1
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
2
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Potter LE, Doolen S, Mifflin K, Tenorio G, Baker G, Taylor BK, Kerr BJ. Antinociceptive Effects of the Antidepressant Phenelzine are Mediated by Context-Dependent Inhibition of Neuronal Responses in the Dorsal Horn. Neuroscience 2018; 383:205-215. [PMID: 29752984 DOI: 10.1016/j.neuroscience.2018.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/08/2023]
Abstract
The putative strong anti-nociceptive properties of the antidepressant phenelzine (PLZ) have not been widely explored as a treatment for pain. Antinociceptive effects of PLZ were identified in the formalin model of tonic pain (Mifflin et al., 2016) and in allodynia associated with experimental autoimmune encephalomyelitis, (EAE) a mouse model of multiple sclerosis (Potter et al., 2016). Here, we further clarify the specific types of stimuli and contexts in which PLZ modulates nociceptive sensitivity. Our findings indicate that PLZ selectively inhibits ongoing inflammatory pain while sparing transient reflexive and acute nociception. We also investigated the cellular mechanisms of action of PLZ in the dorsal horn, and as expected of a monoamine-oxidase inhibitor, PLZ increased serotonin (5HT) immunoreactivity. We next used two approaches to test the hypothesis that PLZ inhibits the activation of spinal nociresponsive neurons. First, we evaluated the formalin-evoked protein expression of the immediate early gene, c-fos. PLZ reduced Fos expression in the superficial dorsal horn. Second, we evaluated the effects of PLZ on intracellular calcium responses to superfusion of glutamate (0.3-1.0 mM) in an ex vivo lumbar spinal cord slice preparation. Superfusion with PLZ (100-300 μM) reduced 1 mM glutamate-evoked calcium responses. This was blocked by pretreatment with the 5HT1A-receptor antagonist WAY-100,635, but not the alpha-2 adrenergic antagonist idazoxan. We conclude that PLZ exerts antinociceptive effects through a 5-HT/5HT1AR-dependent inhibition of neuronal responses within nociceptive circuits of the dorsal horn.
Collapse
Affiliation(s)
- Liam E Potter
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Suzanne Doolen
- Department of Physiology and the Center for Analgesia Research Excellence, University of Kentucky, Lexington, KY 40536, USA
| | - Katherine Mifflin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychology, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychiatry (NRU), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Bradley K Taylor
- Department of Physiology and the Center for Analgesia Research Excellence, University of Kentucky, Lexington, KY 40536, USA
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
4
|
Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol 2017; 160:64-81. [PMID: 29102670 PMCID: PMC5773077 DOI: 10.1016/j.pneurobio.2017.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical neurophysiological and neurorehabilitation research has generated rather surprising levels of recovery of volitional sensory-motor function in persons with chronic motor paralysis following a spinal cord injury. The key factor in this recovery is largely activity-dependent plasticity of spinal and supraspinal networks. This key factor can be triggered by neuromodulation of these networks with electrical and pharmacological interventions. This review addresses some of the systems-level physiological mechanisms that might explain the effects of electrical modulation and how repetitive training facilitates the recovery of volitional motor control. In particular, we substantiate the hypotheses that: (1) in the majority of spinal lesions, a critical number and type of neurons in the region of the injury survive, but cannot conduct action potentials, and thus are electrically non-responsive; (2) these neuronal networks within the lesioned area can be neuromodulated to a transformed state of electrical competency; (3) these two factors enable the potential for extensive activity-dependent reorganization of neuronal networks in the spinal cord and brain, and (4) propriospinal networks play a critical role in driving this activity-dependent reorganization after injury. Real-time proprioceptive input to spinal networks provides the template for reorganization of spinal networks that play a leading role in the level of coordination of motor pools required to perform a given functional task. Repetitive exposure of multi-segmental sensory-motor networks to the dynamics of task-specific sensory input as occurs with repetitive training can functionally reshape spinal and supraspinal connectivity thus re-enabling one to perform complex motor tasks, even years post injury.
Collapse
Affiliation(s)
- G Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - D Sayenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - P Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - Y Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Pavlov Institute of Physiology, St. Petersburg 199034, Russia
| | - V R Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Department of Neurobiology, University of California, Los Angeles, CA 90095 USA; Department of Neurosurgery, University of California, Los Angeles, CA 90095 USA; Brain Research Institute, University of California, Los Angeles, CA 90095 USA; The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, 2007 NSW, Australia; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
5
|
Chen X, Green PG, Levine JD. Abnormal muscle afferent function in a model of Taxol chemotherapy-induced painful neuropathy. J Neurophysiol 2011; 106:274-9. [PMID: 21562188 DOI: 10.1152/jn.00141.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite muscle pain being a well-described symptom in patients with diverse forms of peripheral neuropathy, the role of neuropathic mechanisms in muscle pain have received remarkably little attention. We have recently demonstrated in a well-established model of chemotherapy-induced painful neuropathy (CIPN) that the anti-tumor drug paclitaxel (Taxol) produces mechanical hyperalgesia in skeletal muscle, of similar time course to and with shared mechanism with cutaneous symptoms. In the present study, we evaluated muscle afferent neuron function in this rat model of CIPN. The mechanical threshold of muscle afferents in rats exposed to paclitaxel was not significantly different from the mechanical threshold of muscle afferents in control animals (P = 0.07). However, paclitaxel did produce a marked increase in the number of action potentials elicited by prolonged suprathreshold fixed intensity mechanical stimulation and a marked increase in the conduction velocity. In addition, the interspike interval (ISI) analysis (to evaluate the temporal characteristics of the response of afferents to sustained mechanical stimulation) showed a significant difference in rats treated with paclitaxel; there was a significantly greater ISI percentage of paclitaxel-treated muscle afferents with 0.01- and 0.02-s ISI. In contrast, an analysis of variability of neuronal firing over time (CV2 analysis) showed no effect of paclitaxel administration. These effects of paclitaxel on muscle afferent function contrast with the previously reported effects of paclitaxel on the function of cutaneous nociceptors.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California 94143-0440, USA
| | | | | |
Collapse
|
6
|
Chen X, Green PG, Levine JD. Stress enhances muscle nociceptor activity in the rat. Neuroscience 2011; 185:166-73. [PMID: 21513773 DOI: 10.1016/j.neuroscience.2011.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/30/2022]
Abstract
Chronic widespread pain, such as observed in irritable bowel (IBS) and fibromyalgia (FMS) syndrome, are markedly affected by stress. While such forms of stress-induced hyperalgesia are generally considered manifestations of "central sensitization," recent studies in patients with IBS and FMS suggest an additional, peripheral contribution. To examine the effect of stress on muscle nociceptor function, we evaluated activity in nociceptors innervating the gastrocnemius muscle in an animal model of chronic widespread pain, water avoidance stress, in the rat. This stressor, which produces mechanical hyperalgesia in skeletal muscle produced a significant decrease (∼34%) in mechanical threshold of muscle nociceptors and a marked, ∼two-fold increase in the number of action potentials produced by a prolonged (60 s) fixed intensity suprathreshold 10 g stimulus. Stress also induced an increase in conduction velocity from 1.25 m/s to 2.09 m/s, and increased variability in neuronal activity. Given that these changes, each of at least moderate magnitude, would be expected to enhance nociceptor activity, it is likely that, taken together, they contribute to the enhanced nociception observed in this model of stress-induced chronic widespread pain.
