1
|
Xiu M, Liu Y, Wang Z, Zhang J, Shi Y, Xie J, Shi L. Abnormal iron metabolism in the zona incerta in Parkinson's disease mice. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02913-3. [PMID: 40119221 DOI: 10.1007/s00702-025-02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and abnormal iron metabolism. While most of the current studies have focused on nigral iron deposition, there is still limited research into the role of iron in other brain regions. The zona incerta (ZI) is a heterogeneous subthalamic region and has extensive connections with the basal ganglia nucleus. Clinically, the ZI has been recognized as a new therapeutic target for PD. Deep brain stimulation of the ZI has been reported to relieve motor symptoms and experimental heat pain in patients with PD. The aim of the present study is to evaluate changes in iron levels in the ZI. Two neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), were used to prepare PD mice. By immunostaining, we first measured the success of MPTP or 6-OHDA injury. We found that the expressions of tyrosine hydroxylase were decreased after MPTP or 6-OHDA treatment. Secondly, we observed the changes of iron metabolism using Perls' iron staining and western blots. Our results showed that the numbers of iron-positive cells were significantly increased in the SN and ZI of MPTP/6-OHDA-treated mice. Moreover, the expression levels of ferritin and divalent metal transporter 1 (DMT1) in the ZI were also increased in the PD group. Glutathione peroxidase 4 (GPX4), a marker of ferroptosis, was also detected. Western blots revealed that MPTP significantly down-regulated the level of GPX4 in the ZI. As glial cells activation and neuroinflammation play important roles in the ion deposition, we finally investigated the microglial and astrocyte activation and inflammatory factors. These results suggested increased iron levels and inflammation may be present in the ZI in PD mice.
Collapse
Affiliation(s)
- Minxia Xiu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yanhong Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Zhaobo Wang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Jing Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yaying Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Wen J, Duanmu X, Tan S, Wu C, Peng X, Qin J, Guo T, Wang S, Wu H, Zhou C, Hong H, Yuan W, Zheng Q, Wu J, Chen J, Fang Y, Zhu B, Yan Y, Tian J, Zhang B, Zhang M, Guan X, Xu X. Spatiotemporal neurodegeneration of the substantia nigra and its connecting cortex and subcortex in Parkinson's disease. Eur J Neurol 2025; 32:e16546. [PMID: 39575860 PMCID: PMC11625911 DOI: 10.1111/ene.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND AND PURPOSE Neurodegeneration is uneven in Parkinson's disease (PD). This study aimed to investigate spatiotemporal neurodegeneration in functional subregions of the substantia nigra (SN) and their connected cortex and subcortex in people with PD. METHODS A total of 120 patients with early-stage PD, 45 patients with advanced PD, and 120 healthy controls (HCs) were enrolled. The SN, cortex, and subcortex were divided into sensorimotor, associative, and limbic regions, respectively. Iron deposition in the SN was assessed by quantitative susceptibility mapping (QSM). Cortex and subcortex volumes were calculated based on T1-weighted imaging. Region of interest (ROI) analysis and voxel-based analysis (VBA) were performed to explore spatiotemporal neurodegeneration in patients with PD. p values were corrected for false discovery rate. RESULTS In the ROI analysis, the QSM values for the limbic (p = 0.018) and sensorimotor SN subregions (p = 0.018) were higher in PD patients than in HCs, but were not higher in the associative SN subregion (p = 0.295). In VBA, all SN functional subregions had clusters with higher QSM values in PD patients than in HCs (p < 0.001). The limbic SN subregion was the only one in which iron deposition increased from early-stage to advanced PD (p = 0.023). The QSM values of VBA_limbic, sensorimotor, and associative SN had subregion-specific correlations with disease severity (p = 0.001 for the limbic and sensorimotor subregions, p = 0.003 for the associative subregion), motor symptoms (p = 0.057 for the limbic and sensorimotor subregion), and depression scores (p = 0.036 for the limbic subregion). CONCLUSION Iron deposition in SN functional subregions and atrophy of cortical and subcortical structures connected with the SN showed spatiotemporal selectivity. These findings reveal the potential pathogenesis of clinical heterogeneity in PD.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiting Peng
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shuyue Wang
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Hui Hong
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yuelin Fang
- Department of NeurologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bingting Zhu
- Department of NeurologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of NeurologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jun Tian
- Department of NeurologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of NeurologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Joint Laboratory of Clinical Radiologythe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Chakrabarty S, Nandi S, Bandopadhyay P, Das A, Azaharuddin M, Pal A, Ghosh S, Sett U, Nandy S, Basu T. Synthesis of novel hydrophilic celastrol nanoformulation by entrapment within calcium phosphate nanoparticle and study of its antioxidant activity against neurotoxin-induced damage in human neuroblastoma cells. Biochem Biophys Res Commun 2024; 735:150480. [PMID: 39094229 DOI: 10.1016/j.bbrc.2024.150480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.
Collapse
Affiliation(s)
- Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
5
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Yan S, Lu J, Duan B, Zhu H, Liu D, Li L, Qin Y, Li Y, Zhu W. Quantitative susceptibility mapping of multiple system atrophy and Parkinson's disease correlates with neurotransmitter reference maps. Neurobiol Dis 2024; 198:106549. [PMID: 38830476 DOI: 10.1016/j.nbd.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Bingfang Duan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Fan Y, Ma J, Yang D, Li X, Liang K, She Z, Qi X, Shi X, Gu Q, Zheng J, Li D. Clinical findings of hyperechoic substantia nigra in patients with Parkinson's disease. Eur J Neurosci 2024; 59:2702-2714. [PMID: 38469656 DOI: 10.1111/ejn.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
This study aims to analyse hyperechoic substantia nigra (HSN) characteristics and the correlation of HSN with clinical features and blood biomarkers in patients with Parkinson's disease (PD). Transcranial sonography (TCS) evaluations of the substantia nigra (SN) were performed in 40 healthy controls and 71 patients with PD, including patients with SN hyperechogenicity (SN+) and those with normal SN echogenicity (SN-). Evaluation of motor and non-motor symptoms was assessed by a series of rating scales. The uricase method was used to determine serum uric acid (UA) levels, and enzyme-linked immunosorbent assay (ELISA) was used to measure plasma interleukin (IL)-1β levels. TCS showed 92.50% specificity and 61.97% sensitivity in differentiating PD patients from controls. The area of SN+ contralateral to the side of initial motor symptoms (SNcontra) was larger than that ipsilateral to the side of initial motor symptoms (SNipsi). The PDSN+ group had lower Argentine Hyposmia Rating Scale (AHRS) scores and UA levels than the PDSN- group. Binary logistic regression analysis revealed that AHRS scores and UA levels could be independent predictors for HSN. The larger SN echogenic area (SNL) sizes positively correlated with plasma IL-1β levels in PD patients with SN+. The present study provides further evidence of the potential of SN echogenicity as an imaging biomarker for PD diagnosis. PD patients with HSN have more severe non-motor symptoms of hyposmia. HSN in PD patients is related to the mechanism of abnormal iron metabolism and microglial activation.
