1
|
Herrera-Marcos LV, Sahali D, Ollero M. 9-O Acetylated Gangliosides in Health and Disease. Biomolecules 2023; 13:biom13050827. [PMID: 37238697 DOI: 10.3390/biom13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosphingolipids comprise a lipid class characterized by the presence of sugar moieties attached to a ceramide backbone. The role of glycosphingolipids in pathophysiology has gained relevance in recent years in parallel with the development of analytical technologies. Within this vast family of molecules, gangliosides modified by acetylation represent a minority. Described for the first time in the 1980s, their relation to pathologies has resulted in increased interest in their function in normal and diseased cells. This review presents the state of the art on 9-O acetylated gangliosides and their link to cellular disorders.
Collapse
Affiliation(s)
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
2
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
3
|
Tang FL, Wang J, Itokazu Y, Yu RK. Ganglioside GD3 regulates dendritic growth in newborn neurons in adult mouse hippocampus via modulation of mitochondrial dynamics. J Neurochem 2020; 156:819-833. [PMID: 32743804 DOI: 10.1111/jnc.15137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Ganglioside GD3, a major ganglioside species in neural stem cells, plays a crucial role in maintenance of the self-renewal capacity of these cells. However, its bioactivity in postnatally differentiated neurons in the neurogenic regions of adult brains has not been elucidated. Here, we describe for the first time that deletion of GD3 not only impairs neurotrophin-induced stem cell proliferation, but also alters the dendritic structure as well as the number of synapses of nascent neurons in the dentate gyrus of adult brain. When examining the behavioral phenotypes, GD3 synthase-knockout (GD3S-KO) mice displayed impairment in hippocampus-dependent memory function. To further gain insight into its cellular function, we examined GD3-binding partners from mouse brain extract using a GD3-specific monoclonal antibody, R24, followed by LC-MS/MS analysis and identified a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein. Biochemical and imaging analyses revealed mitochondrial fragmentation in GD3-depleted dentate gyrus neurons, suggesting that GD3 is essential for the mitochondrial Drp1 turnover that is required for efficient mitochondrial fission. These results suggest that GD3 is required for proper dendritic and spine maturation of newborn neurons in adult brain through the regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Understanding cellular glycan surfaces in the central nervous system. Biochem Soc Trans 2018; 47:89-100. [PMID: 30559272 DOI: 10.1042/bst20180330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/21/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Glycosylation, the enzymatic process by which glycans are attached to proteins and lipids, is the most abundant and functionally important type of post-translational modification associated with brain development, neurodegenerative disorders, psychopathologies and brain cancers. Glycan structures are diverse and complex; however, they have been detected and targeted in the central nervous system (CNS) by various immunohistochemical detection methods using glycan-binding proteins such as anti-glycan antibodies or lectins and/or characterized with analytical techniques such as chromatography and mass spectrometry. The glycan structures on glycoproteins and glycolipids expressed in neural stem cells play key roles in neural development, biological processes and CNS maintenance, such as cell adhesion, signal transduction, molecular trafficking and differentiation. This brief review will highlight some of the important findings on differential glycan expression across stages of CNS cell differentiation and in pathological disorders and diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, schizophrenia and brain cancer.
Collapse
|
6
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J Biol Chem 2018; 293:7300-7314. [PMID: 29593094 PMCID: PMC5950021 DOI: 10.1074/jbc.ra117.000775] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (LeX; CD15) and/or sialyl Lewis-X (sLeX; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human LeX/sLeX biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLeX is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize LeX, and, among all FTs, FT6 holds a unique capacity in creating sLeX and LeX determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLeX on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.
Collapse
Affiliation(s)
- Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Brad Dykstra
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jungmin Lee
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - David J Ashline
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Vernon N Reinhold
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
8
|
CD60b: Enriching Neural Stem/Progenitor Cells from Rat Development into Adulthood. Stem Cells Int 2017; 2017:5759490. [PMID: 29270199 PMCID: PMC5705879 DOI: 10.1155/2017/5759490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
CD60b antigens are highly expressed during development in the rat nervous system, while in the adult their expression is restricted to a few regions, including the subventricular zone (SVZ) around the lateral ventricles—a neurogenic niche in the adult brain. For this reason, we investigated whether the expression of C60b is associated with neural stem/progenitor cells in the SVZ, from development into adulthood. We performed in vitro and in vivo analyses of CD60b expression at different stages and identified the presence of these antigens in neural stem/progenitor cells. We also observed that CD60b could be used to purify and enrich a population of neurosphere-forming cells from the developing and adult brain. We showed that CD60b antigens (mainly corresponding to ganglioside 9-O-acetyl GD3, a well-known molecule expressed during central nervous system development and mainly associated with neuronal migration) are also present in less mature cells and could be used to identify and isolate neural stem/progenitor cells during development and in the adult brain. A better understanding of molecules associated with neurogenesis may contribute not only to improve the knowledge about the physiology of the mammalian central nervous system, but also to find new treatments for regenerating tissue after disease or brain injury.