Collapse
Affiliation(s)
- X Chen
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
7
|
Adachi T, Huxtable AG, Fang X, Funk GD. Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. J Neurophysiol 2010; 104:854-72. [DOI: 10.1152/jn.00016.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although Substance P (SP) acts primarily through neurokinin 1 (NK1) receptors to increase the excitability of virtually all motoneurons (MNs) tested, the ontogeny of this transmitter system is not known for any MN pool. Hypoglossal (XII) MNs innervate tongue protruder muscles and participate in several behaviors that must be functional from birth including swallowing, suckling and breathing. We used immunohistochemistry, Western immunoblotting, and whole cell recording of XII MNs in brain stem slices from rats ranging in age from postnatal day zero (P0) to P23 to explore developmental changes in: NK1 receptor expression; currents evoked by SPNK1 (an NK1-selective SP receptor agonist) and; the efficacy of transduction pathways transforming ligand binding into channel modulation. Despite developmental reductions in XII MN NK1 receptor expression, SPNK1 current density remained constant at 6.1 ± 1.0 (SE) pA/pF. SPNK1 activated at least two conductances. Activation of a pH-insensitive Na+ conductance dominated in neonates (P0–P5), but its contribution fell from ∼80 to ∼55% in juveniles (P14–P23). SPNK1 also inhibited a pH-sensitive, two-pore domain K+ (TASK)-like K+ current. Its contribution increased developmentally. First, the density of this pH-sensitive K+ current doubled between P0 and P23. Second, SPNK1 did not affect this current in neonates, but reduced it by 20% at P7–P10 and 80% in juveniles. In addition, potentiation of repetitive firing was greatest in juveniles. These data establish that despite apparent reductions in NK1 receptor density, SP remains an important modulator of XII MN excitability throughout postnatal development due, in part, to increased expression of a pH-sensitive, TASK-like conductance.
Collapse
Affiliation(s)
- Tadafumi Adachi
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Adrianne G. Huxtable
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - X. Fang
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - Gregory D. Funk
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Scanlin HL, Carroll EA, Jenkins VK, Balkowiec A. Endomorphin-2 is released from newborn rat primary sensory neurons in a frequency- and calcium-dependent manner. Eur J Neurosci 2008; 27:2629-42. [PMID: 18513316 DOI: 10.1111/j.1460-9568.2008.06238.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture enzyme-linked immunosorbent assay (ELISA), in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways.
Collapse
Affiliation(s)
- Heather L Scanlin
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
9
|
Chen X, Levine JD. Mechanically-evoked C-fiber activity in painful alcohol and AIDS therapy neuropathy in the rat. Mol Pain 2007; 3:5. [PMID: 17319957 PMCID: PMC1819368 DOI: 10.1186/1744-8069-3-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/23/2007] [Indexed: 11/10/2022] Open
Abstract
While altered activities in sensory neurons were noticed in neuropathic pain, caused by highly diverse insults to the peripheral nervous system, such as diabetes, alcohol ingestion, cancer chemotherapy and drugs used to treat AIDS, other infections and autoimmune diseases, as well as trauma, our understanding of how these various peripheral neuropathies manifest as altered neuronal activity is still rudimentary. The recent development of models of several of those neuropathies has, however, now made it possible to address their impact on primary afferent nociceptor function. We compared changes in mechanically-evoked C-fiber activity, in models of painful peripheral neuropathy induced by drinking ethanol (alcohol) or administering 2',3'-dideoxycytidine (ddC), a nucleoside reverse transcriptase inhibitor for AIDS therapy, two co-morbid conditions in which pain is thought to be mediated by different second messenger signaling pathways. In C-fiber afferents, ddC decreased conduction velocity. In contrast, alcohol but not ddC caused enhanced response to mechanical stimulation (i.e., decrease in threshold and increase in response to sustained threshold and supra-threshold stimulation) and changes in pattern of evoked activity (interspike interval and action potential variability analyses). These marked differences in primary afferent nociceptor function, in two different forms of neuropathy that produce mechanical hyperalgesia of similar magnitude, suggest that optimal treatment of neuropathic pain may differ depending on the nature of the causative insult to the peripheral nervous system, and emphasize the value of studying co-morbid conditions that produce painful peripheral neuropathy by different mechanisms.