Collapse
Affiliation(s)
- Yongyan Fan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dawei Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohuan Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Keke Liang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Zonghan She
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Yan S, Lu J, Li Y, Cho J, Zhang S, Zhu W, Wang Y. Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson's disease. Eur Radiol 2024; 34:3074-3083. [PMID: 37853173 DOI: 10.1007/s00330-023-10283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Iron deposition and mitochondrial dysfunction are closely associated with the genesis and progression of Parkinson's disease (PD). This study aims to extract susceptibility and oxygen extraction fraction (OEF) values of deep grey matter (DGM) to explore spatiotemporal progression patterns of brain iron-oxygen metabolism in PD. METHODS Ninety-five PD patients and forty healthy controls (HCs) were included. Quantitative susceptibility mapping (QSM) and OEF maps were computed from MRI multi-echo gradient echo data. Analysis of covariance (ANCOVA) was used to compare mean susceptibility and OEF values in DGM between early-stage PD (ESP), advanced-stage PD (ASP) patients and HCs. Then Granger causality analysis on the pseudo-time-series of MRI data was applied to assess the causal effect of early altered nuclei on iron content and oxygen extraction in other DGM nuclei. RESULTS The susceptibility values in substantia nigra (SN), red nucleus, and globus pallidus (GP) significantly increased in PD patients compared with HCs, while the iron content in GP did not elevate obviously until the late stage. The mean OEF values for the caudate nucleus, putamen, and dentate nucleus were higher in ESP patients than in ASP patients or/and HCs. We also found that iron accumulation progressively expands from the midbrain to the striatum. These alterations were correlated with clinical features and improved AUC for early PD diagnosis to 0.824. CONCLUSIONS Abnormal cerebral iron deposition and tissue oxygen utilization in PD measured by QSM and OEF maps could reflect pathological alterations in neurodegenerative processes and provide valuable indicators for disease identification and management. CLINICAL RELEVANCE STATEMENT Noninvasive assessment of cerebral iron-oxygen metabolism may serve as clinical evidence of pathological changes in PD and improve the validity of diagnosis and disease monitoring. KEY POINTS • Quantitative susceptibility mapping and oxygen extraction fraction maps indicated the cerebral pathology of abnormal iron accumulation and oxygen metabolism in Parkinson's disease. • Iron deposition is mainly in the midbrain, while altered oxygen metabolism is concentrated in the striatum and cerebellum. • The susceptibility and oxygen extraction fraction values in subcortical nuclei were associated with clinical severity.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Fornstedt Wallin B. Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson's disease and during ageing in non-Parkinsonian subjects. J Neural Transm (Vienna) 2024; 131:213-228. [PMID: 38238531 DOI: 10.1007/s00702-023-02718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.
Collapse
Affiliation(s)
- Bodil Fornstedt Wallin
- Department of Pharmacology, University of Göteborg (at the time of the study), Göteborg, Sweden.
| |
Collapse
|
10
|
Xiao Z, Wang X, Pan X, Xie J, Xu H. Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Exp Neurol 2024; 372:114614. [PMID: 38007207 DOI: 10.1016/j.expneurol.2023.114614] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.
Collapse
Affiliation(s)
- Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xiaoya Wang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xuening Pan
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Xu Y, Huang X, Geng X, Wang F. Meta-analysis of iron metabolism markers levels of Parkinson's disease patients determined by fluid and MRI measurements. J Trace Elem Med Biol 2023; 78:127190. [PMID: 37224790 DOI: 10.1016/j.jtemb.2023.127190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson' s disease (PD) is a progressive neurodegenerative disease featured neuropathologically by the loss of dopaminergic neurons of the substantia nigra (SN). Iron overload in the SN is mainly relative to the pathology and pathogenesis of PD. Postmortem samples of PD has indicated the increased levels of brain iron. However, there is no consensus on iron content through iron-sensitive magnetic resonance imaging (MRI) techniques and the alteration of iron and iron related metabolism markers levels in blood and cerebrospinal fluids (CSF) are still unclear based on the current studies. In this study, we performed a meta-analysis to explore the iron concentration and iron metabolism markers levels through iron-sensitive MRI quantification and body fluid. METHODS A comprehensive literature search was performed in PubMed, EMBASE and Cochrane Library databases for relevant published studies that analyzed iron load in the SN of PD patients using quantitative susceptibility mapping (QSM) or susceptibility weighting imaging (SWI), and iron metabolism markers, iron, ferritin, transferrin, total iron-binding capacity(TIBC)in CSF sample or serum/plasma sample (from Jan 2010 to Sep 2022 to filter these inaccurate researches attributed to unadvanced equipment, inaccurate analytical methods). Standardized mean differences (SMD) or mean differences (MD) and 95% confidence intervals (CI) with random or fixed effect model was used to estimate the results. RESULTS Forty-two articles fulfilled the inclusion criteria including 19 for QSM, 6 for SWI, and 17 for serum/plasma/CSF sample including 2874 PD patients and 2821 healthy controls (HCs). Our meta-analysis results founded a notable difference for QSM values increase (19.67, 95% CI=18.69-20.64) and for SWI measurements (-1.99, 95% CI= -3.52 to -0.46) in the SN in PD patients. However, the serum/plasma/CSF iron levels and serum/plasma ferritin, transferrin, total iron-binding capacity (TIBC) did not differ significantly between PD patients and HCs. CONCLUSIONS Our meta-analysis showed the consistent increase in the SN in PD patients using QSM and SWI techniques of iron-sensitive MRI measures while no significant differences were observed in other iron metabolism markers levels.
Collapse
Affiliation(s)
- Yiyuan Xu
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xinyu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
13
|
Martínez M, Ariz M, Alvarez I, Castellanos G, Aguilar M, Hernández-Vara J, Caballol N, Garrido A, Bayés À, Vilas D, Marti MJ, Pastor P, de Solórzano CO, Pastor MA. Brainstem neuromelanin and iron MRI reveals a precise signature for idiopathic and LRRK2 Parkinson's disease. NPJ Parkinsons Dis 2023; 9:62. [PMID: 37061532 PMCID: PMC10105708 DOI: 10.1038/s41531-023-00503-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
Neuromelanin (NM) loss in substantia nigra pars compacta (SNc) and locus coeruleus (LC) reflects neuronal death in Parkinson's disease (PD). Since genetically-determined PD shows varied clinical expressivity, we wanted to accurately quantify and locate brainstem NM and iron, to discover whether specific MRI patterns are linked to Leucine-rich repeat kinase 2 G2019S PD (LRRK2-PD) or idiopathic Parkinson's disease (iPD). A 3D automated MRI atlas-based segmentation pipeline (3D-ABSP) for NM/iron-sensitive MRI images topographically characterized the SNc, LC, and red nucleus (RN) neuronal loss and calculated NM/iron contrast ratio (CR) and normalized volume (nVol). Left-side NM nVol was larger in all groups. PD had lower NM CR and nVol in ventral-caudal SNc, whereas iron increased in lateral, medial-rostral, and caudal SNc. The SNc NM CR reduction was associated with psychiatric symptoms. LC CR and nVol discriminated better among subgroups: LRRK2-PD had similar LC NM CR and nVol as that of controls, and larger LC NM nVol and RN iron CR than iPD. PD showed higher iron SNc nVol than controls, especially among LRRK2-PD. ROC analyses showed an AUC > 0.92 for most pairwise subgroup comparisons, with SNc NM being the best discriminator between HC and PD. NM measures maintained their discriminator power considering the subgroup of PD patients with less than 5 years of disease duration. The SNc iron CR and nVol increase was associated with longer disease duration in PD patients. The 3D-ABSP sensitively identified NM and iron MRI patterns strongly correlated with phenotypic PD features.
