1
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Gorny N, Kelly MP. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. VITAMINS AND HORMONES 2021; 115:265-316. [PMID: 33706951 DOI: 10.1016/bs.vh.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not only important to consider how hormones may change with age, but also how downstream signaling pathways that couple to hormone receptors may change. Among these hormone-coupled signaling pathways are the 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) intracellular second messenger cascades. Here, we test the hypothesis that dysfunction of cAMP and/or cGMP synthesis, execution, and/or degradation occurs in the brain during healthy and pathological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Although most studies report lower cyclic nucleotide signaling in the aged brain, with further reductions noted in the context of age-related diseases, there are select examples where cAMP signaling may be elevated in select tissues. Thus, therapeutics would need to target cAMP/cGMP in a tissue-specific manner if efficacy for select symptoms is to be achieved without worsening others.
Collapse
Affiliation(s)
- Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michy P Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
4
|
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci 2020; 257:118020. [PMID: 32603820 DOI: 10.1016/j.lfs.2020.118020] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. β-amyloid peptide (Aβ) is currently assumed to be the main cause of synaptic dysfunction and cognitive impairments in AD, but the molecular signaling pathways underlying its neurotoxic consequences have not yet been completely explored. Additional investigations regarding these pathways will contribute to development of new therapeutic targets. In context, developing evidence suggest that Aβ decreases brain-derived neurotrophic factor (BDNF) mostly by lowering phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) protein. In fact, it has been observed that brain or serum levels of BDNF appear to be beneficial markers for cognitive condition. In addition, the participation of transcription mediated by CREB has been widely analyzed in the memory process and AD development. Designing pharmacologic or genetic therapeutic approaches based on the targeting of CREB-BDNF signaling could be a promising treatment potential for AD. In this review, we summarize data demonstrating the role of CREB-BDNF signaling pathway in cognitive status and mediation of Aβ toxicity in AD. Finally, we also focus on the developing intervention methods for improvement of cognitive decline in AD based on targeting of CREB-BDNF pathway.
Collapse
Affiliation(s)
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ewa Kucharska
- Jesuit University Ignatianum in Krakow, Faculty of Education, Institute of Educational Sciences, Poland
| | - Josiane Budni
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
5
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
6
|
Nakashima M, Suzuki N, Shiraishi E, Iwashita H. TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. Behav Brain Res 2019; 376:112192. [PMID: 31521738 DOI: 10.1016/j.bbr.2019.112192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Changes in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling are implicated in older people with dementia. Drugs that modulate the cAMP/cGMP levels in the brain might therefore provide new therapeutic options for the treatment of cognitive impairment in aging and elderly with dementia. Phosphodiesterase 2A (PDE2A), which is highly expressed in the forebrain, is one of the key phosphodiesterase enzymes that hydrolyze cAMP and cGMP. In this study, we investigated the effects of PDE2A inhibition on the cognitive functions associated with aging, such as spatial learning, episodic memory, and attention, in rats with a selective, brain penetrant PDE2A inhibitor, N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915). Repeated treatment with TAK-915 (3 mg/kg/day, p.o. for 4 days) significantly reduced escape latency in aged rats in the Morris water maze task compared to the vehicle treatment. In the novel object recognition task, TAK-915 (1, 3, and 10 mg/kg, p.o.) dose-dependently attenuated the non-selective muscarinic antagonist scopolamine-induced memory deficits in rats. In addition, oral administration of TAK-915 at 10 mg/kg significantly improved the attentional performance in middle-aged, poorly performing rats in the 5-choice serial reaction time task. These findings suggest that PDE2A inhibition in the brain has the potential to ameliorate the age-related cognitive decline.
Collapse
Affiliation(s)
- Masato Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Eri Shiraishi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroki Iwashita
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan.
| |
Collapse
|
7
|
Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun 2019; 78:9-20. [PMID: 30641141 PMCID: PMC6488430 DOI: 10.1016/j.bbi.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
To date, there is no reliable biomarker for the assessment or determination of cognitive dysfunction in Alzheimer's disease and related dementia. Such a biomarker would not only aid in diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged that the hallmarks of Alzheimer's disease, namely, amyloid deposits and neurofibrillary tangles, as well as their precursors and metabolites, are poorly correlated with cognitive function and disease stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a critical step for the formation of memory. This set of processes is a prerequisite for the transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, recent work suggests that the expression of pCREB in peripheral blood mononuclear cells (PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer's patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of cognitive dysfunction, but also that the dysfunction of CREB signaling may not be limited to the brain in AD, and that a link may exist between the regulation of CREB in the blood and in the brain. In this review we consider the evidence suggesting a correlation between the level of CREB signals in the brain and blood, the current knowledge about CREB in PBMC and its association with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that may underlie this communication. This Review will discuss the possibility that peripheral dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
9
|
Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 2018; 42:281-291. [PMID: 29175000 PMCID: PMC5732030 DOI: 10.1016/j.cellsig.2017.11.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3',5'-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3',5'-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, VA Bldg 1, 3rd Floor, D-12, Columbia, SC 29209, United States.
| |
Collapse
|
10
|
Bartolotti N, Segura L, Lazarov O. Diminished CRE-Induced Plasticity is Linked to Memory Deficits in Familial Alzheimer's Disease Mice. J Alzheimers Dis 2016; 50:477-89. [PMID: 26682682 DOI: 10.3233/jad-150650] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanism underlying impaired learning and memory in Alzheimer's disease is not fully elucidated. The phosphorylation of cyclic-AMP response element binding protein (pCREB) in the hippocampus is thought to be a critical initiating step in the formation of long-term memories. Here, we tested CRE-driven gene expression following learning in mice harboring the familial Alzheimer's disease-linked APPswe/PS1ΔE9 mutations using CRE-β galactosidase reporter. We show that young adult APPswe/PS1ΔE9 mice exhibit impaired recognition memory and reduced levels of pCREB, and its cofactors CREB binding protein (CBP) and p-300 following a learning task, compared to their wild type littermate counterparts. Impairments in learning-induced activation of CREB in these mice are manifested by reduced CRE-driven gene transcription. Importantly, expression of the CRE-driven immediate early gene, Egr-1 (Zif268) is decreased in the CA1 region of the hippocampus. These studies implicate defective CREB-dependent plasticity in the mechanism underlying learning and memory deficits in Alzheimer's disease.