Collapse
Affiliation(s)
- Xiaojie Chen
- Departments of Anatomy, Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, NIH Pain Center, University of California, San Francisco, CA 94143, USA
| | - Jon D Levine
- Departments of Anatomy, Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, NIH Pain Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Joseph EK, Chen X, Khasar SG, Levine JD. Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 2004; 107:147-58. [PMID: 14715401 DOI: 10.1016/j.pain.2003.10.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the underlying mechanisms involved in AIDS therapy-induced peripheral neuropathy, we have developed a model of nucleoside analog reverse transcriptase inhibitor-induced painful peripheral neuropathy in the rat, using 2',3'-dideoxycytidine (ddC), 2',3'-dideoxyinosine (ddI) and 2',3'-didehydro-3'-deoxythymidine (d4T), AIDS chemotherapeutic drugs that are also components of AIDS highly active anti-retroviral therapy. Administration of ddC, ddI and d4T produced dose-dependent mechanical hypersensitivity and allodynia. Peripheral administration of inhibitors of protein kinase A, protein kinase C, protein kinase G, p42/p44-mitogen-activated protein kinase (ERK1/2) and nitric oxide synthase, which have demonstrated anti-hyperalgesic effects in other models of metabolic and toxic painful peripheral neuropathies, had no effect on ddC-, ddI- and d4T-induced hypersensitivity. Since suramin, an anti-parasitic and anti-cancer drug, which shares with the anti-retroviral nucleoside analogs, mitochondrial toxicity, altered regulation of intracellular calcium, and a sensory neuropathy in humans, also produced mechanical hypersensitivity that was not sensitive to the above second messenger inhibitors we evaluated the role of intracellular calcium. Intradermal or spinal injection of intracellular calcium modulators (TMB-8 and Quin-2), which had no effect on nociception in control rats, significantly attenuated and together eliminated ddC and suramin-induced mechanical hypersensitivity. In electrophysiology experiments in ddC-treated rats, C-fibers demonstrated alterations in pattern of firing as indicated by changes in the distribution of interspike intervals to sustained suprathreshold stimuli without change in mechanical activation thresholds or in number of action potentials in response to threshold and suprathreshold stimulation. This study provides evidence for a novel, calcium-dependent, mechanism for neuropathic pain in a model of AIDS therapy-induced painful peripheral neuropathy.
Collapse
Affiliation(s)
- Elizabeth K Joseph
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, and UCSF-NIH-Pain Center, University of California, San Francisco, CA 94143-0440, USA.
| | | | | | | |
Collapse
|
11
|
Chen X, Levine JD. Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat. Neuroscience 2004; 121:1007-15. [PMID: 14580951 DOI: 10.1016/s0306-4522(03)00486-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While enhanced nociceptor activity has been demonstrated in models of painful peripheral neuropathy, analyses of activity pattern, which could play a role in the symptoms experienced as well as help elucidate underlying mechanism, are still limited. We evaluated the pattern of C-fiber activity, in response to mechanical and chemical stimuli, in a rat model of diabetes induced by a pancreatic beta-cell toxin, streptozotocin (STZ). In diabetic rats the number of action potentials produced by threshold and suprathreshold (10 g) sustained (60 s) mechanical stimuli was elevated in approximately half of C-fibers. These high-firing C-fibers demonstrated a disproportionate increase in interspike intervals (ISIs) between 100 and 199 ms, compared with low-firing diabetic and control C-fibers. The co-efficient of variability (CV2), a frequency independent measure of ISI variability, was also greater in high-firing fibers, compared with control fibers. Unexpectedly, instantaneous frequency of the initial burst of activity during the first second was lower in high-firing fibers, even though the average frequency over the last 59 s was significantly higher. The number of action potentials evoked by a noxious chemical stimulus, 300 and 600 mM KCl, injected adjacent to the mechanical receptive field was also significantly increased in C-fibers from diabetic rats and mechanically high-firing fibers had more action potentials in response to KCl than control fibers and a disproportionate increase in ISIs between 100 and 199 ms for responses to chemical stimuli appeared only in mechanically high-firing C-fibers, compared with the mechanically low-firing diabetic or control C-fibers. There was, however, no corresponding change in CV2 or instantaneous frequency plots for the response to chemical stimulation in mechanically high-firing fibers, as there was in the response to mechanical stimulation. Our data demonstrate specific changes in firing pattern of high-firing C-fibers in the rat model of painful neuropathy produced by STZ-diabetes that might contribute to the symptoms experienced by patients.