Collapse
Affiliation(s)
- Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Mikel Ariz
- Ciberonc and Solid Tumours and Biomarkers Program, CIMA University of Navarra, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miquel Aguilar
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurology Department, Hospital Universitari Vall D´Hebron, Neurodegenerative Diseases Research Group, Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Núria Caballol
- Department of Neurology, Complex Hospitalari Moisès Broggi, Sant Joan Despí, Barcelona, Spain
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Àngels Bayés
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Dolores Vilas
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain
| | - Maria Jose Marti
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain.
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain.
| | | | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain.
- Neurosciences, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
14
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Uceda AB, Frau J, Vilanova B, Adrover M. On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles. Int J Biol Macromol 2023; 229:92-104. [PMID: 36584779 DOI: 10.1016/j.ijbiomac.2022.12.262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
16
|
Baicalein Attenuates Brain Iron Accumulation through Protecting Aconitase 1 from Oxidative Stress in Rotenone-Induced Parkinson's Disease in Rats. Antioxidants (Basel) 2022; 12:antiox12010012. [PMID: 36670874 PMCID: PMC9854573 DOI: 10.3390/antiox12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aconitase 1 (ACO1) links oxidative stress and iron accumulation in Parkinson's disease (PD). ACO1 loses its aconitase activity and turns into iron regulatory protein 1 (IRP1) upon oxidative stress. IRP1 plays an important role in the accumulation of intracellular iron. Baicalein is a flavonoid isolated from the roots of Scutellaria baicalensis. The present results show that baicalein could bind to ACO1 and protect its isoform from the oxidative stress induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Furthermore, baicalein promoted aconitase activity and inhibited IRP1 activation in rotenone-induced PD models. Additionally, baicalein decreased the hydroxyl radicals generated by iron. In conclusion, baicalein attenuated iron accumulation and iron-induced oxidative stress in the brain of PD rats by protecting ACO1.
Collapse
|
17
|
Zhang D, Yao J, Sun J, Tong Q, Zhu S, Wang J, Chen L, Ma J, He H, Wu T. Quantitative Susceptibility Mapping and Free Water Imaging of Substantia Nigra in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2469-2478. [PMID: 36404557 DOI: 10.3233/jpd-223499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The utility of imaging methods to detect iron content in the substantia nigra pars compacta (SNc) and free water imaging in the posterior substantia nigra (pSN) has the potential to be imaging markers for the detection of Parkinson's disease (PD). OBJECTIVE This study aimed to compare the discriminative power of above methods, and whether the combination can improve the diagnostic potential of PD. METHODS Quantitative susceptibility mapping (QSM) and diffusion-weighted data were obtained from 41 healthy controls (HC), 37 patients with idiopathic REM sleep behavior disorder (RBD), and 65 patients with PD. Mean QSM values of bilateral SNc and mean isotropic volume fraction (Viso) values of bilateral pSN (mean QSM|Viso values of bilateral SNc|pSN) were separately calculated and compared among the groups. RESULTS Mean QSM|Viso values of bilateral SNc|pSN were significantly higher for RBD and PD patients compared to HC and were significantly higher in PD patients than in RBD patients. The power of the mean QSM|Viso values of bilateral SNc|pSN and combined mean QSM and Viso values was 0.873, 0.870, and 0.961 in discriminating PD and HC, 0.779, 0.719, and 0.864 in discriminating RBD from HC, 0.634, 0.636, and 0.689 in discriminating PD and RBD patients. CONCLUSION QSM and free water imaging have similar discriminative power in the detection of prodromal and clinical PD, while combination of these two methods increases discriminative power. Our findings suggest that the combination of QSM and free water imaging has the potential to become an imaging marker for the diagnosis of PD.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinghong Ma
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
19
|
Oun A, Soliman A, Trombetta-Lima M, Tzepapadaki A, Tsagkari D, Kortholt A, Dolga AM. LRRK2 protects immune cells against erastin-induced Ferroptosis. Neurobiol Dis 2022; 175:105917. [DOI: 10.1016/j.nbd.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
20
|
Shepherd TM, Hoch MJ. MRI-Visible Anatomy of the Brainstem. Neuroimaging Clin N Am 2022; 32:553-564. [PMID: 35843662 DOI: 10.1016/j.nic.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human brainstem internal anatomy is intricate, complex, and essential to normal brain function. The brainstem is affected by stroke, multiple sclerosis, and most neurodegenerative diseases-a 1-mm focus of pathologic condition can have profound clinical consequences. Unfortunately, detailed internal brainstem anatomy is difficult to see with conventional MRI sequences. We review normal brainstem anatomy visualized on widely available clinical 3-T MRI scanners using fast gray matter acquisition T1 inversion recovery, probabilistic diffusion tractography, neuromelanin, and susceptibility-weighted imaging. Better anatomic localization using these recent innovations improves our ability to diagnose, localize, and treat brainstem diseases. We aim to provide an accessible review of the most clinically relevant brainstem neuroanatomy.