Collapse
|
11
|
Affiliation(s)
- John P. Blass
- Burke Medical Research Institute, Cornell University Medical College, White Plains, New York, U.S.A
| |
Collapse
|
12
|
Ohm TG. Alterations of signal transduction in the lesioned entorhinal—hippocampal system: A mini‐review on alzheimer's disease‐related changes and experimental data. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas G. Ohm
- Zentrum der Morphologie, J.W. Goethe‐Universität, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Sierksma ASR, Rutten K, Sydlik S, Rostamian S, Steinbusch HWM, van den Hove DLA, Prickaerts J. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Neuropharmacology 2012; 64:124-36. [PMID: 22771768 DOI: 10.1016/j.neuropharm.2012.06.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive deficits and synaptic dysfunction. Over the last decade phosphodiesterase inhibitors (PDEIs) have received increasing attention as putative cognition enhancers and have been suggested as a novel treatment strategy for AD. Given their ability to prevent hydrolysis of cAMP and/or cGMP, they can stimulate the cAMP/protein kinase A (PKA)/cAMP element-binding protein (CREB) and cGMP/PKG/CREB pathway to enhance synaptic transmission by increasing CREB phosphorylation (pCREB) and brain-derived neurotrophic factor (BDNF) transcription. Based on previous research, we hypothesized that chronic PDE2I treatment would improve AD-related cognitive deficits, by decreasing amyloid-β (Aβ) plaque load, enhancing pCREB and BDNF levels and increasing synaptic density in the hippocampus of 8-month-old APPswe/PS1dE9 mice. Results indicated that chronic PDE2I treatment could indeed improve memory performance in APPswe/PS1dE9 mice, without affecting anxiety, depressive-like behavior or hypothalamus-pituitary-adrenal axis regulation. However, no treatment effects were observed on Aβ plaque load, pCREB or BDNF concentrations, or presynaptic density in the hippocampus, suggesting that other signaling pathways and/or effector molecules might be responsible for its cognition-enhancing effects. Presynaptic density in the stratum lucidum of the CA3 subregion was significantly higher in APPswe/PS1dE9 mice compared to WT controls, possibly reflecting a compensatory mechanism. In conclusion, PDEs in general, and PDE2 specifically, could be considered as promising therapeutic targets for cognition enhancement in AD, although the underlying mechanism of action remains to be elucidated. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Annerieke S R Sierksma
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Science, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Morentín B, Javier Meana J. Characterization of regulators of G-protein signaling RGS4 and RGS10 proteins in the postmortem human brain. Neurochem Int 2010; 57:722-9. [DOI: 10.1016/j.neuint.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
15
|
Abstract
There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).
Collapse
|
16
|
Burgos-Ramos E, Hervás-Aguilar A, Aguado-Llera D, Puebla-Jiménez L, Hernández-Pinto AM, Barrios V, Arilla-Ferreiro E. Somatostatin and Alzheimer's disease. Mol Cell Endocrinol 2008; 286:104-11. [PMID: 18359553 DOI: 10.1016/j.mce.2008.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by the cerebral deposition of senile plaques that are mainly composed of a set of peptides referred to as amyloid beta-peptides (Abeta). Among the numerous neuropeptides produced in intrinsic cortical and hippocampal neurons, somatostatin (SRIF) has been found to be the most consistently reduced in the brain and cerebrospinal fluid of AD patients. SRIF receptors (SSTR), which mediate the neuromodulatory signals of SRIF, are also markedly depleted in the AD brain, there being subtype-selective alterations in cortical areas. In the rat temporal cortex, we have shown that intracerebroventricular infusion of Abeta25-35 results in a decrease in SRIF-like immunoreactivity and in SRIF receptor subtype 2 (SSTR2) mRNA and protein levels, in correlation with a decrease in SSTR functionality. Insulin-like growth factor-I prevents the reduction in these parameters induced by Abeta25-35. Abeta has recently been demonstrated to be degraded primarily by a neutral endopeptidase, neprilysin, in the brain. SRIF regulates brain Abeta levels via modulation of neprilysin activity. Because SRIF expression in the brain declines upon aging in various mammals, including rodents, apes and humans, the aging-dependent reduction of SRIF has been hypothesized to trigger accumulation of Abeta in the brain by suppressing neprilysin action. Here we present an overview of recent advances on the role of SRIF in AD and its relationship with Abeta peptides.
Collapse
Affiliation(s)
- E Burgos-Ramos
- Unidad de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Albasanz JL, Perez S, Barrachina M, Ferrer I, Martín M. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer's disease. Brain Pathol 2008; 18:211-9. [PMID: 18241242 DOI: 10.1111/j.1750-3639.2007.00112.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors are G-protein coupled receptors which modulate neurotransmitter release, mainly glutamate. Adenosine A(1) and A(2A) receptors were studied in post-mortem human cortex in Alzheimer's disease (AD) and age-matched controls. Total adenosine A(1) receptor number, determined by radioligand binding assay, using [(3)H]DPCPX, was significantly increased in AD cases in early and advanced stages without differences with the progression of the disease. A significant increase of A(1)R (37 kDa) levels was also observed by Western blot in early and advanced stages of AD. In addition, increased numbers of adenosine A(2A) receptors were observed in AD samples as determined by a binding assay using [(3)H]ZM 241385 as a radioligand and by Western blot. Increased binding and protein expression levels of adenosine receptors were not associated with increased mRNA levels coding A(1) and A(2A) receptors. Finally, increased A(1) and A(2A) receptor-mediated response was observed. These results show up-regulation of adenosine A(1) and A(2A) receptors in frontal cortex in AD, associated with sensitization of the corresponding transduction pathways.
Collapse
Affiliation(s)
- José L Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
18
|
Burgos-Ramos E, Hervás-Aguilar A, Puebla-Jiménez L, Boyano-Adánez MC, Arilla-Ferreiro E. Chronic but not acute intracerebroventricular administration of amyloid beta-peptide(25-35) decreases somatostatin content, adenylate cyclase activity, somatostatin-induced inhibition of adenylate cyclase activity, and adenylate cyclase I levels in the rat hippocampus. J Neurosci Res 2007; 85:433-42. [PMID: 17086550 DOI: 10.1002/jnr.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although alterations in adenylate cyclase (AC) activity and somatostatin (SRIF) receptor density have been reported in Alzheimer's disease, the effects of amyloid beta-peptide (Abeta) on these parameters in the hippocampus are unknown. Our aim was to investigate whether the peptide fragment Abeta(25-35) can affect the somatostatinergic system in the rat hippocampus. Hence, Abeta(25-35) was injected intracerebroventricularly (i.c.v.) to Wistar rats in a single dose or infused via an osmotic minipump connected to a cannula implanted in the right lateral ventricle during 14 days. The animals were decapitated 7 or 14 days after the single injection and 14 days after chronic infusion of the peptide. Chronic i.c.v. infusion of Abeta(25-35) decreased SRIF-like immunoreactive content without modifying the SRIF receptor density, SRIF receptor expression, or the Gialpha(1), Gialpha(2), and Gialpha(3) protein levels in the hippocampus. This treatment, however, caused a decrease in basal and forskolin-stimulated AC activity as well as in the capacity of SRIF to inhibit AC activity. Furthermore, the protein levels of the neural-specific AC type I were significantly decreased in the hippocampus of the treated rats, whereas an increase in the levels of AC V/VI was found, with no alterations in type VIII AC. A single i.c.v. dose of Abeta(25-35) exerted no effect on SRIF content or SRIF receptors but induced a slight decrease in forskolin-stimulated AC activity and its inhibition by SRIF. Because chronic Abeta(25-35) infusion impairs learning and memory whereas SRIF facilitates these functions, the alterations described here might be physiologically important given the decreased cognitive behavior previously reported in Abeta-treated rats.