Collapse
Affiliation(s)
- X Chen
- Departments of Anatomy, Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience, NIH Pain Center (University of California, San Francisco), C-522 Box 0440, University of California, San Francisco, CA 94143-0440, USA
| | | |
Collapse
|
12
|
Bouryi VA, Lewis DI. The modulation by 5-HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurones, in vitro. J Physiol 2003; 553:1019-31. [PMID: 14555716 PMCID: PMC2343612 DOI: 10.1113/jphysiol.2003.053843] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/22/2003] [Accepted: 10/08/2003] [Indexed: 11/08/2022] Open
Abstract
Decreases in the activity of 5-HT-containing caudal raphe neurones during sleep are thought to be partially responsible for the resultant disfacilitation of hypoglossal motoneurones. Whilst 5-HT has a direct excitatory action on hypoglossal motoneurones as a result of activation of 5-HT2 receptors, microinjection of 5-HT2 antagonists into the hypoglossal nucleus reduces motor activity to a much lesser extent compared to the suppression observed during sleep suggesting other transmitters co-localised in caudal raphe neurones may also be involved. The aim of the present study was therefore to characterise raphe pallidus inputs to hypoglossal motoneurones. Whole cell recordings were made from hypoglossal motoneurones in vitro. 5-HT evoked a direct membrane depolarisation (8.45 +/- 3.8 mV, P < 0.001) and increase in cell input resistance (53 +/- 40 %, P < 0.001) which was blocked by the 5-HT2 antagonist, ritanserin (2.40 +/- 2.7 vs. 7.04 +/- 4.6 mV). Stimulation within the raphe pallidus evoked a monosynaptic EPSC that was significantly reduced by the AMPA/kainate antagonist, NBQX (22.8 +/- 16 % of control, P < 0.001). In contrast, the 5-HT2 antagonist, ritanserin, had no effect on the amplitude of these EPSCs (106 +/- 31 % of control, P = n.s.). 5-HT reduced these EPSCs to 50.0 +/- 13 % of control (P < 0.001), as did the 5-HT1A agonist, 8-OH-DPAT (52.5 +/- 17 %, P < 0.001) and the 5-HT1B agonist, CP 93129 (40.6 +/- 29 %, P < 0.01). 8-OH-DPAT and CP 93129 increased the paired pulse ratio (1.38 +/- 0.27 to 1.91 +/- 0.54, P < 0.05 & 1.27 +/- 0.08 to 1.44 +/- 0.13, P < 0.01 respectively) but had no effect on the postsynaptic glutamate response (99 +/- 4.4 % and 100 +/- 2.5 %, P = n.s.). They also increased the frequency (P < 0.001), but not the amplitude, of miniature glutamatergic EPSCs in hypoglossal motoneurones. These data demonstrate that raphe pallidus inputs to hypoglossal motoneurones are predominantly glutamatergic in nature, with 5-HT decreasing the release of glutamate from these projections as a result of activation of 5-HT1A and/or 5-HT1B receptors located on presynaptic terminals.
Collapse
Affiliation(s)
- Vitali A Bouryi
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
13
|
Tanner KD, Reichling DB, Gear RW, Paul SM, Levine JD. Altered temporal pattern of evoked afferent activity in a rat model of vincristine-induced painful peripheral neuropathy. Neuroscience 2003; 118:809-17. [PMID: 12710988 DOI: 10.1016/s0306-4522(03)00023-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is known that the level of activity in nociceptive primary afferent nerve fibers increases in neuropathic conditions that produce pain, but changes in the temporal patterning of action potentials have not been analyzed in any detail. Because the patterning of action potentials in sensory nerve fibers might play a role in the development of pathological pain states, we studied patterning of mechanical stimulus-evoked action potential trains in nociceptive primary afferents in a rat model of vincristine-induced painful peripheral neuropathy. Systemic administration of vincristine (100 microg/kg) caused approximately half the C-fiber nociceptors to become markedly hyperresponsive to mechanical stimulation. Instantaneous frequency plots showed that vincristine induced an irregular pattern of action-potential firing in hyperresponsive C-fibers, characterized by interspersed occurrences of high- and low-frequency firing. This pattern was associated with an increase in the percentage of interspike intervals 100-199 ms in duration compared with that in C-fibers from control rats and vincristine-treated C-fibers that did not become hyperresponsive. Variability in the temporal pattern of action potential firing was quantified by determining the coefficient of variability (CV2) for adjacent interspike intervals. This analysis revealed that vincristine altered the pattern of action-potential timing, so that combinations of higher firing frequency and higher variability occurred that were not observed in control fibers. The abnormal temporal structure of nociceptor responses induced by vincristine in some C-fiber nociceptors could contribute to the pathogenesis of chemotherapy-induced neuropathic pain, perhaps by inducing activity-dependent post-synaptic effects in sensory pathways.
Collapse
Affiliation(s)
- K D Tanner
- Department of Oral and Maxillofacial Surgery, Medicine, and Anatomy, Room C-555, Campus Box 0440, NIH Pain Center, University of California, San Francisco, CA 94143-0440, USA
| | | | | | | | | |
Collapse
|
14
|
Han JS. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 2003; 26:17-22. [PMID: 12495858 DOI: 10.1016/s0166-2236(02)00006-1] [Citation(s) in RCA: 674] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Sheng Han
- Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing 100083, China.
| |
Collapse
|
15
|
Johnson SM, Mitchell GS. Activity-dependent plasticity in descending synaptic inputs to respiratory spinal motoneurons. Respir Physiol Neurobiol 2002; 131:79-90. [PMID: 12106997 DOI: 10.1016/s1569-9048(02)00039-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review focuses on recent evidence for short- and long-term activity-dependent plasticity in descending synaptic inputs to respiratory spinal motoneurons. In anesthetized rats, application of high frequency (100 Hz) conditioning stimulation to descending inputs to phrenic motoneurons elicits short-term potentiation of spontaneous inspiratory bursts. In turtle brainstem-spinal cords in vitro, 10-100 Hz conditioning stimulation elicits short-term potentiation in descending inputs to inspiratory-related serratus motoneurons; 100 Hz stimulation also elicits long-term potentiation in some preparations. In contrast, 1-10 Hz stimulation of descending synaptic inputs to expiratory-related pectoralis motoneurons elicits depression during conditioning stimulation (temporal depression), and long-term depression following stimulation. We hypothesize that inspiratory descending pathways to spinal motoneurons express short-term potentiation, with little evidence for long-term activity-dependent plasticity; other forms of long-lasting plasticity (e.g. serotonin-dependent long-term facilitation) may predominate in these pathways. In contrast, expiratory descending pathways appear biased towards activity-dependent depression possibly to conserve resources during passive expiration.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
16
|
Vruwink M, Schmidt HH, Weinberg RJ, Burette A. Substance P and nitric oxide signaling in cerebral cortex: anatomical evidence for reciprocal signaling between two classes of interneurons. J Comp Neurol 2001; 441:288-301. [PMID: 11745651 DOI: 10.1002/cne.1413] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parvalbumin-containing fast-spiking interneurons in the cerebral cortex exhibit widespread electrical coupling, as do somatostatin-containing low-threshold spiking interneurons. Besides the classical neurotransmitter gamma-aminobutyric acid, these cortical interneurons may also release various neuropeptides including substance P (SP), as well as the freely diffusible messenger nitric oxide (NO). To investigate whether these two networks of interneurons might interact via these nonclassical messengers, we performed immunocytochemistry for SP and NO signaling pathways in rat somatic sensory cortex. SP was found in a subset of parvalbumin-positive cells concentrated in layers IV and V, whereas its receptor, NK1, was found in a subset of somatostatin-containing neurons (and also, at much lower levels, in a disjoint subset of parvalbumin-containing neurons). Only 4% of SP-containing axon terminals were apposed to NK1-positive dendrites, suggesting that in the cerebral cortex, SP may act predominantly as a paracrine neuromediator. Nitric oxide synthase-I (NOS-I), the synthetic enzyme for NO, was found almost exclusively in NK1-positive neurons; 95% of intensely somatostatin/NK1-positive neurons were also positive for NOS-I, and 94% of NOS-positive neurons were also positive for NK1. Immunoreactivity for soluble guanylyl cyclase (the NO receptor) was at high levels in the apical dendrites of layer V pyramidal neurons and in parvalbumin/SP-positive neurons. These data point to a novel reciprocal chemical interaction between two inhibitory networks in the rat neocortex.