Collapse
Affiliation(s)
- Timothy M Shepherd
- Department of Radiology, New York University Langone School of Medicine, 660 First Avenue, Room 230D, New York, NY 10016, USA.
| | - Michael J Hoch
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Suite 130, Philadelphia, PA 19104, USA. https://twitter.com/RVUhound
| |
Collapse
|
21
|
Du G, Wang E, Sica C, Chen H, De Jesus S, Lewis MM, Kong L, Connor J, Mailman RB, Huang X. Dynamics of Nigral Iron Accumulation in Parkinson's Disease: From Diagnosis to Late Stage. Mov Disord 2022; 37:1654-1662. [PMID: 35614551 PMCID: PMC9810258 DOI: 10.1002/mds.29062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Higher nigral iron has been reported in Parkinson's disease (PD). OBJECTIVE The aim is to understand the dynamics of nigral iron accumulation in PD and its association with drug treatment. METHODS Susceptibility magnetic resonance imaging data were obtained from 79 controls and 18 drug-naive (PDDN ) and 87 drug-treated (PDDT ) PD patients. Regional brain iron in basal ganglia and cerebellar structures was estimated using quantitative susceptibility mapping. Nigral iron was compared between PDDN and PDDT subgroups defined by disease duration (early [PDE, <2 years], middle [PDM, 2-6 years], and later [PDL, >6 years]). Associations with both disease duration and types of antiparkinson drugs were explored using regression analysis. RESULTS Compared to controls, PDDN had lower iron in the substantia nigra (P = 0.018), caudate nucleus (P = 0.038), and globus pallidus (P = 0.01) but not in the putamen or red nucleus. In contrast, PDDT had higher iron in the nigra (P < 0.001) but not in other regions, compared to either controls or PDDN . Iron in the nigra increased with disease duration (PDE > PDDN [P = 0.001], PDM > PDE [P = 0.045]) except for PDM versus PDL (P = 0.226). Levodopa usage was associated with higher (P = 0.013) nigral iron, whereas lower nigral iron was correlated with selegiline usage (P = 0.030). CONCLUSION Nigral iron is lower before the start of dopaminergic medication and then increases throughout the disease until it plateaus at late stages, suggesting increased iron may not be an etiological factor. Interestingly, PD medications may have differential associations with iron accumulation that need further investigation. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guangwei Du
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Ernest Wang
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Christopher Sica
- Department of Radiology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Hairong Chen
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Sol De Jesus
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Mechelle M. Lewis
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033
| | - Lan Kong
- School of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033
| | - James Connor
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033
| | - Xuemei Huang
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033
- Department of Kinesiology, Pennsylvania State University, University Park PA 16802
| |
Collapse
|
22
|
Lancione M, Donatelli G, Del Prete E, Campese N, Frosini D, Cencini M, Costagli M, Biagi L, Lucchi G, Tosetti M, Godani M, Arnaldi D, Terzaghi M, Provini F, Pacchetti C, Cortelli P, Bonanni E, Ceravolo R, Cosottini M. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage 2022; 260:119454. [PMID: 35810938 DOI: 10.1016/j.neuroimage.2022.119454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.
Collapse
Affiliation(s)
- Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Research Foundation, Pisa, Italy; Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Eleonora Del Prete
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Cencini
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Giacomo Lucchi
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Topiwala A, Wang C, Ebmeier KP, Burgess S, Bell S, Levey DF, Zhou H, McCracken C, Roca-Fernández A, Petersen SE, Raman B, Husain M, Gelernter J, Miller KL, Smith SM, Nichols TE. Associations between moderate alcohol consumption, brain iron, and cognition in UK Biobank participants: Observational and mendelian randomization analyses. PLoS Med 2022; 19:e1004039. [PMID: 35834561 PMCID: PMC9282660 DOI: 10.1371/journal.pmed.1004039] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Brain iron deposition has been linked to several neurodegenerative conditions and reported in alcohol dependence. Whether iron accumulation occurs in moderate drinkers is unknown. Our objectives were to investigate evidence in support of causal relationships between alcohol consumption and brain iron levels and to examine whether higher brain iron represents a potential pathway to alcohol-related cognitive deficits. METHODS AND FINDINGS Observational associations between brain iron markers and alcohol consumption (n = 20,729 UK Biobank participants) were compared with associations with genetically predicted alcohol intake and alcohol use disorder from 2-sample mendelian randomization (MR). Alcohol intake was self-reported via a touchscreen questionnaire at baseline (2006 to 2010). Participants with complete data were included. Multiorgan susceptibility-weighted magnetic resonance imaging (9.60 ± 1.10 years after baseline) was used to ascertain iron content of each brain region (quantitative susceptibility mapping (QSM) and T2*) and liver tissues (T2*), a marker of systemic iron. Main outcomes were susceptibility (χ) and T2*, measures used as indices of iron deposition. Brain regions of interest included putamen, caudate, hippocampi, thalami, and substantia nigra. Potential pathways to alcohol-related iron brain accumulation through elevated systemic iron stores (liver) were explored in causal mediation analysis. Cognition was assessed at the scan and in online follow-up (5.82 ± 0.86 years after baseline). Executive function was assessed with the trail-making test, fluid intelligence with puzzle tasks, and reaction time by a task based on the "Snap" card game. Mean age was 54.8 ± 7.4 years and 48.6% were female. Weekly alcohol consumption was 17.7 ± 15.9 units and never drinkers comprised 2.7% of the sample. Alcohol consumption was associated with markers of higher iron (χ) in putamen (β = 0.08 standard deviation (SD) [95% confidence interval (CI) 0.06 to 0.09], p < 0.001), caudate (β = 0.05 [0.04 to 0.07], p < 0.001), and substantia nigra (β = 0.03 [0.02 to 0.05], p < 0.001) and lower iron in the thalami (β = -0.06 [-0.07 to -0.04], p < 0.001). Quintile-based analyses found these associations in those consuming >7 units (56 g) alcohol weekly. MR analyses provided weak evidence these relationships are causal. Genetically predicted alcoholic drinks weekly positively associated with putamen and hippocampus susceptibility; however, these associations did not survive multiple testing corrections. Weak evidence for a causal relationship between genetically predicted alcohol use disorder and higher putamen susceptibility was observed; however, this was not robust to multiple comparisons correction. Genetically predicted alcohol use disorder was associated with serum iron and transferrin saturation. Elevated liver iron was observed at just >11 units (88 g) alcohol weekly c.f. <7 units (56 g). Systemic iron levels partially mediated associations of alcohol intake with brain iron. Markers of higher basal ganglia iron associated with slower executive function, lower fluid intelligence, and slower reaction times. The main limitations of the study include that χ and T2* can reflect changes in myelin as well as iron, alcohol use was self-reported, and MR estimates can be influenced by genetic pleiotropy. CONCLUSIONS To the best of our knowledge, this study represents the largest investigation of moderate alcohol consumption and iron homeostasis to date. Alcohol consumption above 7 units weekly associated with higher brain iron. Iron accumulation represents a potential mechanism for alcohol-related cognitive decline.