Collapse
Affiliation(s)
- E Burgos-Ramos
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Leosco D, Fortunato F, Rengo G, Iaccarino G, Sanzari E, Golino L, Zincarelli C, Canonico V, Marchese M, Koch WJ, Rengo F. Lymphocyte G-protein-coupled receptor kinase-2 is upregulated in patients with Alzheimer's disease. Neurosci Lett 2007; 415:279-82. [PMID: 17276003 DOI: 10.1016/j.neulet.2007.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/22/2022]
Abstract
Alterations in signal transduction pathway of G-protein-coupled receptors (GPCRs) have been found in the cerebrocortex and in the peripheral cultured tissues of patients with Alzheimer's disease (AD). The G-protein-coupled receptor kinase-2 (GRK2) plays an important role in regulating the GPCRs signaling: its increased expression is associated with receptor desensitization. The aim of this study was to explore GRK2 levels in peripheral lymphocytes of AD patients and to establish a correlation between lymphocyte protein concentrations and the degree of cognitive impairment. GRK2 mRNA and protein expression were evaluated in the lymphocytes of AD patients with mild or moderate/severe cognitive impairment and in age-matched healthy subjects. Both GRK2 mRNA and protein expression were higher in AD patients lymphocytes compared to controls. Furthermore, lymphocyte GRK2 levels were significantly correlated to the degree of cognitive decline. Our preliminary data suggest that GRK2 is involved in GPCRs coupling dysfunction observed in AD patients. Further studies are needed in order to verify whether the lymphocyte GRK2 might be utilized as a novel biomarker in AD diagnosis and clinical monitoring.
Collapse
Affiliation(s)
- Dario Leosco
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Università Federico II, Via Pansini 5, Edificio 2, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alemany R, Perona JS, Sánchez-Dominguez JM, Montero E, Cañizares J, Bressani R, Escribá PV, Ruiz-Gutierrez V. G protein-coupled receptor systems and their lipid environment in health disorders during aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:964-75. [PMID: 17070497 DOI: 10.1016/j.bbamem.2006.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 02/05/2023]
Abstract
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.
Collapse
Affiliation(s)
- Regina Alemany
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitary d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lourenco CM, Kenk M, Beanlands RS, DaSilva JN. Increasing synaptic noradrenaline, serotonin and histamine enhances in vivo binding of phosphodiesterase-4 inhibitor (R)-[11C]rolipram in rat brain, lung and heart. Life Sci 2006; 79:356-64. [PMID: 16499932 DOI: 10.1016/j.lfs.2006.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/22/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Phosphodiesterase-4 (PDE4) is one of the main enzymes that specifically terminate the action of cAMP, thereby contributing to intracellular signaling following stimulation of various G protein-coupled receptors. PDE4 expression and activity are modulated by agents affecting cAMP levels. The selective PDE4 inhibitor (R)-rolipram labeled with C-11 was tested in vivo in rats to analyze changes in PDE4 levels following drug treatments that increase synaptic noradrenaline (NA), serotonin (5HT), histamine (HA) and dopamine (DA) levels. We hypothesized that increasing synaptic neurotransmitter levels and subsequent cAMP-mediated signaling would significantly enhance (R)-[(11)C]rolipram retention and specific binding to PDE4 in vivo. Pre-treatments were performed 3 h prior to tracer injection, and rats were sacrificed 45 min later. Biodistribution studies revealed a dose-dependent increase in (R)-[(11)C]rolipram uptake following administration of the monoamine oxidase (MAO) inhibitor tranylcypromine, NA and 5HT reuptake inhibitors (desipramine [DMI], maprotiline; and fluoxetine, sertraline, respectively), and the HA H(3) receptor antagonist (thioperamide), but not with DA transporter blockers GBR 12909, cocaine or DA D(1) agonist SKF81297. Significant increases in rat brain and heart reflect changes in PDE4 specific binding (total-non-specific binding [coinjection with saturating dose of (R)-rolipram]). These results demonstrate that acute treatments elevating synaptic NA, 5HT and HA, but not DA levels, significantly enhance (R)-[(11)C]rolipram binding. Use of (R)-[(11)C]rolipram and positron emission tomography as an index of PDE4 activity could provide insight into understanding disease states with altered NA, 5HT and HA concentrations.
Collapse
Affiliation(s)
- Celia M Lourenco
- PET Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, Canada M5T 1R8
| | | | | | | |
Collapse
|
22
|
Mato S, Pazos A. Influence of age, postmortem delay and freezing storage period on cannabinoid receptor density and functionality in human brain. Neuropharmacology 2004; 46:716-26. [PMID: 14996549 DOI: 10.1016/j.neuropharm.2003.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 10/08/2003] [Accepted: 10/31/2003] [Indexed: 11/23/2022]
Abstract
It has been suggested that cannabimimetic drugs could be of interest in the treatment of several nervous disorders. Thus, it is important to analyse the distribution and properties of cannabinoid (CB) receptors directly in human brain. As postmortem human tissue is subjected to the effects of several biological variables, we have analyzed by autoradiography the influence of age, postmortem delay and freezing storage period (at -25 degrees C) on two parameters corresponding to cannabinoid CB1 receptors in human frontal cortex: receptor density and degree of activation of G-proteins ([35S]GTPgammaS assays). A significant decrease in the amount of both receptor density and agonist-stimulated G-protein activity was observed with age, revealing a mean reduction of about 10% per decade. In contrast, no significant correlations were found with postmortem delay either for CB1 receptors density or functionality. Finally, both parameters (receptor density and [35S]GTPgammaS response) were significantly reduced with freezing storage period at -25 degrees C in frontal cortical layers. Non-linear analysis of these data yielded values between 12 and 24 months of storage for a 50% reduction. In conclusion, when studying CB1 receptor properties in human brain samples, a careful analysis (and matching) for variables such as age and freezing storage period has to be carried out.
Collapse
Affiliation(s)
- S Mato
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Avda Herera Oria s/n, 39011 Santander, Spain
| | | |
Collapse
|
23
|
García-Jiménez A, Fastbom J, Ohm TG, Cowburn RF. G-protein alpha-subunit levels in hippocampus and entorhinal cortex of brains staged for Alzheimer's disease neurofibrillary and amyloid pathologies. Neuroreport 2003; 14:1523-7. [PMID: 12960778 DOI: 10.1097/00001756-200308060-00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
G-protein alpha-subunits (Galphao, Galphai, Galphas, Galphaq) and adenylyl cyclase (AC) I and II isoforms were quantified in hippocampus and entorhinal cortex from 22 cases staged for Alzheimer's disease (AD) pathologies according to Braak and Braak. Hippocampal Galphai levels declined significantly with neurofibrillary staging, whereas AC I levels in this region increased. Significant amyloid stage-related reductions of Galphai were seen in both the hippocampus and entorhinal cortex. The hippocampus also showed a significant reduction of Galphao with amyloid staging. It is concluded that levels of inhibitory G-protein subunits Galphao, and in particular Galphai, decrease in parallel to the extent of AD pathology.
Collapse
Affiliation(s)
- Angela García-Jiménez
- Neurotec Department, Division of Experimental Geriatrics, Karolinska Institutet, Novum, KFC, S-141 86 Huddinge, Sweden
| | | | | | | |
Collapse
|
24
|
Wang HY, D'Andrea MR, Nagele RG. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging 2002; 23:213-23. [PMID: 11804705 DOI: 10.1016/s0197-4580(01)00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
beta-amyloid(1-42) (Abeta42)-rich amyloid plaques (APs) may be derived from destroyed neurons that were burdened with extensive intracellular Abeta42 accumulations. Since most cells that accumulate Abeta42 express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), we examined the relationship between the intracellular accumulation of Abeta42 and the expression of the alpha7nAChR in cells from the cerebellum of sporadic Alzheimer's disease (AD) patients. Abeta42, but not Abeta40 or Abeta43, accumulates intracellularly in Purkinje, Golgi II, stellate and basket cells in the AD cerebellum, all of which express the alpha7nAChR. Abeta42 deposits were also prominent within dendrites of Purkinje cells, especially at points of their bifurcation that were often occluded with this material. Diffuse APs appeared to represent the remnants of destroyed Abeta42-laden segments of Purkinje cell dendritic trees. Similarly, the accumulation of Abeta42 and early loss of Golgi II cells in AD cerebella correlated directly to their high level of alpha7nAChR expression. Furthermore, the presence and relative abundance of neuron-derived Abeta42/alpha7nAChR-positive materials within Bergman glia may be indicative of the stage of AD. These data are consistent with a role for the alpha7nAChR in mediating intracellular Abeta42 accumulation and also support the notion that the intracellular and intradendritic accumulation of Abeta42 may eventually result in cell lysis and the formation of APs.