Collapse
Affiliation(s)
- M Vruwink
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
17
|
Activity-dependent plasticity of descending synaptic inputs to spinal motoneurons in an in vitro turtle brainstem-spinal cord preparation. J Neurosci 2000. [PMID: 10777811 DOI: 10.1523/jneurosci.20-09-03487.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An in vitro brainstem-spinal cord preparation from adult turtles was used to test the hypothesis that descending synaptic inputs to multifunctional spinal motoneurons (i.e., involved in respiration and locomotion) express activity-dependent depression or potentiation. The tissue was placed in a chamber that allowed for separate superfusion of the brainstem, spinal segments C(2)-C(4), and C(5)-D(1). Action potential conduction between the brainstem and spinal segments C(5)-D(1) was blocked by superfusing C(2)-C(4) with Na(+)-free solution. With C(5)-D(1) at [K(+)] = 10 mM, electrical stimulation at C(5) every 2 min evoked potentials in intact pectoralis (expiratory, inward rotation of shoulder) and serratus (inspiratory, outward rotation of shoulder) nerves that were stable for at least 2 hr. Application of conditioning stimulation (900 pulses at 1 or 10 Hz) at C(5) decreased pectoralis evoked potential amplitudes by approximately 40% initially and by 20% after 90 min; serratus evoked potentials were unaltered. Conditioning stimulation (100 Hz, 900 pulses) transiently depressed pectoralis evoked potential amplitude by <20% but produced a delayed 72% increase in serratus evoked potential amplitude after approximately 80 min. Conditioning stimulation (10 Hz) at C(5) also reduced the amplitude of sensory afferent evoked potentials in pectoralis produced by stimulating ipsilateral dorsal roots at C(8). Thus, long-lasting changes in descending synaptic inputs to multifunctional spinal motoneurons were frequency-dependent and heterosynaptic. We hypothesize that activity-dependent plasticity may modulate descending synaptic drive to spinal motoneurons involved in both respiration and locomotion.
Collapse
|
18
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
19
|
Strasser JE, Arribas M, Blagoveshchenskaya AD, Cutler DF. Secretagogue-triggered transfer of membrane proteins from neuroendocrine secretory granules to synaptic-like microvesicles. Mol Biol Cell 1999; 10:2619-30. [PMID: 10436017 PMCID: PMC25493 DOI: 10.1091/mbc.10.8.2619] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two pools of membrane proteins could occur during recycling. We have previously demonstrated that a chimeric protein containing the cytosolic and transmembrane domains of P-selectin coupled to horseradish peroxidase is targeted to both the DCG and the SLMV in PC12 cells. Using this chimera, we have characterized secretagogue-induced traffic in PC12 cells. After stimulation, this chimeric protein traffics from DCGs to the cell surface, internalizes into transferrin receptor (TFnR)-positive endosomes and thence to a population of secretagogue-responsive SLMVs. We therefore find a secretagogue-dependent rise in levels of HRP within SLMVs. In addition, the levels within SLMVs of the endogenous membrane protein, synaptotagmin, as well as a green fluorescent protein-tagged version of vesicle-associated membrane protein (VAMP)/synaptobrevin, also show a secretagogue-dependent increase.
Collapse
Affiliation(s)
- J E Strasser
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
20
|
Ptak K, Di Pasquale E, Monteau R. Substance P and central respiratory activity: a comparative in vitro study on foetal and newborn rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:217-27. [PMID: 10320761 DOI: 10.1016/s0165-3806(99)00044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experiments were performed in vitro on foetal (embryonic days 18 to 21, E18-21) and newborn rat (postnatal days 0 to 3, P0-3) brainstem spinal cord preparations to analyse the perinatal developmental changes in the effects induced by substance P. Superfusion of the preparations with SP-containing artificial cerebrospinal fluid (aCSF) induced significant increase in the respiratory frequency of newborn rats (10-9 M), whereas concentration up to 10-7 M induced no change in foetal preparations. A whole cell patch clamp approach was used to record intracellularly from phrenic motoneurones. In newborn or E20-21 foetal rats SP-containing aCSF depolarised the phrenic motoneurones, increased their input resistance, reduced the rheobase current and shifted the frequency-intensity curves upward. In E18 foetal rats, no change was evoked by SP. A peptidase inhibitor mixture was used to block the enzymatic degradation of endogenous SP. This mixture was ineffective in changing the respiratory frequency in newborn and foetal preparations. In newborn rat phrenic motoneurones, the peptidase inhibitor mixture induced changes similar to those caused by SP but no change was induced in foetal rats. These results indicate that SP may modulate (i) the activity of the respiratory rhythm generator in newborn but not in foetal rats, and (ii) the activity of phrenic motoneurones at E20, E21 and in newborn rats but not at E18. Results obtained using the peptidase inhibitor mixture suggest that endogenous SP is probably not involved in the control of the respiratory rhythm in the prenatal period, but may influence the activity of the phrenic motoneurones after birth.