Collapse
Affiliation(s)
- Anya Topiwala
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Steven Bell
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Daniel F. Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Celeste McCracken
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Masud Husain
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Thomas E. Nichols
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
24
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 PMCID: PMC9188502 DOI: 10.1007/s00702-022-02505-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J. Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 DOI: 10.1007/s00702-022-025055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 05/26/2023]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
27
|
Ginsenoside Rg1 Plays a Neuroprotective Role in Regulating the Iron-Regulated Proteins and Against Lipid Peroxidation in Oligodendrocytes. Neurochem Res 2022; 47:1721-1735. [PMID: 35229270 DOI: 10.1007/s11064-022-03564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Progressive loss of dopaminergic neurons in the substantia nigra (SN) is one of the major pathological changes. However, the reasons for the dopaminergic neuron loss are still ambiguous and further studies are needed to evaluate the in-depth mechanisms of neuron death. Oxidative stress is a significant factor causing neuronal damage. Dopaminergic neurons in the SN are susceptible to oxidative stress, which is closely associated with iron dyshomeostasis in the brain. Ginsenoside Rg1 from ginseng plays a crucial role in neuroprotective effects through anti-inflammation and attenuating the aggregation of abnormal α-synuclein. In our study, we established a chronic PD mouse model by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine combined with probenecid and explored the effect of Rg1 on the oxidative stress and brain iron homeostasis. Rg1 was verified to improve the level of tyrosine hydroxylase and anti-oxidant stress. In addition, Rg1 maintained the iron-regulated protein homeostasis by increasing the expression of ferritin heavy chain and decreasing ferritin light chain in oligodendrocytes, especially the mature oligodendrocytes (OLs). Furthermore, Rg1 had a positive effect on the myelin sheath protection and increased the number of mature oligodendrocytes, proved by the increased staining of myelin basic protein and CC-1. In conclusion, Rg1 could play a neuroprotective role through remitting the iron-regulated protein dyshomeostasis by ferritin and against lipid peroxidation stress in oligodendrocytes.
Collapse
|
28
|
Howard CM, Jain S, Cook AD, Packard LE, Mullin HA, Chen N, Liu C, Song AW, Madden DJ. Cortical iron mediates age-related decline in fluid cognition. Hum Brain Mapp 2022; 43:1047-1060. [PMID: 34854172 PMCID: PMC8764476 DOI: 10.1002/hbm.25706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023] Open
Abstract
Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.
Collapse
Affiliation(s)
- Cortney M. Howard
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Shivangi Jain
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | - Angela D. Cook
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Lauren E. Packard
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Hollie A. Mullin
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Nan‐kuei Chen
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Chunlei Liu
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Allen W. Song
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - David J. Madden
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
29
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
30
|
Goulding SR, Anantha J, Collins LM, Sullivan AM, O'Keeffe GW. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease. Neural Regen Res 2022; 17:38-44. [PMID: 34100424 PMCID: PMC8451580 DOI: 10.4103/1673-5374.314290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Susan R. Goulding
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Jayanth Anantha
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
32
|
Jellen LC, Lewis MM, Du G, Wang X, Galvis MLE, Krzyzanowski S, Capan CD, Snyder AM, Connor JR, Kong L, Mailman RB, Brundin P, Brundin L, Huang X. Low plasma serotonin linked to higher nigral iron in Parkinson's disease. Sci Rep 2021; 11:24384. [PMID: 34934078 PMCID: PMC8692322 DOI: 10.1038/s41598-021-03700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence suggests nigral iron accumulation plays an important role in the pathophysiology of Parkinson's disease (PD), contributing to dopaminergic neuron loss in the substantia nigra pars compacta (SNc). Converging evidence suggests this accumulation might be related to, or increased by, serotonergic dysfunction, a common, often early feature of the disease. We investigated whether lower plasma serotonin in PD is associated with higher nigral iron. We obtained plasma samples from 97 PD patients and 89 controls and MRI scans from a sub-cohort (62 PD, 70 controls). We measured serotonin concentrations using ultra-high performance liquid chromatography and regional iron content using MRI-based quantitative susceptibility mapping. PD patients had lower plasma serotonin (p < 0.0001) and higher nigral iron content (SNc: p < 0.001) overall. Exclusively in PD, lower plasma serotonin was correlated with higher nigral iron (SNc: r(58) = - 0.501, p < 0.001). This correlation was significant even in patients newly diagnosed (< 1 year) and stronger in the SNc than any other region examined. This study reveals an early, linear association between low serotonin and higher nigral iron in PD patients, which is absent in controls. This is consistent with a serotonin-iron relationship in the disease process, warranting further studies to determine its cause and directionality.
Collapse
Affiliation(s)
- Leslie C Jellen
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xi Wang
- Public Health Sciences, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Martha L Escobar Galvis
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Stanislaw Krzyzanowski
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Colt D Capan
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Amanda M Snyder
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lan Kong
- Public Health Sciences, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Richard B Mailman
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Lena Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Xuemei Huang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Departments of Neurosurgery and Radiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Kinesiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Translational Brain Research Center, Penn State University-Hershey Medical Center, 500 University Dr., Mail Code H037, Hershey, PA, 17033, USA.
| |
Collapse
|
33
|
Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, Kumaran R, Papazoglou I, Heaton GR, Bandopadhyay R, Maio N, Kim C, LaVoie MJ, Gershlick DC, Cookson MR. Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol 2021; 19:e3001480. [PMID: 34914695 PMCID: PMC8675653 DOI: 10.1371/journal.pbio.3001480] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia. Brain iron deposition is a feature of Parkinson’s disease pathology, but how this contributes to neurodegeneration is unclear. This study show that Parkinson’s disease-linked mutations in LRRK2 cause aberrant brain iron accumulation in vivo and iron dyshomeostasis in vitro, supporting a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.
Collapse
Affiliation(s)
- Adamantios Mamais
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Jillian H. Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Natalie Landeck
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Rebekah G. Langston
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Nathan Smith
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Manik C. Ghosh
- Molecular Medicine Branch, ‘Eunice Kennedy Shriver’ National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | | | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Ioannis Papazoglou
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George R. Heaton
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
| | - Rina Bandopadhyay
- UCL Institute of Neurology and Reta Lila Weston Institute of Neurological Studies, University College London, London, United Kingdom
| | - Nunziata Maio
- Molecular Medicine Branch, ‘Eunice Kennedy Shriver’ National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew J. LaVoie
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
35
|
Tan S, Hartono S, Welton T, Ann CN, Lim SL, Koh TS, Li H, Setiawan F, Ng S, Chia N, Liu S, Mark Haacke E, King Tan E, Chew Seng Tan L, Ling Chan L. Utility of quantitative susceptibility mapping and diffusion kurtosis imaging in the diagnosis of early Parkinson's disease. NEUROIMAGE-CLINICAL 2021; 32:102831. [PMID: 34619654 PMCID: PMC8503579 DOI: 10.1016/j.nicl.2021.102831] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
Putamen susceptibility value was higher in PD than controls one year into diagnosis. Putamen susceptibility value was associated with clinical motor scores in early PD. Mean diffusivity revealed greater cellular loss in the lateral substantial nigra. Putamen and caudate microstructural degradation were driven by radial diffusivity. A composite putamen-caudate DKI-QSM marker classified early PD from controls.