Collapse
Affiliation(s)
- Hoau Yan Wang
- Department of Physiology and Pharmacology, The City University of New York Medical School, New York, New York 10031, USA
| | | | | |
Collapse
|
25
|
Cedazo-Mínguez A, Hamker U, Meske V, Veh RW, Hellweg R, Jacobi C, Albert F, Cowburn RF, Ohm TG. Regulation of apolipoprotein E secretion in rat primary hippocampal astrocyte cultures. Neuroscience 2001; 105:651-61. [PMID: 11516830 DOI: 10.1016/s0306-4522(01)00224-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apolipoprotein E isoforms may have differential effects on a number of pathological processes underlying Alzheimer's disease. Recent studies suggest that the amount, rather than the type, of apolipoprotein E may also be an important determinant for Alzheimer's disease. Therefore, understanding the regulated synthesis of apolipoprotein E is important for determining its role in Alzheimer's disease. We show here that in rat primary hippocampal astrocyte cultures, dibutyryl-cAMP increased apolipoprotein E secretion with time in a dose-dependent manner (to 177% at 48 h) and that retinoic acid potentiated this effect (to 298% at 48 h). Dibutyryl-cAMP also gave a rapid, albeit transient, increase of apolipoprotein E mRNA expression (to 200% at 1 h). In contrast, the protein kinase C activator phorbol 12-myristate 13-acetate decreased both apolipoprotein E secretion (to 59% at 48 h) and mRNA expression (to 22% at 1 h). Phorbol 12-myristate 13-acetate also reversed the effects of dibutyryl-cAMP. Apolipoprotein E secretion was also modulated by receptor agonists for the adenylyl cyclase/cAMP pathway. Isoproterenol (50 nM, a beta-adrenoceptor agonist) enhanced, while clonidine (250 nM, an alpha2-adrenoceptor agonist) decreased, secreted apolipoprotein E. We also analysed the effects of agonists for the phospholipase C/protein kinase C pathway. Arterenol (1 microM, an alpha1-adrenoceptor agonist) and serotonin (2.5 microM) enhanced, whereas carbachol (10 microM, an acetylcholine muscarinic receptor agonist) decreased secreted apolipoprotein E. The effects of these non-selective receptor agonists were modest, probably due to effects on different signalling pathways. Arterenol also potentiated the isoproterenol-mediated increase. We also show that phorbol 12-myristate 13-acetate and dibutyryl-cAMP have opposite effects on nerve growth factor, as compared to apolipoprotein E, secretion, suggesting that the results obtained were unlikely to be due to a general effect on protein synthesis. We conclude that astrocyte apolipoprotein E production can be regulated by factors that affect cAMP intracellular concentration or activate protein kinase C. Alterations in these signalling pathways in Alzheimer's disease brain may have consequences for apolipoprotein E secretion in this disorder.
Collapse
Affiliation(s)
- A Cedazo-Mínguez
- Karolinska Institutet, NEUROTEC, Section for Experimental Genetics, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nogueira CW, Rotta LN, Perry ML, Souza DO, da Rocha JB. Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res 2001; 906:157-63. [PMID: 11430873 DOI: 10.1016/s0006-8993(01)02165-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of this study was to investigate the possible involvement of the glutamatergic system in the toxicity of organochalcogens, since this is an important neurotransmitter system for signal transduction and neural function. The results indicated that 100 microM diphenyl diselenide (PhSe)(2) and diphenyl ditelluride (PhTe)(2) inhibit by 50 and 70% (P<0.05), respectively, [(3)H]glutamate binding in vitro. Acute administration of 25 micromol/kg (PhSe)(2) or 3 micromol/kg (PhTe)(2) caused a significant reduction in [(3)H]glutamate (30%, P<0.05) or [(3)H]MK-801 binding (30%, P<0.05) to rat synaptic membranes. These results suggest that (PhSe)(2) and (PhTe)(2) affect, in a rather complex way, the glutamatergic system after acute in vivo exposure in rats. In vitro, total [(3)H]GMP-PNP binding was inhibited about 40% at 100 microM (PhSe)(2) and (PhTe)(2). Acute exposure in vivo to (PhSe)(2) decreased the stable [(3)H]GMP-PNP binding to 25% and (PhTe)(2) to 68% of the control value (P<0.05, for both compounds). Simultaneously, the unstable binding of [(3)H]GMP-PNP was decreased about 30 and 50% (P<0.05, for both compounds) after exposure to (PhSe)(2) and (PhTe)(2), respectively. GMP-PNP stimulated adenylate cyclase (AC) activity significantly in control animals. (PhSe)(2)- and (PhTe)(2)-treated animals increased the basal activity of this enzyme, but GMP-PNP stimulation was totally abolished. These results suggest that the toxic effects of organochalcogens could result from action at different levels of neural signal transduction pathways, possibly involving other neurotransmitters besides the glutamatergic system.
Collapse
Affiliation(s)
- C W Nogueira
- Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Emanuelli T, Pagel FW, Alves LB, Regner A, Souza DO. Inhibition of adenylate cyclase activity by 5-aminolevulinic acid in rat and human brain. Neurochem Int 2001; 38:213-8. [PMID: 11099779 DOI: 10.1016/s0197-0186(00)00092-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.
Collapse
Affiliation(s)
- T Emanuelli
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Prapong T, Uemura E, Hsu WH. G protein and cAMP-dependent protein kinase mediate amyloid beta-peptide inhibition of neuronal glucose uptake. Exp Neurol 2001; 167:59-64. [PMID: 11161593 DOI: 10.1006/exnr.2000.7519] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which amyloid beta-peptide (Abeta) inhibits glucose uptake in cultured cells is not known. Here we demonstrated a signaling pathway in which Abeta25-35, a neurotoxic portion of the Abeta peptide corresponding to amino acids 25-35, inhibits neuronal glucose uptake by hippocampal neurons. The GP antagonist-2, which blocks Gs, prevented the inhibitory effect of Abeta on the glucose uptake. Exposure of cells to Abeta resulted in a transitory increase in intracellular levels of cAMP. To assess the role of cAMP in neuronal glucose uptake, cultured neurons were exposed to dibutyryl cAMP (Bt2cAMP) or an adenylyl cyclase activator, forskolin. Both Bt2cAMP and forskolin inhibited neuronal glucose uptake, and cAMP-dependent protein kinase (PKA) inhibitor KT5720 blocked the Abeta-mediated inhibition of glucose uptake. Cholera toxin, which stimulates adenylyl cyclase by activating Gs protein, also inhibited neuronal glucose uptake, and Abeta potentiated this inhibitory effect of cholera toxin on glucose uptake. Thus, our findings suggest that Abeta inhibits glucose uptake by activating the Gs-coupled receptors and involves the cAMP-PKA system.
