1
|
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2011; 11:1439-65. [PMID: 21047205 DOI: 10.2217/pgs.10.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar disorder (BD) is a serious mental illness with well-established, but poorly characterized genetic risk. Lithium is among the best proven mood stabilizer therapies for BD, but treatment responses vary considerably. Based upon these and other findings, it has been suggested that lithium-responsive BD may be a genetically distinct phenotype within the mood disorder spectrum. This assertion has practical implications both for the treatment of BD and for understanding the neurobiological basis of the illness: genetic variation within lithium-sensitive signaling pathways may confer preferential treatment response, and the involved genes may underlie BD in some individuals. Presently, the mechanism of lithium is reviewed with an emphasis on gene-expression changes in response to lithium. Within this context, findings from genetic-association studies designed to identify lithium response genes in BD patients are evaluated. Finally, a framework is proposed by which future pharmacogenetic studies can incorporate advances in genetics, molecular biology and bioinformatics in a pathway-based approach to predicting lithium treatment response.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
2
|
Willets JM, Brighton PJ, Mistry R, Morris GE, Konje JC, Challiss RAJ. Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol Endocrinol 2009; 23:1272-80. [PMID: 19423652 PMCID: PMC5419184 DOI: 10.1210/me.2009-0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022] Open
Abstract
Oxytocin plays an important role in the progression, timing, and modulation of uterine contraction during labor and is widely used as an uterotonic agent. We investigated the mechanisms regulating oxytocin receptor (OTR) signaling in human primary myometrial smooth muscle cells and the ULTR cell-line. Oxytocin produced concentration-dependent increases in both total [(3)H]inositol phosphate accumulation and intracellular Ca(2+) concentration ([Ca(2+)](i)); however, responses were greater and more reproducible in the ULTR cell line. Assessment of phospholipase C activity in single cells revealed that the OTR desensitizes rapidly (within 5 min) in the presence of oxytocin (100 nm). To characterize OTR desensitization further, cells were stimulated with a maximally effective concentration of oxytocin (100 nm, 30 sec) followed by a variable washout period and a second identical application of oxytocin. This brief exposure to oxytocin caused a marked decrease (>70%) in OTR responsiveness to rechallenge and was fully reversed by increasing the time period between agonist challenges. To assess involvement of G protein-coupled receptor kinases (GRKs) in OTR desensitization, cells were transfected with small interfering RNAs to cause specific > or =75% knockdown of GRKs 2, 3, 5, or 6. In both primary myometrial and ULTR cells, knockdown of GRK6 largely prevented oxytocin-induced OTR desensitization; in contrast, selective depletion of GRKs 2, 3, or 5 was without effect. These data indicate that GRK6 recruitment is a cardinal effector of OTR responsiveness and provide mechanistic insight into the likely in vivo regulation of OTR signaling in uterine smooth muscle.
Collapse
Affiliation(s)
- Jonathon M Willets
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | | | |
Collapse
|
3
|
Williams RSB. Pharmacogenetics in model systems: defining a common mechanism of action for mood stabilisers. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1029-37. [PMID: 15950352 PMCID: PMC1249490 DOI: 10.1016/j.pnpbp.2005.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2005] [Indexed: 11/18/2022]
Abstract
Defining the underlying causes of psychiatric disorders has provided an ongoing and intractable problem. The analysis of the genetic basis of manic depression, in particular, has been impeded by the absence of a suitable model system and by the lack of candidate causative genes. One recent approach to overcome these problems has involved identifying those genes which control the sensitivity to anti-manic drugs in a model organism. Characterisation of the role of these genes and their encoded proteins in this model has allowed the analysis of their mammalian homologues to elucidate the therapeutic role of these drugs and the possible aetiology of manic depression. This approach has been used successfully with the cellular slime mould, Dictyostelium discoideum. This article introduces the use of model systems for pharmacogenetics research. It describes the identification of prolyl oligopeptidase in D. discoideum as a modulator of inositol phosphate signalling, and the subsequent identification of a common mechanism of action of three anti-manic drugs in mammalian neurons. The use of pharmacogenetics in model systems will provide a powerful tool for the ongoing analysis of both the treatment and cause of psychiatric disorders.
