcholinesterase. Protein Expr Purif 1998; 12:166-72. [PMID: 9518457 DOI: 10.1006/prep.1997.0831] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The uses of pure and stable acetylcholinesterase can range from simple basic research to applications in environment quality assessment. In order to satisfy some of these needs its recombinant expression is routinely performed. Affinity-purified recombinant Drosophila melanogaster acetylcholinesterase proved to be instable; an apparent cause of this seemed to be the presence of contaminants with protease activity as evidenced by SDS-PAGE. The elimination of these accompanying products was achieved by anion-exchange, hydrophobic interaction, and cibacron blue affinity chromatography applied downstream from procainamide affinity chromatography. The utilization of a parallel affinity acting via an engineered histidine tail permitted the elimination of the copurified proteases as well. Despite the elimination of the contaminants, the apparently pure extracts were still unstable. It is shown that such instability can be counterbalanced by provoking protein-protein interactions, either between enzyme molecules or with other molecules such as bovine serum albumin. Another way to reduce instability is the addition of a reversible inhibitor or polyethylene glycol 3350.
Collapse
Affiliation(s)
- S Estrada-Mondaca
- Laboratoire d'Entomologie Appliquée, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
15
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
16
|
Wright CI, Geula C, Mesulam MM. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 1993; 34:373-84. [PMID: 8363355 DOI: 10.1002/ana.410340312] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Butyrylcholinesterase (BChE) and an altered form of acetylcholinesterase (AChE) accumulate in the plaques and tangles of Alzheimer's disease (AD). The sources for these plaque- and tangle-bound cholinesterases have not been identified. We now report that AChE and BChE activities with pH preferences and inhibitor selectivities identical to those of plaque- and tangle-bound cholinesterases are found in the astrocytes and oligodendrocytes of control and AD brains. These glial-type cholinesterases are selectively inhibited by indolamines and protease inhibitors. In control brains glial-type cholinesterases appear confined to the intracellular space, whereas in patients with AD they decorate plaques and tangles as well. In control and AD brains AChE-positive glia are distributed throughout the cortical layers and subcortical white matter, whereas BChE-positive glia reach high densities only in the deep cortical layers and white matter. In non-AD control brains, the ratio of BChE to AChE glia was higher in entorhinal and inferotemporal cortex, two regions with a high susceptibility to the pathology of AD, than in primary somatosensory and visual cortex, two areas with a relatively lower susceptibility to the disease process. There was no age-related differences in the density or distribution of cholinesterase-positive glia. In comparison with age-matched control specimens, AD brains had a significantly higher density of BChE glia and a lower density of AChE glia in entorhinal and inferotemporal regions but not in the primary somatosensory or visual areas. These results suggest that glia constitute a likely source for the cholinesterase activity of plaques and tangles and that a high ratio of BChE- to AChE-positive glia may play a permissive or causative role in the neuropathology of AD.
Collapse
Affiliation(s)
- C I Wright
- Bullard and Denny-Brown Laboratories, Department of Neurology, Beth Israel Hospital, Boston, MA 02215
| | | | | |
Collapse
|
17
|
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993; 41:31-91. [PMID: 8321908 DOI: 10.1016/0301-0082(93)90040-y] [Citation(s) in RCA: 836] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Rao RV, Balasubramanian AS. The peptidase activity of human serum butyrylcholinesterase: studies using monoclonal antibodies and characterization of the peptidase. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:103-10. [PMID: 8427627 DOI: 10.1007/bf01024921] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Purified human serum butyrylcholinesterase, which exhibits cholinesterase, aryl acylamidase, and peptidase activities, was cross-reacted with two different monoclonal antibodies raised against human serum butyrylcholinesterase. All three activities were immunoprecipitable at different dilutions of the two monoclonal antibodies. At the highest concentration of the antibodies used, nearly 100% of all three activities were precipitated, and could be recovered to 90-95% in the immunoprecipitate. The peptidase activity exhibited by the purified butyrylcholinesterase was further characterized using both Phe-Leu and Leu-enkephalin as substrates. The pH optimum of the peptidase was in the range of 7.5-9.5 and the divalent cations Co2+, Mn2+, and Zn2+ stimulated its activity. EDTA and other metal complexing agents inhibited its activity. Thiol agents and -SH group modifiers had no effect. The serine protease inhibitors, diisopropylfluorophosphate and phenyl methyl sulfonyl fluoride, did not inhibit. When histidine residues in the enzyme were modified by diethylpyrocarbonate, the peptidase activity was not affected, but the stimulatory effect of Co2+, Mn2+, and Zn2+ disappeared, suggesting the involvement of histidine residues in metal ion binding. These general characteristics of the peptidase activity were also exhibited by a 50 kD fragment obtained by limited alpha-chymotrypsin digestion of purified butyrylcholinesterase. Under all assay conditions, the peptidase released the two amino acids, leucine and phenylalanine, from the carboxy terminus of Leu-enkephalin as verified by paper chromatography and HPLC analysis. The results suggested that the peptidase behaved like a serine, cysteine, thiol-independent metallopeptidase.
Collapse
Affiliation(s)
- R V Rao
- Department of Neurological Sciences, Christian Medical College and Hospital Vellore, India
| | | |
Collapse
|
19
|
Wright CI, Guela C, Mesulam MM. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90:683-6. [PMID: 8421706 PMCID: PMC45728 DOI: 10.1073/pnas.90.2.683] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease.
Collapse
Affiliation(s)
- C I Wright
- Bullard and Denny-Brown Laboratories, Department of Neurology, Beth Israel Hospital, Boston, MA
| | | | | |
Collapse
|