Collapse
Affiliation(s)
- K Ptak
- Laboratoire de Neurobiologie des Fonctions Végétatives, ESA CNRS 6034, Faculté des Sciences de St. Jérôme, 13397, Marseille Cedex 20, France
| | | | | |
Collapse
|
21
|
Gerin C, Privat A. Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Res 1998; 794:169-73. [PMID: 9630613 DOI: 10.1016/s0006-8993(98)00278-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to define precisely the relation between descending monoaminergic systems and the motor system, we measured in the ventral horn of spinal cord of adult rats the variations of extracellular concentrations of 5-HT, 5-HIAA, DA and MHPG. Measurements were performed during rest, endurance running on a treadmill, and a post-exercise period, with microdialysis probes implanted permanently for 45 days. We found a slight decrease in both 5-HT and 5-HIAA during locomotion with a more marked decrease during the post-exercise period compared to the mean of rest values. In contrast, the concentration of DA and MHPG increased slightly during the exercise and decreased thereafter. These results, when compared with those of a previous study, which measured monoamines in the spinal cord white matter [C. Gerin, D. Bécquet, A. Privat, Direct evidence for the link between monoaminergic descending pathways and motor activity: I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord, Brain Res. 704 (1995) 191-201], highlight the complex regulation of the release of monoamines that occurs in the ventral horn.
Collapse
Affiliation(s)
- C Gerin
- INSERM U-336, DPVSN, Case Courrier 106, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France.
| | | |
Collapse
|
22
|
Abstract
A wealth of pharmacological and behavioral data suggests that spinally projecting serotonergic cells mediate opioid analgesia. A population of medullary neurons, located within raphe magnus (RM) and the neighboring reticular nuclei, contains serotonin and is the source of serotonin in the spinal dorsal horn. To test whether serotonergic neurons mediate opioid analgesia, morphine was administered during recordings from medullary cells that were physiologically characterized as serotonergic (5HTp) by their slow and steady discharge pattern in the lightly anesthetized rat. Selected 5HTp cells (n = 14) were intracellularly labeled, and all contained serotonin immunoreactivity. The discharge of most 5HTp cells was not affected by an analgesic dose of systemic morphine. In a minority of cases, 5HTp cells either increased or decreased their discharge after morphine administration. However, morphine altered the discharge of some 5HTp cells in the absence of producing analgesia and conversely did not alter the discharge of most 5HTp cells in cases in which analgesia occurred. RM cells with irregular discharge patterns and excitatory or inhibitory responses to noxious tail heat were classified as ON and OFF cells, respectively. All ON and OFF cells that were intracellularly labeled (n = 9) lacked serotonin immunoreactivity. All ON cells were inhibited, and most OFF cells were excited by systemic morphine. Because 5HTp cells do not consistently change their discharge during morphine analgesia, they are unlikely to mediate the analgesic effects of morphine. Instead, nonserotonergic cells are likely to mediate morphine analgesia in the anesthetized rat. In light of the sensitivity of morphine analgesia to manipulations of serotonin, serotonin release, although neither necessary nor sufficient for opioid analgesia, is proposed to facilitate the analgesic effects of nonserotonergic RM terminals in the spinal cord.
Collapse
|
23
|
Abstract
Sensitization is manifested as an increased response of neurones to a variety of inputs following intense or noxious stimuli. It is one of the simplest forms of learning and synaptic plasticity and it represents an important feature of nociception. In the spinal cord, repeated stimulation (at constant strength) of dorsal root afferents including nociceptive C fibres can elicit a progressive increase in the number of action potentials generated by motoneurones and interneurones. This phenomenon is termed "action potential windup" and is used as a cellular model of pain sensitization developing at the level of the central nervous system. Understanding the mechanisms responsible for windup generation might allow clarification of the cellular mechanisms of pain signalling and development of new strategies for pain treatment. Action potential windup is observed in a minority of cells only, indicating that certain cell-specific mechanisms are responsible for its generation. The most reliable index to predict windup generation is the rate at which the membrane potential is depolarized during repetitive stimulation. This phenomenon has been proposed to be due to gradual recruitment of NMDA receptor activity, to summation of slow excitatory potentials mediated by substance P (and related peptides) or to facilitation of slow calcium channels by metabotropic glutamate receptors. Little is known about the role of synaptic inhibition in windup, although it should not be underestimated. Each theory per se is unable to account for all the experimental observations. Since NMDA receptors are involved in many forms of synaptic plasticity, additional mechanisms such as summation of slow peptidergic potentials, facilitation of slow Ca2+ currents and disinhibition are proposed as necessary to impart specificity to pain-induced sensitization. These additional mechanisms might be species specific and change during development or chronic pain states.
Collapse
Affiliation(s)
- G Baranauskas
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Trieste, Italy
| | | |
Collapse
|
24
|
Franck J, Nylander I, Rosén A. Met-enkephalin inhibits 5-hydroxytryptamine release from the rat ventral spinal cord via delta opioid receptors. Neuropharmacology 1996; 35:743-9. [PMID: 8887983 DOI: 10.1016/0028-3908(96)84646-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of opioid receptor agonists and antagonists on the electrically evoked release of endogenous serotonin (5-hydroxytryptamine, 5-HT) was studied in superfused slices of the rat ventral lumbar spinal cord. Met-ENK (1 x 10(-8)M-1 x 10(-6)M) and DPDPE (1 x 10(-8)M-1 x 10(-6)M) reduced the evoked 5-Ht release in a concentration dependent fashion. DAMGO (1 x 10(-8)-1 x 10(-6)) and (-)-trans-(1S,2S)-U-50488 (1 x 10(-6)M) had no effect on the 5-HT release. The inhibitory effect of met-ENK was completely abolished by ICI-174,864, but neither by naloxonazine nor nor-binaltorphimine. Following i.c.v. treatment with 5,7-dihydroxytryptamine (5,7-DHT), the tissue concentration of 5-HT was reduced by 97%, whereas the concentration of noradrenaline was reduced by only 5%. The tissue concentration of met-ENK, as measured by radioimmunoassay, was not significantly altered. The results suggest that met-ENK is present in the rat ventral spinal cord mainly in non-serotonergic nerve terminals and exerts an inhibitory action on 5-HT release via delta opioid receptors.