Collapse
Key Words
- dictyostelium discoideum
- lithium
- manic depression
- model systems
- pharmacogenetics
- valproic acid
- camp, cyclic adenosine 3′,5′-phosphate
- cbz, carbamazepine
- dag, diacylglycerol
- dpoa, dictyostelium prolyl oligopeptidase
- gsk3/a, glycogen synthase kinase 3/a
- impase, inositol monophosphatase
- insp3, inositol (1,4,5) trisphosphate
- pip2, phosphatidyl-inositol (4,5) bisphosphate
- plc, phospholipase c
- po, prolyl oligopeptidase
- remi, restriction enzyme mediated integration
- vpa, valproic acid
Collapse
Affiliation(s)
- Robin S B Williams
- Department of Biology and Wolfson Institute for Biomedical Research, University College London, Gower St., London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
van Calker D, Belmaker RH. The high affinity inositol transport system--implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord 2000; 2:102-7. [PMID: 11252649 DOI: 10.1034/j.1399-5618.2000.020203.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 'inositol-depletion hypothesis' postulates that the therapeutic effects of lithium are due to inhibition of inositol monophosphatase, which leads to depletion of brain cells of myo-inositol and consequently to dampening of phosphoinositide (PI) signaling. This article examines the potential relevance of an alternative mechanism for inositol depletion: inhibition of myo-inositol uptake that proceeds via the sodium/myo-inositol cotransport (SMIT). We discuss recent in vitro experiments that show a pronounced downregulation of SMIT after chronic treatment with lithium, carbamazepine, and valproate at therapeutically relevant concentrations. It is concluded that downregulation of SMIT could represent a common mechanism of action of mood stabilizers.
Collapse
Affiliation(s)
- D van Calker
- Department of Psychiatry, University of Freiburg, Germany.
| | | |
Collapse
|
5
|
Silverstone PH, Rotzinger S, Pukhovsky A, Hanstock CC. Effects of lithium and amphetamine on inositol metabolism in the human brain as measured by 1H and 31P MRS. Biol Psychiatry 1999; 46:1634-41. [PMID: 10624544 DOI: 10.1016/s0006-3223(99)00076-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The clinical effectiveness of lithium may be due to its decreasing the intracellular concentration of myo-inositol and increasing that of its inositol monophosphate precursors, which is known as the inositol depletion hypothesis. METHODS Magnetic resonance spectroscopy (MRS) was used to measure the concentration of both myo-inositol (1H MRS) and phosphomonoesters (PME) [31P MRS], in healthy volunteers in a double-blind placebo-controlled study. MRS measurements were made at baseline, again on the 7th day of lithium (1200 mg, n = 10) or placebo (n = 6) administration, and again on day 8, 2 hours following oral administration of 20 mg dextroamphetamine to stimulate the phosphoinositol (PI) cycle. RESULTS Subjects who received lithium showed a greater increase in PME ratios in response to amphetamine administration than did placebo-treated subjects. CONCLUSIONS The present results support the hypothesis that lithium administration blocks the conversion of inositol monophosphates to myo-inositol, and that this effect is especially apparent following PI cycle stimulation. The effects of lithium treatment on myo-inositol in healthy volunteers in vivo are uncertain, and may have to await improvements in the ability to measure myo-inositol in the brain.
Collapse
Affiliation(s)
- P H Silverstone
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
6
|
Undie AS. Relationship between dopamine agonist stimulation of inositol phosphate formation and cytidine diphosphate-diacylglycerol accumulation in brain slices. Brain Res 1999; 816:286-94. [PMID: 9878788 DOI: 10.1016/s0006-8993(98)01076-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dopamine receptor-coupled stimulation of inositol phosphate formation has been characterized extensively, but little is known about the diacylglycerol arm of this dual-signaling pathway. This study examined several parameters of cytidine diphosphate-diacylglycerol (CDP-DG) accumulation as an index of agonist-stimulated DG formation. Rat brain slices pre-labeled with 5-[3H]cytidine were incubated with various test agents in the presence of LiCl and accumulated CDP-DG analyzed. Dopamine and SKF38393 significantly and dose-dependently stimulated CDP-DG accumulation. SKF38393 responses were inhibited by neomycin and reversed by myo-inositol or by exclusion of LiCl. Compared to inositol phosphate formation in 2-[3H]inositol-prelabeled slices, the CDP-DG responses were proportionately greater, while the agonist EC50 values were similar between the two assays. The D1-receptor antagonist SCH23390 inhibited SKF38393-mediated responses at 0.1-10 microM concentrations, whereas greater concentrations reversed the inhibition. SKF38393 effects were completely blocked by the DG kinase inhibitor R59022, thus precluding any role for phospholipase-D or de novo phosphatidate synthesis in the dopaminergic response. D609 which inhibits phosphatidylcholine-specific phospholipase-C (PLC), potently inhibited both CDP-DG accumulation and inositol phosphate formation. These findings demonstrate that the selective D1-receptor antagonist SCH23390 is a partial agonist at the D1-like dopamine receptor that couples to phosphoinositide signaling, that dopaminergic facilitation of phosphoinositide signaling is independent of de novo phosphatidate synthesis, and that the widely used enzyme inhibitor, D-609, is probably not selective for phosphatidylcholine-specific PLC in brain slice preparations. The greater sensitivity of the CDP-DG measurement presents this assay as a reliable and possibly superior index of dopamine receptor-coupled PLC activation in intact tissues.