Collapse
Affiliation(s)
- T Prapong
- Department of Biomedical Sciences, Iowa State University, 2008 Veterinary Medicine Building, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
29
|
Yamamoto M, Götz ME, Ozawa H, Luckhaus C, Saito T, Rösler M, Riederer P. Hippocampal level of neural specific adenylyl cyclase type I is decreased in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1535:60-8. [PMID: 11113632 DOI: 10.1016/s0925-4439(00)00083-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies reported disruption of adenylyl cyclase (AC)-cyclic AMP (cAMP) signal transduction in brain of Alzheimer's disease (AD). We also demonstrated that basal and stimulated AC activities in the presence of calcium and calmodulin (Ca(2+)/CaM) were significantly decreased in AD parietal cortex. In the present study, we examined the amounts of Ca(2+)/CaM-sensitive types I and VIII AC, and Ca(2+)/CaM-insensitive type VII AC in the postmortem hippocampi from AD patients and age-matched controls using immunoblotting. The specificities of the anti-type VII and VIII AC antibodies were confirmed by preabsorption with their specific blocking peptides. We observed a significant decrease in the level of type I AC and a tendency to decrease in the level of type VIII AC in AD hippocampus. On the other hand, the level of type VII AC showed no alteration between AD and controls. A body of evidence from the studies with invertebrates and vertebrates suggests that types I and VIII AC may play an essential role in learning and memory. Our finding thus firstly demonstrated that a specific disruption of the Ca(2+)/CaM-sensitive AC isoforms is likely involved in the pathophysiology in AD hippocampus.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Psychiatry and Psychotherapy, University of Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hu Q, Jin LW, Starbuck MY, Martin GM. Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions. J Neurosci Res 2000; 60:73-86. [PMID: 10723070 DOI: 10.1002/(sici)1097-4547(20000401)60:1<73::aid-jnr8>3.0.co;2-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FE65 is a key "adapter" protein that links a multiprotein complex to an intracellular domain of beta-amyloid precursor protein (betaPP). Its overexpression modulates the trafficking of betaPP and facilitates the generation of beta-amyloid (Abeta). FE65 is predominantly expressed in brain tissues. An exon 9-inclusive isoform is exclusively expressed in neurons, and an exon 9-exclusive isoform is only expressed in non-neuronal cells. We quantitated the two isoforms in middle temporal cortex, middle frontal cortex, cerebellar cortex and caudate nucleus of 17 Alzheimer disease (AD) patients, 12 normal controls and 9 non-AD neurodegenerative disease controls by reverse transcription-competitive polymerase chain reaction (RT-cPCR). Expression of the two isoforms was significantly and differentially altered, with a 30-57% decrease in levels of the neuronal form (P < 0.05-0.002) and a 73-135% increase in levels of non-neuronal form (P < 0.02-0.001), in the temporal and frontal cortex of AD brains. These alterations presumably reflect advanced neurodegenerative processes of these regions. Surprisingly, expression of both isoforms was significantly up-regulated by 42-66% in the cerebellar cortex and caudate nucleus of AD brains when compared to normal brains (P < 0.05-0.005). Diffuse Abeta-positive plaques were observed in the cerebellum of these AD subjects but not in the normal controls. Selective up-regulation of only the FE65 neuronal isoform was seen in the cerebellar cortex in association with other neurodegenerative diseases (largely Parkinson's disease). Because FE65 modulates trafficking of betaPP toward the production of Abeta, the up-regulation of FE65 in AD cerebellum may be relevant to the genesis of diffuse plaques. Thus, early biochemical alterations in AD, not complicated by advanced pathology, may be beneficially investigated in the less-affected regions of the brain, such as the cerebellum.
Collapse
Affiliation(s)
- Q Hu
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
31
|
Palego L, Giromella A, Mazzoni MR, Marazziti D, Naccarato AG, Giannaccini G, Cassano GB, Lucacchini A. Gender and age-related variation in adenylyl cyclase activity in the human prefrontal cortex, hippocampus and dorsal raphe nuclei. Neurosci Lett 2000; 279:53-6. [PMID: 10670786 DOI: 10.1016/s0304-3940(99)00952-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The influence of gender and age on adenylyl cyclase activity was investigated, through a Dowex-alumina double step chromatographic procedure, in the prefrontal cortex, hippocampus and dorsal raphe nuclei obtained from autopsy cadavers. Results showed that forskolin-stimulated enzyme activity in raphe nuclei was greater in men than in women; a region-dependent rank order of basal, forskolin-induced adenylyl cyclase activity and percentage forskolin-stimulation was observed in women only. Lastly, basal values correlated positively with forskolin-stimulated adenylyl cyclase activity in all areas except the prefrontal cortex of the male subjects. Positive significant correlations were also found between both forskolin-stimulated enzyme activity and percentage forskolin stimulation and aging in the prefrontal cortex. Overall, the findings suggest that sex and/or age-related differences in brain adenylyl cyclase vary from one cerebral region to the other.
Collapse
Affiliation(s)
- L Palego
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
García-Jiménez A, Cowburn RF, Ohm TG, Bogdanovic N, Winblad B, Fastbom J. Quantitative autoradiography of [3H]forskolin binding sites in post-mortem brain staged for Alzheimer's disease neurofibrillary changes and amyloid deposits. Brain Res 1999; 850:104-17. [PMID: 10629754 DOI: 10.1016/s0006-8993(99)02111-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenylyl cyclase (AC) signal transduction has been shown to be affected in Alzheimer's disease (AD). Deficits have been described in different components of the system, from the receptor to the effector level. [3H]forskolin is a diterpene that binds with high affinity to AC. In the present report, we used autoradiography to study [3H]forskolin binding to sections of entorhinal cortex and hippocampus from 23 cases staged for AD pathology according to Braak and Braak [Acta Neuropathol. 82 (1991) 239-259]. This protocol defines six stages according to neurofibrillary changes, which start in the entorhinal region (stages I-II), spread to the hippocampus (stages III-IV) and finally to the isocortical areas (stages V-VI). The amyloid classification includes three stages in which the basal isocortex is first affected (stage A), followed by other isocortical association areas (stage B) and finally the primary isocortical areas (stage C). We also studied the effects of the GTP-analogue Gpp[NH]p on binding, in order to detect changes in G-protein-AC coupling. We used two different concentrations of Gpp[NH]p, that were previously reported to inhibit and stimulate [3H]forskolin binding via Gi and Gs, respectively. Results showed that [3H]forskolin binding declined significantly with staging for neurofibrillary changes only in the entorhinal region (P < 0.05, ANOVA). In addition, the decrease in [3H]forskolin binding observed in the presence of 1 microM Gpp[NH]p diminished significantly with staging in the entorhinal region (P < 0.05, ANOVA). No significant changes were seen with amyloid staging, with the exception of the CA1 subfield of the hippocampus, where [3H]forskolin binding in the absence of Gpp[NH]p was significantly decreased at stage B compared with all other stages (P < 0.05, ANOVA). In conclusion, our results showed a very limited decrease in [3H]forskolin binding with the progression of AD pathology, suggesting that the AC levels may be largely preserved in the disease. The specific change in the effect of a low concentration of Gpp[NH]p on the binding could indicate the loss of Ca2+/calmodulin-sensitive AC isoforms in AD.