Collapse
Affiliation(s)
- J Franck
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Helke CJ, Yang L. Interactions and coexistence of neuropeptides and serotonin in spinal autonomic systems. Ann N Y Acad Sci 1996; 780:185-92. [PMID: 8602732 DOI: 10.1111/j.1749-6632.1996.tb15123.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C J Helke
- Department of Pharmacology and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
26
|
White SR, Fung SJ, Jackson DA, Imel KM. Serotonin, norepinephrine and associated neuropeptides: effects on somatic motoneuron excitability. PROGRESS IN BRAIN RESEARCH 1996; 107:183-99. [PMID: 8782520 DOI: 10.1016/s0079-6123(08)61865-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S R White
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164, USA
| | | | | | | |
Collapse
|
27
|
Gerin C, Becquet D, Privat A. Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Res 1995; 704:191-201. [PMID: 8788914 DOI: 10.1016/0006-8993(95)01111-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoaminergic projections to the spinal cord are involved in the modulation of motor, autonomic, and sensory functions. More specifically, the increase of electrical activity of serotonergic neurons in raphe obscurus has been correlated with locomotion in treadmill-trained cats [Jacobs, B.L. and Fornal, C., Trends Neurosci., 9 (1993) 346-352]. In order to test the direct correlation between locomotion and the release of monoamines, microdialysis probes were permanently implanted for 45 days into the ventral funiculus of the spinal cord (white matter) of adult rats. Eight days after implantation, these rats were subjected to an endurant exercise on a treadmill, and dialysis sessions were organized in such a way that microdialysate samples of 15 min duration were collected during pre-, per- and post-exercise periods. Measurements of serotonin, 5-hydroxyindoleacetic acid, dopamine and 3-methoxy-4-hydroxyphenylethylglycol concentration in the extracellular space showed significant increases during locomotion when compared with both pre- and post-exercise values. Histological analysis shows that serotonergic axons were present close to the dialysis probe. These results demonstrate that the implantation of a microdialysis probe in the ventral funiculus, close to a potential target of monoaminergic projections, is a suitable technique for the collection of neuromediators released during spontaneous running.
Collapse
Affiliation(s)
- C Gerin
- INSERM U-336, Université Montpellier 2, France
| | | | | |
Collapse
|
28
|
Fried G. Synaptic vesicles and release of transmitters: new insights at the molecular level. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 154:1-15. [PMID: 7572197 DOI: 10.1111/j.1748-1716.1995.tb09880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotransmitter release from transmitter storage vesicles is a regulated signalling event that has properties in common with other secretory systems. Biochemical characterization of mammalian synaptic vesicle proteins has recently converged with studies of protein traffic in non-neuronal cells and the genetic dissection of the yeast secretory pathway to give us a considerable amount of new data. Many new synaptic vesicle proteins have been characterized together with plasma membrane proteins with which they interact, and it appears that many of the participating components may be part of a general machinery for secretion. The new results significantly improve our understanding of the molecular mechanisms governing transmitter release. This review discusses the recent progress in terms of synaptic vesicle components and the proposed mechanisms for exocytosis.
Collapse
Affiliation(s)
- G Fried
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
29
|
Seguin L, Le Marouille-Girardon S, Millan MJ. Antinociceptive profiles of non-peptidergic neurokinin1 and neurokinin2 receptor antagonists: a comparison to other classes of antinociceptive agent. Pain 1995; 61:325-343. [PMID: 7659444 DOI: 10.1016/0304-3959(94)00194-j] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study compared the antinociceptive properties of systemic administration of selective, non-peptidergic antagonists at neurokinin (NK1 and NK2) receptors to those of other classes of antinociceptive agent. (All doses are in mg/kg.) In mice, the NK1 antagonist, CP 99,994, preferentially (inhibitory dose50 (ID50) = 4.4) inhibited the late phase (LP) as compared to the early phase (EP) (16.1) of formalin-induced licking (FIL). A high dose (17.6) elicited ataxia in the rotarod test. Acetic acid-induced writhing was reduced at intermediate doses (10.0) whereas the tail-flick (TF) response to thermal and mechanical stimuli was inhibited only at high doses (22.7 and 17.7, respectively). Modulation of stimulus intensity did not modify the influence of CP 99,994 upon the response to heat. A similar pattern of data was acquired with RP 67,580, although this NK1 antagonist more potently inhibited writhing (2.8). In contrast, RP 68,651, the inactive isomer of RP 67,580, neither reduced the LP of FIL nor modified writhing indicating that these actions of RP 67,580 were stereospecific. Three further NK1 antagonists, SR 140,333, WIN 51,708 and WIN 62,577, likewise inhibited the LP of FIL and failed to modify the TF response at non-ataxic doses. Further, SR 140,333 (0.5) and WIN 51,708 (1.4) were potent ligands in the writhing procedure. The NK2 antagonist, SR 48,966, mimicked NK1 antagonists in preferentially inhibiting the LP (7.7) as compared to the EP (26.9) of FIL. Further, only at doses higher than those evoking ataxia (20.9) did SR 48,968 modify the TF response (36.5 and 32.0 for heat and pressure, respectively). However, it differed to NK1 antagonists in being inactive in the writhing test (> 40.0). In comparison to these NK1 and NK2 antagonists, the mu-opioid agonists (morphine and fentanyl) and kappa-opioid agonists (enadoline and U 69,593) equipotently inhibited all nociceptive responses at doses not provoking ataxia. While the glycine B receptor partial agonist, (+)-HA 966, selectively blocked the LP of FIL and did not evoke ataxia, the NMDA receptor channel blocker, (+)-MK 801, elicited antinociception only at doses close to those provoking ataxia. Finally, the NSAIDs, indomethacin and ibuprofen, the BK2 antagonist, Hoe 140 and the nitric oxide synthase (NOS) inhibitors, L-NAME and 7 nitroindazole, inhibited the LP (but not the EP) of FIL and (except for L-NAME) also reduced writhing: in contrast, they did not evoke ataxia and were inactive in the TF procedures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Seguin