Objective To investigate the utility of quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI) as complementary tools in characterizing pathological changes in the deep grey nuclei in early Parkinson’s disease (PD) and their clinical correlates to aid in diagnosis of PD. Method Patients with a diagnosis of PD made within a year and age-matched healthy controls were recruited. All participants underwent clinical evaluation using the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) and Hoehn & Yahr stage (H&Y), and brain 3 T MRI including QSM and DKI. Regions-of-interest (ROIs) in the caudate nucleus, putamen, globus pallidus, and medial and lateral substantia nigra (SN) were manually drawn to compare the mean susceptibility (representing iron deposition) and DKI indices (representing restricted water diffusion) between PD patients and healthy controls and in correlation with MDS-UPDRS III and H&Y, focusing on susceptibility value, mean diffusivity (MD) and mean kurtosis (MK). Results There were forty-seven PD patients (aged 68.7 years, 51% male, disease duration 0.78 years) and 16 healthy controls (aged 67.4 years, 63% male). Susceptibility value was increased in PD in all ROIs except the caudate, and was significantly different after multiple comparison correction in the putamen (PD: 64.75 ppb, HC: 44.61 ppb, p = 0.004). MD was significantly higher in PD in the lateral SN, putamen and caudate, the regions with the lowest susceptibility value. In PD patients, we found significant association between the MDS-UPDRS III score and susceptibility value in the putamen after correcting for age and sex (β = 0.21, p = 0.003). A composite DKI-QSM diagnostic marker based on these findings successfully differentiated the groups (p < 0.0001) and had “good” classification performance (AUC = 0.88). Conclusions QSM and DKI are complementary tools allowing a better understanding of the complex contribution of iron deposition and microstructural changes in the pathophysiology of PD.
Collapse
Affiliation(s)
- Samantha Tan
- Singapore General Hospital, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Thomas Welton
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Chu Ning Ann
- Singapore General Hospital, Singapore, Singapore; National Neuroscience Institute, Singapore, Singapore
| | - Soo Lee Lim
- Singapore General Hospital, Singapore, Singapore; National Heart Centre Singapore, Singapore, Singapore
| | - Tong San Koh
- Duke-NUS Graduate Medical School, Singapore, Singapore; National Cancer Centre Singapore, Singapore, Singapore
| | - Huihua Li
- Singapore General Hospital, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Samuel Ng
- National Neuroscience Institute, Singapore, Singapore
| | - Nicole Chia
- National Neuroscience Institute, Singapore, Singapore
| | - Saifeng Liu
- MRI Institute for Biomedical Research, Bingham Farms, MI, USA
| | - E Mark Haacke
- MRI Institute for Biomedical Research, Bingham Farms, MI, USA; Wayne State University, Detroit, MI, USA
| | - Eng King Tan
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Louis Chew Seng Tan
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ling Ling Chan
- Singapore General Hospital, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
36
|
Guan X, Bai X, Zhou C, Guo T, Wu J, Gu L, Gao T, Wang X, Wei H, Zhang Y, Xuan M, Gu Q, Huang P, Liu C, Zhang B, Pu J, Song Z, Yan Y, Xu X, Zhang M. Serum Ceruloplasmin Depletion is Associated With Magnetic Resonance Evidence of Widespread Accumulation of Brain Iron in Parkinson's Disease. J Magn Reson Imaging 2021; 54:1098-1106. [PMID: 33949744 DOI: 10.1002/jmri.27680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Excessive iron accumulation is one of the main pathogeneses of Parkinson's disease (PD). Ceruloplasmin plays an important role in keeping the iron homoeostasis. PURPOSE To explore the association between serum ceruloplasmin depletion and subcortical iron distribution in PD. STUDY TYPE Prospective. POPULATION One hundred and twenty-one normal controls, 34 PD patients with low serum ceruloplasmin (PD-LC), and 28 patients with normal serum ceruloplasmin (PD-NC). SEQUENCE Enhanced susceptibility-weighted angiography (ESWAN) on a 3 T scanner. ASSESSMENT Quantitative susceptibility mapping was employed to quantify the regional iron content by using a semi-automatic method. Serum ceruloplasmin concentration was measured from peripheral blood sample. Clinical assessments were conducted by a neurologist. STATISTICAL TESTS General linear model was used to compare the intergroup difference of region iron distribution among groups, and the statistics was adjusted by Bonferroni method (P < 0.01). Partial correlation analysis was used to detect the association between regional iron distribution and serum ceruloplasmin concentration (P < 0.05). RESULTS Compared with normal controls, significant iron accumulation in substantia nigra, putamen, and red nucleus was observed in PD-LC, while the only region showing significant iron accumulation was SN in PD-NC. Between PD-NC and PD-LC, the iron accumulation in putamen remained significantly different, which had a negative correlation with serum ceruloplasmin in whole PD patients (r = -0.338, P = 0.008). DATA CONCLUSION Nigral iron accumulation characterizes PD patients without significant association with serum ceruloplasmin. Differentially, when PD patients appear with reduced serum ceruloplasmin, more widespread iron accumulation would be expected with additionally involving putamen and red nucleus. All these findings provide insightful evidence for the abnormal iron metabolism behind the ceruloplasmin depletion in PD. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuchu Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
38
|
Vos M, Klein C. The Importance of Drosophila melanogaster Research to UnCover Cellular Pathways Underlying Parkinson's Disease. Cells 2021; 10:579. [PMID: 33800736 PMCID: PMC7998316 DOI: 10.3390/cells10030579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies. In this review, we will discuss the different PD models in flies and key findings identified in flies in different affected pathways in PD. Several molecular changes have been identified, of which mitochondrial dysfunction and a defective endo-lysosomal pathway emerge to be the most relevant for PD pathogenesis. Studies in flies have significantly contributed to our knowledge of how disease genes affect and interact in these pathways enabling a better understanding of the disease etiology and providing possible therapeutic targets for the treatment of PD, some of which have already resulted in clinical trials.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| |
Collapse
|
39
|
Imaging the Functional Neuroanatomy of Parkinson's Disease: Clinical Applications and Future Directions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052356. [PMID: 33670940 PMCID: PMC7967767 DOI: 10.3390/ijerph18052356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The neurobiology of Parkinson’s disease and its progression has been investigated during the last few decades. Braak et al. proposed neuropathological stages of this disease based on the recognizable topographical extent of Lewy body lesions. This pathological process involves specific brain areas with an ascending course from the brain stem to the cortex. Post-mortem studies are of importance to better understand not only the progression of motor symptoms, but also the involvement of other domains, including cognition and behavior. The correlation between the neuropathological expansion of the disease and the clinical phases remains demanding. Neuroimaging, including magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT), could help to bridge this existing gap by providing in vivo evidence of the extension of the disorders. In the last decade, we observed an overabundance of reports regarding the sensitivity of neuroimaging techniques. All these studies were aimed at improving the accuracy of Parkinson’s disease (PD) diagnosis and discriminating it from other causes of parkinsonism. In this review, we look at the recent literature concerning PD and address the new frontier of diagnostic accuracy in terms of identification of early stages of the disease and conventional neuroimaging techniques that, in vivo, are capable of photographing the basal ganglia network and its cerebral connections.