Collapse
|
33
|
Reiser M, Poeggel G, Schnabel R, Schröder H, Braun K. Effect of social experience on dopamine-stimulated adenylyl cyclase activity and G protein composition in chick forebrain. J Neurochem 1999; 73:1293-9. [PMID: 10461924 DOI: 10.1046/j.1471-4159.1999.0731293.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stimulation of adenylyl cyclase (AC) by dopamine was investigated in membrane fractions of the forebrain areas mediorostral neostriatum/hyperstriatum ventrale (MNH) and lobus parolfactorius (LPO) of 8-day-old domestic chicks that had been raised under different social conditions: group A, socially isolated; group B, imprinted on an acoustic stimulus; group C, trained but nonimprinted; and group D, reared in small groups. Only in the brain of the socially experienced groups could cyclic AMP (cAMP) synthesis be stimulated by dopamine, but not in the socially isolated animals (group A). Ligand binding studies of dopamine D1- and D2-type receptors in membrane fractions did not reveal differences between socially experienced and isolated animals. Forskolin stimulation of total AC in MNH and LPO membrane fractions revealed a significantly enhanced AC stimulation in the socially reared but not in the imprinted group compared with isolated controls. Stimulation of AC by the G protein activator guanylylimidodiphosphate was significantly increased in the MNH and the LPO of socially reared chicks compared with isolated control animals. These results suggest that early postnatal social experience modulates the rate of cAMP synthesis and that these lasting changes are not due to changes of dopamine receptors but are related to increased AC activities and to increased sensitivity of Gs protein.
Collapse
Affiliation(s)
- M Reiser
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R, Sorrentino V, O'Neill C. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer's disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999; 92:499-513. [PMID: 10408600 DOI: 10.1016/s0306-4522(99)00042-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Investigation of the integrity of the ryanodine receptor in Alzheimer's disease is important because it plays a critical role in the regulation of calcium release from the endoplasmic reticulum in brain, impairment of which is believed to contribute to the pathogenesis of Alzheimer's disease. The present study compared ryanodine receptor levels and their functional modulation in particulate fractions from control and Alzheimer's disease temporal cortex, occipital cortex and putamen. Relationships between ryanodine receptor changes and the progression of Alzheimer's disease pathology were determined by examining autoradiographic [3H]ryanodine binding in entorhinal cortex/anterior hippocampus sections from 22 cases that had been staged for neurofibrillary changes and beta-amyloid deposition. A significant (P < 0.02) 40% decrease in the Bmax for [3H]ryanodine binding and significantly higher IC50 values for both magnesium and Ruthenium Red inhibition of [3H]ryanodine binding were detected in Alzheimer's disease temporal cortex particulate fractions compared to controls. Immunoblot analyses showed Type 2 ryanodine receptor holoprotein levels to be decreased by 20% (P < 0.05) in these Alzheimer's disease cases compared to controls. No significant differences were detected in [3H]ryanodine binding comparing control and Alzheimer's disease occipital cortex or putamen samples. The autoradiography study detected increased [3H]ryanodine binding in the subiculum, CA2 and CA1 regions in cases with early (stage I-II) neurofibrillary pathology when compared to Stage 0 cases. Analysis of variance of data with respect to the different stages of neurofibrillary pathology revealed significant stage-related declines of [3H]ryanodine binding in the subiculum (P < 0.02) with trends towards significant decreases in CA1, CA2 and CA4. Post-hoc testing with Fisher's PLSD showed significant reductions (74-94%) of [3H]ryanodine binding in the subiculum, and CA1-CA4 regions of the late isocortical stage (V-VI) cases compared to the early entorhinal stage I-II cases. [3H]Ryanodine binding also showed significant declines with staging for beta-amyloid deposition in the entorhinal cortex (P < 0.01) and CA4 (P < 0.05) with trends towards a significant decrease in the dentate gyrus. We conclude that alterations in ryanodine receptor binding and function are very early events in the pathogenesis of Alzheimer's disease, and may be fundamental to the progression of both neurofibrillary and beta-amyloid pathologies.
Collapse
Affiliation(s)
- M Kelliher
- Department of Biochemistry, University College, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
McLaughlin M, Inglis FM, Ross BM, Breen KC, McCulloch J. Modest cholinergic deafferentation fails to alter hippocampal G-proteins. Neurochem Int 1999; 35:59-64. [PMID: 10403430 DOI: 10.1016/s0197-0186(99)00033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integrity of hippocampal G-protein mediated signalling following ibotenate induced lesion of the medial septum was examined. The lesion was confined histologically to the septum and induced a 23% reduction in hippocampal choline acetyltransferase (ChAT) activity and G-proteins levels and related enzyme activities were measured in the hippocampus following a 21 day survival period. The relative levels of five G-protein subunits (Gbeta, G(alpha)o, G(alpha)i1, G(alpha)i2, and G(alpha)s-L), basal GTPase, the degree of carbachol- or baclofen-stimulated GTPase activities, and the basal and fluoroaluminate-stimulated adenylate cyclase activities were apparently unaffected. To determine if our assay methodology was sensitive to changes in pre-synaptic signalling, we compared G-protein density in synaptosomes with total hippocampal homogenates. The concentration of G(alpha)q/11, G(alpha)i1, and G(alpha)i2. were significantly lower in synaptosomes, while G(alpha)o, was only marginally reduced. Thus, modest lesions of the medial-septal nucleus fail to alter G-protein signalling. However, our findings that G-protein density is lower in synaptosomal membranes than in total homogenates, indicates that the analysis of signalling events in synaptosomes following deafferentation could clarify adaptive changes which may occur at the presynaptic level.
Collapse
Affiliation(s)
- M McLaughlin
- Neuroscience Institute, Department of Pharmacology and Neuroscience, Ninewells Medical School, University of Dundee, UK.
| | | | | | | | | |
Collapse
|
36
|
Yamamoto-Sasaki M, Ozawa H, Saito T, Rösler M, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res 1999; 824:300-3. [PMID: 10196463 DOI: 10.1016/s0006-8993(99)01220-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is disrupted in the brain in dementia of the Alzheimer type (DAT). We investigated whether the cAMP reduction is accompanied by an alteration in the cAMP response element binding protein (CREB) downstream in DAT and control hippocampi. Immunoreactivity of pCREB was significantly decreased in DAT, while total CREB level was unchanged. These findings indicate that impaired cAMP signaling may contribute to the pathophysiology of the disease.