- Department of Psychopharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290 Croissy-sur-Seine France
| | | | | |
Collapse
|
30
|
Pieribone VA, Brodin L, Hökfelt T. Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis). J Comp Neurol 1994; 341:492-506. [PMID: 7515401 DOI: 10.1002/cne.903410406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In mammals, a large proportion of the bulbospinal 5-hydroxytryptamine (5-HT) neurons also contain neuropeptides, such as substance P (SP) and galanin (GAL). To examine whether a similar coexistence occurs in an amphibian, an immunofluorescence double-labelling technique was employed on sections of the Xenopus laevis spinal cord. Antisera raised against SP, GAL, enkephalin (ENK), corticotropin-releasing factor (CRF), calcitonin gene-related peptide (CGRP), and cholecystokinin (CCK) produced a labelling of fibers at all rostrocaudal levels of the spinal cord, with the highest fiber densities for SP and ENK and intermediate densities for GAL, CCK, and CGRP, while CRF-immunoreactive fibers were barely detectable in intact animals. 5-HT-immunoreactive fibers were widely distributed in the spinal cord, and they often occurred in the vicinity of different types of peptide-immunoreactive fibers. However, no coexistence between 5-HT and the different peptide immunoreactivities could be detected, although SP and GAL immunoreactivities were sometimes found to be colocalized in the same fiber. Similar negative results were obtained when 5-HT+SP- and 5-HT+GAL-labelled sections were examined in single focal planes with a confocal microscope. After a spinal transection, (survival period 6 weeks to 4 months), almost all 5-HT-immunoreactive fibers below the lesion were lost, and a build-up of immunoreactive material occurred in fibers just rostral to the cut. In contrast, no significant loss of peptide-immunoreactive fibers occurred, although some swollen SP-, GAL-, ENK-, CRF-, and CCK-immunoreactive fibers were present rostral to the cut. The distribution of swollen peptide-immunoreactive fibers did not overlap with that of the swollen 5-HT-immunoreactive fibers. Although negative immunohistochemical data must be interpreted with caution, in conjunction with previous studies (Brodin et al. [1988] J. Comp. Neurol. 271:1-18; Sakamoto and Atsumi [1991] Cell Tissue Res. 264:221-230), the present results indicate that bulbospinal 5-HT neurons in nonmammalian vertebrates cocontain neuropeptides to a lesser extent than in mammals.
Collapse
Affiliation(s)
- V A Pieribone
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Fung SI, Chan JY, Manzoni D, White SR, Lai YY, Strahlendorf HK, Zhuo H, Liu RH, Reddy VK, Barnes CD. Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Res Bull 1994; 35:423-32. [PMID: 7859099 DOI: 10.1016/0361-9230(94)90155-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article reviews evidence for a direct noradrenergic projection from the dorsolateral pontine tegmentum (DLPT) to spinal motoneurons. The existence of this direct pathway was first inferred by the observation that antidromically evoked responses occur in single cells in the locus coeruleus (LC), a region within the DLPT, following electrical stimulation of the ventral horn of the lumbar spinal cord of the cat. We subsequently confirmed that there is a direct noradrenergic pathway from the LC and adjacent regions of the DLPT to the lumbar ventral horn using anatomical studies that combined retrograde tracing with immunohistochemical identification of neurotransmitters. These anatomical studies further revealed that many of the noradrenergic neurons in the LC and adjacent regions of the DLPT of the cat that send projections to the spinal cord ventral horn also contain colocalized glutamate (Glu) or enkephalin (ENK). Recent studies from our laboratory suggest that Glu and ENK may function as cotransmitters with norepinephrine (NE) in the descending pathway from the DLPT. Electrical stimulation of the LC evokes a depolarizing response in spinal motoneurons that is only partially blocked by alpha 1 adrenergic antagonists. In addition, NE mimicks only the slowly developing and not the fast component of LC-evoked depolarization. Furthermore, the depolarization evoked by LC stimulation is accompanied by a decrease in membrane resistance, whereas that evoked by NE is accompanied by an increased resistance. That Glu may be a second neurotransmitter involved in LC excitation of motoneurons is supported by our observation that the excitatory response evoked in spinal cord ventral roots by electrical stimulation of the LC is attenuated by a non-N-methyl-D-aspartate glutamatergic antagonist. ENK may participate as a cotransmitter with NE to mediate LC effects on lumbar monosynaptic reflex (MSR) amplitude. Electrical stimulation of the LC has a biphasic effect on MSR amplitude, facilitation followed by inhibition. Adrenergic antagonists block only the facilitator effect of LC stimulation on MSR amplitude, whereas the ENK antagonist naloxone reverses the inhibition. The chemical heterogeneity of the cat DLPT system and the differential responses of motoneurons to the individual cotransmitters help to explain the diversity of postsynaptic potentials that occur following LC stimuli.
Collapse
Affiliation(s)
- S I Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99163-6520
| | | | | | | | | | | | | | | | | | | |
Collapse
|