Collapse
Affiliation(s)
- A S Undie
- Neuroscience and Pharmacology Groups, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Room 450, Baltimore, MD 21201-1180, USA.
| |
Collapse
|
7
|
de la Vega MT, Nuñez A, Arias-Montaño JA. Carbachol-induced inositol phosphate formation in rat striatum is mediated by both M1 and M3 muscarinic receptors. Neurosci Lett 1997; 233:69-72. [PMID: 9350834 DOI: 10.1016/s0304-3940(97)00614-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vibratome-cut slices from rat striatum and in the presence of 10 mM LiCl, the cholinergic agonist carbachol stimulated the accumulation of total [3H]inositol phosphates (EC50 11+/-1 microM and maximum effect 546+/-36% of basal). The response to 100 microM carbachol (497+/-24% of basal) was inhibited by muscarinic antagonists (1 microM), the rank order of efficacy being 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 100% inhibition) approximately pirenzepine (98+/-3%) > p-fluoro analog of hexahydro-sila-difenidol (pFHHSiD; 90+/-3%) >> methoctramine (32+/-7%) approximately tropicamide (30+/-10%). Antagonist inhibition curves best fit to a single-site model for 4-DAMP (pKi 8.9+/-0.2) whereas, for both pirenzepine and pFHHSiD, the best fit was to the two-site model. The pKi values for the high-affinity (8.3+/-0.2) and low-affinity (6.9+/-0.2) components for pirenzepine-mediated inhibition corresponded to those reported for M1 and M3 receptors, respectively. The pKi values for the high-affinity (8.2+/-0.3) and low-affinity (7.0+/-0.2) components for pFHHSiD inhibition were in good agreement with those reported for M3 and M1 receptors, respectively. Altogether these results indicate that carbachol-induced [3H]inositol phosphate formation in rat striatal slices is mediated by both M1 and M3 muscarinic receptors.
Collapse
Affiliation(s)
- M T de la Vega
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, México, D.F., Mexico
| | | | | |
Collapse
|
8
|
Silverstone PH, Hanstock CC, Fabian J, Staab R, Allen PS. Chronic lithium does not alter human myo-inositol or phosphomonoester concentrations as measured by 1H and 31P MRS. Biol Psychiatry 1996; 40:235-46. [PMID: 8871769 DOI: 10.1016/0006-3223(95)00382-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lithium may act by decreasing intracellular concentrations of myo-inositol. The present study measured the effects of chronic lithium on myo-inositol concentrations in volunteers. Eleven subjects received either lithium (n = 7) or placebo (n = 4) for 7 days in a double-blind study. Myo-inositol concentrations at baseline and day 8 were measured in vivo using 1H magnetic resonance spectroscopy (MRS). The results showed that lithium did not alter brain myo-inositol concentrations compared to placebo. In 5 other subjects we used 1H MRS and 31P MRS to measure changes in both myo-inositol and phosphomonoester concentrations. This second study showed that lithium did not alter myo-inositol or phosphomonoester concentrations. Thus, the present studies do not support the hypothesis that lithium significantly affects the brain concentrations of myo-inositol or phosphomonoesters; however, it is possible these findings represent an inability to detect the changes in myo-inositol and phosphomonoester concentrations that may have occurred following lithium administration.
Collapse
Affiliation(s)
- P H Silverstone
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
9
|
Patishi Y, Lubrich B, Berger M, Kofman O, van Calker D, Belmaker RH. Differential uptake of myo-inositol in vivo into rat brain areas. Eur Neuropsychopharmacol 1996; 6:73-5. [PMID: 8866942 DOI: 10.1016/0924-977x(95)00061-s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oral inositol has been reported to have antidepressant and antipanic properties in humans. Inositol enters the brain poorly and high doses are required. Natural uptake processes and specific transporters are involved. We here report that intraperitoneally administered inositol is taken up differently by various brain areas and that brain areas have different baseline inositol levels. These effects could be important in understanding the differential effects of lithium-induced lowering of inositol and of behavioral effects of exogenous inositol.