Collapse
|
40
|
Iron Chelation in Movement Disorders: Logical or Ironical. Can J Neurol Sci 2021; 48:752-759. [PMID: 33397531 DOI: 10.1017/cjn.2020.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron is probably as old as the universe itself and is essential for sustaining biological processes. The remarkable property of iron complexes to facilitate electron transfer makes it a significant component of redox reactions that drive the essential steps in nucleic acid biosynthesis and cellular functions. This, however, also generates potentially harmful hydroxyl radicals causing cell damage. In the movement disorder world, iron accumulation is well known to occur in neurodegeneration with brain iron accumulation, while dysfunctional iron homeostasis has been linked with neurodegenerative diseases like Parkinson's disease and Huntington's disease to name a few. Targeting excess iron in these patients with chelation therapy has been attempted over the last few decades, though the results have not been that promising. In this review, we have discussed iron, its metabolism, and proposed mechanisms causing movement disorder abnormalities. We have reviewed the available literature on attempts to treat these movement disorders with chelation therapy. Finally, based on our understanding of the pathogenic role of iron, we have critically analyzed the limitations of chelation therapy in the current scenario and the various unmet needs that should be addressed for selecting the patient population amenable to this therapy.
Collapse
|
41
|
Wimmer I, Scharler C, Kadowaki T, Hillebrand S, Scheiber-Mojdehkar B, Ueda S, Bradl M, Berger T, Lassmann H, Hametner S. Iron accumulation in the choroid plexus, ependymal cells and CNS parenchyma in a rat strain with low-grade haemolysis of fragile macrocytic red blood cells. Brain Pathol 2020; 31:333-345. [PMID: 33220123 PMCID: PMC8018038 DOI: 10.1111/bpa.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
Iron accumulation in the CNS is associated with many neurological diseases via amplification of inflammation and neurodegeneration. However, experimental studies on iron overload are challenging, since rodents hardly accumulate brain iron in contrast to humans. Here, we studied LEWzizi rats, which present with elevated CNS iron loads, aiming to characterise choroid plexus, ependymal, CSF and CNS parenchymal iron loads in conjunction with altered blood iron parameters and, thus, signifying non‐classical entry sites for iron into the CNS. Non‐haem iron in formalin‐fixed paraffin‐embedded tissue was detected via DAB‐enhanced Turnbull Blue stainings. CSF iron levels were determined via atomic absorption spectroscopy. Ferroportin and aquaporin‐1 expression was visualised using immunohistochemistry. The analysis of red blood cell indices and serum/plasma parameters was based on automated measurements; the fragility of red blood cells was manually determined by the osmotic challenge. Compared with wild‐type animals, LEWzizi rats showed strongly increased iron accumulation in choroid plexus epithelial cells as well as in ependymal cells of the ventricle lining. Concurrently, red blood cell macrocytosis, low‐grade haemolysis and significant haemoglobin liberation from red blood cells were apparent in the peripheral blood of LEWzizi rats. Interestingly, elevated iron accumulation was also evident in kidney proximal tubules, which share similarities with the blood–CSF barrier. Our data underscore the importance of iron gateways into the CNS other than the classical route across microvessels in the CNS parenchyma. Our findings of pronounced choroid plexus iron overload in conjunction with peripheral iron overload and increased RBC fragility in LEWzizi rats may be seminal for future studies of human diseases, in which similar constellations are found.
Collapse
Affiliation(s)
- Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Cornelia Scharler
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Taro Kadowaki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Sophie Hillebrand
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
44
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
45
|
Guan X, Guo T, Zhou C, Wu J, Gao T, Bai X, Wei H, Zhang Y, Xuan M, Gu Q, Huang P, Liu C, Zhang B, Pu J, Song Z, Yan Y, Cui F, Zhang M, Xu X. Asymmetrical nigral iron accumulation in Parkinson's disease with motor asymmetry: an explorative, longitudinal and test-retest study. Aging (Albany NY) 2020; 12:18622-18634. [PMID: 32986011 PMCID: PMC7585099 DOI: 10.18632/aging.103870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is commonly characterized by asymmetrical motor impairment. This study aimed to clarify the iron distributions in PD patients with significant motor asymmetry and their longitudinal alterations. This study included 123 PD patients and 121 normal controls. Thirty-eight PD patients were revisited. PD patients with significant motor asymmetry were identified by using an objective criterion. Inter-group, inter-hemisphere and inter-visit differences of regional tissue susceptibility were analyzed. Iron accumulation in dominantly and non-dominantly affected substantia nigra (SN) were observed in PD patients with motor asymmetry compared with normal controls (p < 0.005, Bonferroni corrected). Iron accumulation in the dominantly affected SN was significantly higher than that in the non-dominantly affected SN (p < 0.01, Bonferroni corrected). After follow-up, time effect on the iron content in SN was observed, directing to decrease in PD patients with motor asymmetry without hemispherical difference (p < 0.05). In conclusion, asymmetrical iron accumulation in SN was associated with the motor asymmetry in PD at baseline, while along the disease evolution iron content in SN became longitudinally decreased. All these findings provide new evidence for PD pathogenesis that the abnormal iron metabolism in SN is complicated and not always unidirectional.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Cui
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Tai S, Zheng Q, Zhai S, Cai T, Xu L, Yang L, Jiao L, Zhang C. Alpha-Lipoic Acid Mediates Clearance of Iron Accumulation by Regulating Iron Metabolism in a Parkinson's Disease Model Induced by 6-OHDA. Front Neurosci 2020; 14:612. [PMID: 32670009 PMCID: PMC7330090 DOI: 10.3389/fnins.2020.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/18/2020] [Indexed: 01/18/2023] Open
Abstract
The disruption of neuronal iron homeostasis and oxidative stress are related to the pathogenesis of Parkinson's disease (PD). Alpha-lipoic acid (ALA) is a naturally occurring enzyme cofactor with antioxidant and iron chelator properties and has many known effects. ALA has neuroprotective effects on PD. However, its underlying mechanism remains unclear. In the present study, we established PD models induced by 6-hydroxydopamine (6-OHDA) to explore the neuroprotective ability of ALA and its underlying mechanism in vivo and in vitro. Our results showed that ALA could provide significant protection from 6-OHDA-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and iron. ALA significantly promoted the survival of the dopaminergic neuron in the 6-OHDA-induced PD rat model and remarkably ameliorated motor deficits by dramatically inhibiting the decrease in tyrosine hydroxylase expression and superoxide dismutase activity in the substantia nigra. Interestingly, ALA attenuated 6-OHDA-induced iron accumulation both in vivo and in vitro by antagonizing the 6-OHDA-induced upregulation of iron regulatory protein 2 and divalent metal transporter 1. These results indicated that the neuroprotective mechanism of ALA against neurological injury induced by 6-OHDA may be related to the regulation of iron homeostasis and reduced oxidative stress levels. Therefore, ALA may provide neuroprotective therapy for PD and other diseases related to iron metabolism disorder.