Collapse
Affiliation(s)
- M Yamamoto-Sasaki
- Clinical Neurochemistry, Department of Psychiatry, University of Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
37
|
Bonkale WL, Cowburn RF, Ohm TG, Bogdanovic N, Fastbom J. A quantitative autoradiographic study of [3H]cAMP binding to cytosolic and particulate protein kinase A in post-mortem brain staged for Alzheimer's disease neurofibrillary changes and amyloid deposits. Brain Res 1999; 818:383-96. [PMID: 10082824 DOI: 10.1016/s0006-8993(98)01307-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cAMP-dependent protein kinase (PKA) has been implicated in the Alzheimer's disease pathology of abnormal tau phosphorylation leading to neurofibrillary tangle (NFT) formation, as well as in amyloid precursor protein alpha-secretase processing. In the present study, we determined whether [3H]cAMP binding to cytosolic and particulate PKA showed any relationship to the extent of Alzheimer's disease pathology at post-mortem. Autoradiographic [3H]cAMP binding to cytosolic and particulate PKA was measured in sections of entorhinal cortex/hippocampal formation from 23 cases that had been staged for Alzheimer's disease-related neurofibrillary changes and amyloid deposits according to Braak and Braak [H. Braak, E. Braak, Neuropathological staging of Alzheimer's-related changes, Acta Neuropathol. 82 (1991) 239-259]. [3H]cAMP binding to cytosolic PKA showed statistically significant reductions in the entorhinal cortex (P<0.01, ANOVA) with respect to neurofibrillary changes. Post-hoc analysis with Fisher's PLSD test showed significant reductions of [3H]cAMP binding to cytosolic PKA at the isocortical stages (V and VI), compared to the non-pathological (O) (by 55%, P<0.01), transentorhinal (I and II) (by 58%, P<0.001) and limbic (III and IV) (by 45%, P<0.05) stages. A significant reduction (by 25%, P<0.05) was also seen in the transentorhinal compared to the limbic stages. [3H]cAMP binding to cytosolic PKA showed no significant alterations with respect to neurofibrillary changes in either the subiculum, CA1-CA4 subfields of the hippocampus or the dentate gyrus. [3H]cAMP binding to cytosolic PKA also showed significant declines in the entorhinal cortex (P<0.01) and subiculum (P<0.05) with respect to staging for amyloid deposits. Post-hoc analysis with Fisher's PLSD test showed significant reductions of [3H]cAMP binding to cytosolic PKA in the entorhinal cortex at amyloid stage C compared to stages O (by 41%, P<0.01) and A (by 38%, P<0.01). In the subiculum, there were significant reductions of [3H]cAMP binding at stages C (by 41%, P<0.01) and B (by 40%, P<0.05), respectively, compared to stage O. [3H]cAMP binding to particulate PKA did not show significant relationships to staging for either neurofibrillary changes or amyloid deposits in either the entorhinal cortex or any of the hippocampal subregions. These findings suggest that whereas [3H]cAMP binding to cytosolic PKA in the entorhinal cortex is reduced with progression of neurofibrillary and amyloid pathology, other hippocampal regions show a preservation of cytosolic and particulate PKA even in late stage pathologies.
Collapse
Affiliation(s)
- W L Bonkale
- Karolinska Institute, Division of Geriatric Medicine, NOVUM, KFC, S-141 86, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
38
|
Anderton BH, Callahan L, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C. Dendritic changes in Alzheimer's disease and factors that may underlie these changes. Prog Neurobiol 1998; 55:595-609. [PMID: 9670220 DOI: 10.1016/s0301-0082(98)00022-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It seems likely that the Alzheimer disease (AD)-related dendritic changes addressed in this article are induced by two principally different processes. One process is linked to the plastic response associated with deafferentation, that is, long-lasting transneuronally induced regressive changes in dendritic geometry and structure. The other process is associated with severe alterations of the dendritic- and perikaryal cytoskeleton as seen in neurons with the neurofibrillary pathology of AD, that is, the formation of paired helical filaments formed by hyperphosphorylated microtubule-associated protein tau. As the development of dendritic and cytoskeletal abnormalities are at least mediated by alterations in signal transduction, this article also reviews changes in signal pathways in AD. We also discuss transgenic approaches developed to model and understand cytoskeletal abnormalities.
Collapse
Affiliation(s)
- B H Anderton
- Department of Neuroscience, Institute of Psychiatry, London, U.K..
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamamoto M, Ozawa H, Saito T, Hatta S, Riederer P, Takahata N. Ca2+/CaM-sensitive adenylyl cyclase activity is decreased in the Alzheimer's brain: possible relation to type I adenylyl cyclase. J Neural Transm (Vienna) 1998; 104:721-32. [PMID: 9444571 DOI: 10.1007/bf01291889] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoreactivities of four subtypes of adenylyl cyclase (AC) (types I, II, IV and V/VI), and basal, forskolin- and Mn(2+)-stimulated AC activities with or without calcium and calmodulin (Ca2+/CaM) were estimated in parietal cortex membranes from cases with dementia of the Alzheimer type (DAT) and age-matched controls. Immunoreactivities of AC-I and AC-II were significantly decreased, but those of AC-IV and AC-V/VI did not change in DAT brains. There was a significant correlation of AC-I immunoreactivity with Ca2+/CaM-sensitive AC activity, but not with the Ca2+/CaM-insensitive activity. Ca2+/CaM-sensitive AC activity was significantly lower in DAT than in the control, indicating that impairment of Ca2+/CaM-sensitive AC-I is clearly involved in the pathophysiology of DAT.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Francis PT, Bowen DM. Neuronal pathology in relation to molecular biology and treatment of Alzheimer's disease. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 4:25-54. [PMID: 9439743 DOI: 10.1007/978-94-011-0709-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P T Francis
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, UK
| | | |
Collapse
|
41
|
Fowler CJ. The role of the phosphoinositide signalling system in the pathogenesis of sporadic Alzheimer's disease: a hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:373-80. [PMID: 9495564 DOI: 10.1016/s0165-0173(97)00024-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great advances have been made in recent years in our knowledge of the genetic mutations found in early onset familial Alzheimer's disease (AD) and their pathological consequences. The pathogenesis of sporadic AD, on the other hand, is less clear, although a central role of oxidative stress is indicated. In the AD brain, severe dysfunctions in the phosphoinositide signalling pathway have been reported. In view of the fact that (a) oxidative stress can adversely affect phosphoinositide breakdown and hence diacylglycerol-mediated activation of protein kinase C and (b) protein kinase C activation reduces the production of beta-amyloid peptide from amyloid precursor protein, it is possible that this represents a pathogenic pathway whereby oxidative stress can lead to amyloid deposition and the development of the disease.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology, University of Umeå, Sweden.
| |
Collapse
|
42
|
Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Cerebellar pathology in sporadic and familial Alzheimer's disease including APP 717 (Val-->Ile) mutation cases: a morphometric investigation. J Neurol Sci 1997; 149:177-84. [PMID: 9171327 DOI: 10.1016/s0022-510x(97)05399-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Familial Alzheimer's disease (FAD) tends to present with more prominent neurological symptoms including cerebellar signs than sporadic Alzheimer's disease (SAD). In order to elucidate the pathological differences in the cerebellum, which may be associated with the cerebellar symptoms, we have investigated morphometrically beta-amyloid deposits, atrocytosis, Purkinje cells and dentate neurons in the cerebellum of 10 FAD patients including two cases with the beta-amyloid precursor protein (APP) gene mutation (APP717 Val-->Ile), 10 SAD patients and 10 non-demented age-matched controls. The regions examined included the molecular, Purkinje cell and granular cell layers, the cerebellar white matter and the dentate nucleus. Purkinje cell density in FAD was significantly lower than in SAD. There were no significant differences in the density of dentate neurons among the three groups. The density of astrocytes in FAD was significantly greater than that in SAD in the granular cell and Purkinje cell layers and in the white matter. There were no significant differences in the amount and subtypes of beta-amyloid deposits (extracellular, vascular and perivascular) between FAD and SAD in all the regions investigated. In two cases with the APP mutation, both Purkinje cell loss and beta-amyloid deposition in the cerebellum were greater than the mean for FAD and SAD cases. Astrocytosis in the mutation cases was not greater than the mean for FAD cases except for the dentate nucleus in one case. Extracellular beta-amyloid deposits were not seen in any of the control cases although amyloid angiopathy was observed in one case. This study demonstrates for the first time that Purkinje cell loss and reactive astrocytosis of the cerebellum in FAD are more severe than in SAD, but that beta-amyloid deposition in the cerebellum in both FAD and SAD are similar. The more prominent neurological signs observed in FAD may be explained by more severe neurodegeneration than are found in sporadic cases.