Collapse
Affiliation(s)
- Y Patishi
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Los GV, Artemenko IP, Hokin LE. Phosphoinositide signalling in human neuroblastoma cells: biphasic effect of Li+ on the level of the inositolphosphate second messengers. ADVANCES IN ENZYME REGULATION 1996; 36:245-64. [PMID: 8869750 DOI: 10.1016/0065-2571(95)00022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lithium has a biphasic effect of the agonist-dependent accumulation of Ins(1,4,5)P3 in human neuroblastoma SH-SY5Y cells. These effects consist of a transient reduction, followed by a long-lasting increase in Ins(1,4,5)P3 as compared to controls. The Li+ effects are dose dependent, and were observed at concentrations used in the treatment of bipolar disorders, and thus may have therapeutic implications. The mechanism of the Li+ effect on Ins(1,4,5)P3 accumulation requires further investigation. The transient reduction of Ins(1,4,5)P3 was observed under conditions where Li+ causes only a moderate increase in the inositol mono- and bi-phosphates. Supplementation with exogenous inositol had no effect on the level of Ins(1,4,5)P3, indicating that the mechanism of the Li(+)-dependent reduction of Ins(1,4,5)P3 is not due to inositol depletion. Li+ did not interfere with degradation of Ins(1,4,5)P3 after receptor-blockage with atropine, suggesting that Li+ has no direct effect on the Ins(1,4,5)P3 metabolizing enzymes. A direct effect of Li+ on the phospholipase C is also unlikely. Entry of Ca2+ into the cells is an important factor, which affects agonist-stimulated accumulation of Ins(1,4,5)P3, as well as absolute values of Li(+)-dependent increase in Ins(1,4,5)P3; however, it is not essential for the manifestation of Li+ effects. Our results also show that manifestation of Li+ effects in human neuroblastoma cells requires the stimulation of muscarinic receptors and activation of PLCs, PKCs, and/or that other staurosporine/H-7/GF 109203X-sensitive protein kinases are involved in the regulation of Ins(1,4,5)P3 during the plateau phase of ACh-stimulation. We also suggest an important role for these enzymes in the Li(+)-dependent elevation of Ins(1,4,5)P3.
Collapse
Affiliation(s)
- G V Los
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
11
|
Los GV, Artemenko IP, Hokin LE. Time-dependent effects of lithium on the agonist-stimulated accumulation of second messenger inositol 1,4,5-trisphosphate in SH-SY5Y human neuroblastoma cells. Biochem J 1995; 311 ( Pt 1):225-32. [PMID: 7575458 PMCID: PMC1136142 DOI: 10.1042/bj3110225] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to approach the molecular mechanism of Li+'s mood-stabilizing action, the effect of Li+ (LiCl) on inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] mass was investigated in human neuroblastoma SH-SY5Y cells, which express muscarinic M3 receptors, coupled to PtdIns hydrolysis. Stimulation of these cells, with the cholinergic agonist acetylcholine, resulted in a rapid and transient increase in Ins(1,4,5)P3 with a maximum at 10 s. This was followed by a rapid decline in Ins(1,4,5)P3 within 30 s to a plateau level above baseline, which gradually declined to reach a new steady state, which was significantly higher than resting Ins(1,4,5)P3 at 30 min. Li+ had no effect on Ins(1,4,5)P3 in resting cells, as well as on the acetylcholine-dependent peak of Ins(1,4,5)P3. However, Li+ caused a transient reduction (at 45 s), followed by a long lasting increase in the Ins(1,4,5)P3 (30 min), as compared with controls. The Li+ effects were dose-dependent and were observed at concentrations used in the treatment of bipolar disorders. Supplementation with inositol had no effect on the level of Ins(1,4,5)P3, at least over the time periods studied. Stimulation of muscarinic receptors with consequent activation of phospholipase C were necessary for the manifestation of Li+ effects in SH-SY5Y cells, Li+ did not interfere with degradation of Ins(1,4,5)P3 after receptor-blockade with atropine, suggesting that Li+ has no direct effect on the Ins(1,4,5)P3-metabolizing enzymes. A direct effect of Li+ on the phospholipase C also is unlikely. Blockade of Ca2+ entry into the cells by Ni2+, or incubation with EGTA, which reduces agonist-stimulated accumulation of Ins(1,4,5)P3, had no effect on the Li(+)-dependent increase in Ins(1,4,5)P3.
Collapse
Affiliation(s)
- G V Los
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
12
|
Atack JR, Broughton HB, Pollack SJ. Inositol monophosphatase--a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18:343-9. [PMID: 7482796 DOI: 10.1016/0166-2236(95)93926-o] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Attenuation of the phosphatidylinositol (PI) signal transduction pathway as a consequence of inhibition of inositol monophosphatase (IMPase) has been proposed as the mechanism for the efficacy of Li+ in the treatment of bipolar disorder. Nevertheless, Li+ also affects other aspects of PI signal transduction, and it is therefore not clear whether modulation of PI responses by Li+ can be attributed solely to inhibition of IMPase. However, inhibitors of IMPase mimic the effects of Li+ on some aspects of PI cell signalling, thus highlighting the potential of IMPase as a target for the treatment of bipolar disorder. The recent description of the three-dimensional structure of IMPase in conjunction with site-directed mutagenesis and kinetic studies has led to the elucidation of the enzyme mechanism. These structural and mechanistic data should prove useful in the development of novel inhibitors of IMPase that might ultimately prove useful clinically.
Collapse
Affiliation(s)
- J R Atack
- Merck Sharp & Dohme Research Laboratories, Harlow, Essex, UK
| | | | | |
Collapse
|