Collapse
Affiliation(s)
- Shengyan Tai
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Suzhen Zhai
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Ting Cai
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lizhu Yang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Jiao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chunlin Zhang
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| |
Collapse
|
47
|
Pyatigorskaya N, Sanz-Morère CB, Gaurav R, Biondetti E, Valabregue R, Santin M, Yahia-Cherif L, Lehéricy S. Iron Imaging as a Diagnostic Tool for Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:366. [PMID: 32547468 PMCID: PMC7270360 DOI: 10.3389/fneur.2020.00366] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Parkinson's disease (PD) is a progressive neurodegenerative disease whose main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra (SN). There is also an increase in iron content in the SN in postmortem and imaging studies using iron-sensitive MRI techniques. However, MRI results are variable across studies. Objectives: We performed a systematic meta-analysis of SN iron imaging studies in PD to better understand the role of iron-sensitive MRI quantification to distinguish patients from healthy controls. We also studied the factors that may influence iron quantification and analyzed the correlations between demographic and clinical data and iron load. Methods: We searched PubMed and ScienceDirect databases (from January 1994 to December 2019) for studies that analyzed iron load in the SN of PD patients using T2*, R2*, susceptibility weighting imaging (SWI), or quantitative susceptibility mapping (QSM) and compared the values with healthy controls. Details for each study regarding participants, imaging methods, and results were extracted. The effect size and confidence interval (CI) of 95% were calculated for each study as well as the pooled weighted effect size for each marker over studies. Hence, the correlations between technical and clinical metrics with iron load were analyzed. Results: Forty-six articles fulfilled the inclusion criteria including 27 for T2*/R2* measures, 10 for SWI, and 17 for QSM (3,135 patients and 1,675 controls). Eight of the articles analyzed both R2* and QSM. A notable effect size was found in the SN in PD for R2* increase (effect size: 0.84, 95% CI: 0.60 to 1.08), for SWI measurements (1.14, 95% CI: 0.54 to 1.73), and for QSM increase (1.13, 95% CI: 0.86 to 1.39). Correlations between imaging measures and Unified Parkinson's Disease Rating Scale (UPDRS) scores were mostly observed for QSM. Conclusions: The consistent increase in MRI measures of iron content in PD across the literature using R2*, SWI, or QSM techniques confirmed that these measurements provided reliable markers of iron content in PD. Several of these measurements correlated with the severity of motor symptoms. Lastly, QSM appeared more robust and reproducible than R2* and more suited to multicenter studies.
Collapse
Affiliation(s)
- Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clara B Sanz-Morère
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Gaurav
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Emma Biondetti
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Mathieu Santin
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Lydia Yahia-Cherif
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
48
|
Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 2019; 199:110717. [DOI: 10.1016/j.jinorgbio.2019.110717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
|
49
|
Shen X, Yang H, Zhang D, Jiang H. Iron Concentration Does Not Differ in Blood but Tends to Decrease in Cerebrospinal Fluid in Parkinson's Disease. Front Neurosci 2019; 13:939. [PMID: 31616238 PMCID: PMC6775209 DOI: 10.3389/fnins.2019.00939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background Iron accumulation in the substantia nigra in PD patients was acknowledged, but the studies on alteration of iron levels in blood and cerebrospinal fluids (CSF) reported inconsistent results. Objective To determinate the alterations of blood and CSF levels of iron in PD patients, a case-control study and a meta-analysis both in blood and CSF were conducted. Methods In the case-control study, 43 PD patients and 33 controls were recruited to test iron metabolism, 15 normal and 12 PD patients donated CSF. Levels in iron were quantified by inductively coupled atomic emission spectrometry. Iron metabolism was analyzed by routine blood tests. In the meta-analysis, a comprehensive literature search was performed on relevant studies published from Jan 1980 to Dec 2018 in PubMed, Web of Science and EMBASE databases. The pooled standard mean difference (SMD) with random effects model was selected to estimate the association between iron levels and PD. Results In the case-control study, the iron level in serum in the controls and PD patients were 110.00 ± 48.75 μg/dl and 107.21 ± 34.25 μg/dl, respectively, no significant difference was found between them (p = 0.850), with a small effect size (Cohen’s d: 0.12; 95% CI: 0.08–0.17). Ferritin level in PD patients was lower than controls (p = 0.014). The CSF levels of iron in control and the PD patients were 20.14 ± 3.35 ng/dl and 16.26 ± 4.82 ng/dl, respectively. CSF levels of iron were lower in PD compared with that of controls (p = 0.021), with a moderate effect size (Cohen’s d: 0.51; 95% CI: 0.43–0.65). In the meta-analysis, 22 eligible studies and a total of 3607 participants were identified. Blood levels of iron did not differ significant between PD patients and the controls [SMD (95% CI): −0.03 (−0.30, 0.24)], but CSF iron levels tended to be lower in PD patients compared with that in the controls [SMD (95% CI): −0.33 (−0.65, −0.00)]. Conclusion Iron homeostasis may be disturbed in CSF, but not in the peripheral blood in PD.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, Qingdao University, Qingdao, China
| | - Huazhen Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Hopfner F, Hobert MA, Maetzler C, Hansen C, Pham MH, Moreau C, Berg D, Devos D, Maetzler W. Mobility Deficits Assessed With Mobile Technology: What Can We Learn From Brain Iron-Altered Animal Models? Front Neurol 2019; 10:833. [PMID: 31440200 PMCID: PMC6694697 DOI: 10.3389/fneur.2019.00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Recent developments in mobile technology have enabled the investigation of human movements and mobility under natural conditions, i.e., in the home environment. Iron accumulation in the basal ganglia is deleterious in Parkinson's disease (i.e., iron accumulation with lower striatal level of dopamine). The effect of iron chelation (i.e., re-deployment of iron) in Parkinson's disease patients is currently tested in a large investigator-initiated multicenter study. Conversely, restless legs syndrome (RLS) is associated with iron depletion and higher striatal level of dopamine. To determine from animal models which movement and mobility parameters might be associated with iron content modulation and the potential effect of therapeutic chelation inhuman. Methods: We recapitulated pathophysiological aspects of the association between iron, dopamine, and neuronal dysfunction and deterioration in the basal ganglia, and systematically searched PubMed to identify original articles reporting about quantitatively assessed mobility deficits in animal models of brain iron dyshomeostasis. Results: We found six original studies using murine and fly models fulfilling the inclusion criteria. Especially postural and trunk stability were altered in animal models with iron overload. Animal models with lowered basal ganglia iron suffered from alterations in physical activity, mobility, and sleep fragmentation. Conclusion: From preclinical investigations in the animal model, we can deduce that possibly also in humans with iron accumulation in the basal ganglia undergoing therapeutic chelation may primarily show changes in physical activity (such as daily “motor activity”), postural and trunk stability and sleep fragmentation. These changes can readily be monitored with currently available mobile technology.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus A Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Minh Hoang Pham
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Caroline Moreau
- Department of Movement Disorders and Neurology, Faculty of Medicine, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - David Devos
- Departments of Medical Pharmacology and Movement Disorders, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|