Collapse
Affiliation(s)
- Y Fukutani
- Brain Bank, Department of Neuropathology, Institute of Psychiatry, London, UK
| | | | | | | |
Collapse
|
43
|
Garlind A, Johnston JA, Algotsson A, Winblad B, Cowburn RF. Decreased beta-adrenoceptor-stimulated adenylyl cyclase activity in lymphocytes from Alzheimer's disease patients. Neurosci Lett 1997; 226:37-40. [PMID: 9153636 DOI: 10.1016/s0304-3940(97)00242-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that in Alzheimer's disease post-mortem brain there are disruptions of both beta1-adrenoceptor-G-protein coupling and G-protein stimulation of adenylyl cyclase activity. Decreased beta-adrenoceptor stimulated adenylyl cyclase activity has also been shown in Alzheimer's disease primary skin fibroblasts. In the present study, we determined the regulation of adenylyl cyclase in Alzheimer's disease patients using an easily accessible tissue source, namely peripheral blood lymphocytes. beta-Adrenoceptor- and forskolin-stimulated adenylyl cyclase activities were investigated in lymphocytes from 12 Alzheimer's disease and 12 carefully matched and selected control subjects. No significant differences were found in basal or forskolin-stimulated enzyme activities between Alzheimer's disease and control lymphocytes. In contrast, isoprenaline-stimulated adenylyl cyclase activities were significantly lower in the Alzheimer's disease groups, as compared to controls. These results indicate that there is a widespread disruption of beta-adrenoceptor-G-protein-enzyme coupling in different tissues from Alzheimer's disease patients, and that adenylyl cyclase disturbances previously reported in Alzheimer's disease brain do not occur as a consequence of disease pathology or of terminal illness.
Collapse
Affiliation(s)
- A Garlind
- Karolinska Institute, Department of Clinical Neuroscience and Family Medicine, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
44
|
Nishimoto I, Okamoto T, Giambarella U, Iwatsubo T. Apoptosis in neurodegenerative diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 41:337-68. [PMID: 9204151 DOI: 10.1016/s1054-3589(08)61064-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- I Nishimoto
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Bonkale WL, Fastbom J, Wiehager B, Ravid R, Winblad B, Cowburn RF. Impaired G-protein-stimulated adenylyl cyclase activity in Alzheimer's disease brain is not accompanied by reduced cyclic-AMP-dependent protein kinase A activity. Brain Res 1996; 737:155-61. [PMID: 8930361 DOI: 10.1016/0006-8993(96)00724-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies have shown that the regulation of adenylyl cyclase activity is disrupted in Alzheimer's disease postmortem brain. In the present study, we determined whether disrupted adenylyl cyclase is accompanied by altered cAMP-dependent protein kinase activity in Alzheimer's disease superior temporal cortex and cerebellum. GTP gamma S-stimulated adenylyl cyclase activity was significantly lower in Alzheimer's disease superior temporal cortex, but not cerebellum, compared to values from a series of matched control cases. Neither basal or forskolin-stimulated adenylyl cyclase activities were significantly different between the Alzheimer's disease and control brain regions. No significant differences were seen in either particulate or soluble fraction cAMP-dependent protein kinase activities between the Alzheimer's disease and control brain regions. It is concluded that disrupted adenylyl cyclase signalling in Alzheimer's disease brain occurs specifically at the level of Gs-protein-enzyme interactions and is not accompanied by an altered cAMP-dependent protein kinase activity.
Collapse
Affiliation(s)
- W L Bonkale
- Karolinska Institute, Department of Clinical Neuroscience and Family Medicine, NOVUM, KFC, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- R L Neve
- Dept of Genetics, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
47
|
Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. Neurosci Lett 1996; 214:33-6. [PMID: 8873125 DOI: 10.1016/0304-3940(96)12875-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to elucidate further the pathological differences between familial Alzheimer's disease (FAD) and sporadic Alzheimer's disease (SAD), Purkinje cells and astrocytosis in the cerebellum of 10 FAD patients including two cases with the beta-amyloid precursor protein (APP) gene mutation in codon 717 (APP717 Val-->Ile), 10 SAD patients and 10 non-demented, age-matched controls were morphometrically investigated using immunohistochemistry. The regions examined included the molecular, Purkinje cell and granular cell layers, and the cerebellar white matter. This is the first report of a significantly decreased Purkinje cell density in FAD when compared to SAD. The density in SAD was also significantly decreased when compared to controls. In addition, the astrocyte density in FAD was significantly greater than that of SAD in the Purkinje cell layer, granular cell layer, and white matter. The density in SAD was also greater than that in controls, but not significantly in the granular cell layer and white matter. In the cases with the APP717 (Val-->Ile) mutation, Purkinje cell loss in the cerebellum was greater than the mean for FAD and SAD cases, while the astrocyte density was lower than the mean of all FAD cases, but higher than the mean of SAD cases. This study demonstrates that Purkinje cell loss and astrocytosis in FAD in the cerebellum are greater than in SAD, indicating that the cerebellum is more affected in FAD than in SAD.
Collapse
Affiliation(s)
- Y Fukutani
- Brain Bank, Department of Neuropathology, Institute of Psychiatry, London, UK
| | | | | | | |
Collapse
|
48
|
Svensson AL, Zhang X, Nordberg A. Biphasic effect of tacrine on acetylcholine release in rat brain via M1 and M2 receptors. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00339-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Kelly JF, Furukawa K, Barger SW, Rengen MR, Mark RJ, Blanc EM, Roth GS, Mattson MP. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci U S A 1996; 93:6753-8. [PMID: 8692890 PMCID: PMC39099 DOI: 10.1073/pnas.93.13.6753] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD.
Collapse
Affiliation(s)
- J F Kelly
- Molecular Physiology and Genetics Section, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cowburn RF, Fowler CJ, O'Neill C. Neurotransmitters, signal transduction and second-messengers in Alzheimer's disease. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1996; 165:25-32. [PMID: 8740986 DOI: 10.1111/j.1600-0404.1996.tb05869.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has long been assumed that widespread changes in postsynaptic neurotransmitter receptor function are not a feature of the disrupted neurotransmission seen in the brains with Alzheimer's disease (AD). However, recent evidence from postmortem brain and fibroblast studies suggests that both the neurotransmitter receptor/G-protein-modulated adenylyl cyclase and the phosphatidylinositol hydrolysis signal transduction cascades are disrupted in AD. Such disruptions may severely limit the functional integrity of key receptor types and undermine pharmacological attempts to ameliorate disease symptomatology through neurotransmitter replacement strategies. The involvement of some signalling mechanisms in the regulation of beta-amyloid precursor protein metabolism suggests also that disrupted signal transduction may exacerbate AD pathology.
Collapse
Affiliation(s)
- R F Cowburn
- Alzheimer's Disease Research Centre, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|