Collapse
|
9
|
Ryu JS, Ko K, Ko K, Kim JS, Kim SU, Chang KT, Choo YK. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Mol Med Rep 2017; 16:987-993. [DOI: 10.3892/mmr.2017.6719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/12/2017] [Indexed: 11/06/2022] Open
|
10
|
Kandasamy M, Roll L, Langenstroth D, Brüstle O, Faissner A. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs). Cell Tissue Res 2017; 368:531-549. [DOI: 10.1007/s00441-017-2594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
|
11
|
Yagi H, Kato K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2016; 34:757-763. [PMID: 27350557 DOI: 10.1007/s10719-016-9707-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSCs) possess a high proliferative potential and capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. NSCs have gained a considerable attention because of their potential application in treatment strategies on the basis of transplantation for neurodegenerative disorders and nerve injuries. Although several signaling pathways have been reportedly involved in the fate determination process of NSCs, the molecular mechanisms underlying the maintenance of neural cell stemness and differentiation process remain largely unknown. Glycoconjugates expressed in the NSC niche in the brain offer markers of NSCs; moreover, they serve as cell regulators, which are actively involved in the modulation of signal transduction. The glycans function on NCS surfaces by recruiting growth factor receptors to specific microdomains as components of glycolipids, thereby mediating the ligand-receptor interactions both indirectly and directly as components of proteoglycans and interacting with specific lectin-type receptors as components of ligand glycoproteins. In this review, we outline current knowledge of the possible functional mechanisms of glycoconjugates to determine cell fates, which are associated with their expression pattern and structural characteristic features.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
12
|
Safina D, Schlitt F, Romeo R, Pflanzner T, Pietrzik CU, Narayanaswami V, Edenhofer F, Faissner A. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia 2016; 64:1363-80. [PMID: 27258849 DOI: 10.1002/glia.23009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380.
Collapse
Affiliation(s)
- Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| | - Frederik Schlitt
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Ramona Romeo
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Thorsten Pflanzner
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, 90840
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University Wuerzburg, Koellikerstraße 6, Wuerzburg, D-97070, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| |
Collapse
|
13
|
Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. J Neurosci 2015; 34:13790-800. [PMID: 25297105 DOI: 10.1523/jneurosci.2275-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The maintenance of a neural stem cell (NSC) population in mammalian postnatal and adult life is crucial for continuous neurogenesis and neural repair. However, the molecular mechanism of how NSC populations are maintained remains unclear. Gangliosides are important cellular membrane components in the nervous system. We previously showed that ganglioside GD3 plays a crucial role in the maintenance of the self-renewal capacity of NSCs in vitro. Here, we investigated its role in postnatal and adult neurogenesis in GD3-synthase knock-out (GD3S-KO) and wild-type mice. GD3S-KO mice with deficiency in GD3 and the downstream b-series gangliosides showed a progressive loss of NSCs both at the SVZ and the DG of the hippocampus. The decrease of NSC populations in the GD3S-KO mice resulted in impaired neurogenesis at the granular cell layer of the olfactory bulb and the DG in the adult. In addition, defects of the self-renewal capacity and radial glia-like stem cell outgrowth of postnatal GD3S-KO NSCs could be rescued by restoration of GD3 expression in these cells. Our study demonstrates that the b-series gangliosides, especially GD3, play a crucial role in the long-term maintenance NSC populations in postnatal mouse brain. Moreover, the impaired neurogenesis in the adult GD3S-KO mice led to depression-like behaviors. Thus, our results provide convincing evidence linking b-series gangliosides deficiency and neurogenesis defects to behavioral deficits, and support a crucial role of gangliosides in the long-term maintenance of NSCs in adult mice.
Collapse
|
14
|
Azevedo-Pereira RL, Morrot A, Machado GS, Paredes BD, Rodrigues DDC, de Carvalho ACC, Mendez-Otero R. Expression of ganglioside 9-O acetyl GD3 in undifferentiated embryonic stem cells. Cell Biol Int 2015; 39:121-7. [PMID: 25045067 DOI: 10.1002/cbin.10335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Embryonic stem cells (ES cells) express a transient and heterogeneous pattern of molecules, which suggests a notable mechanism to control self-renewal avoid the differentiation into germ layers. We show that 9-O-acetyl GD3 (9OacGD3), a highly expressed b-series ganglioside in neural stem (NS) cells, is expressed in undifferentiated mouse ES cells in a heterogeneous fashion. After sorting, undifferentiated 9OacGD3(+) ES cell population had higher levels of nestin and Sox2 mRNA than the 9OacGD3(-) cells. Even with elevated expression of these neural transcription factors, 9OacGD3(+) cells did not give rise to more neural progenitors than 9OacGD3(-) cells. Expression of 9OacGD3 was recovered from 9OacGD3(-) cell population, demonstrating that expression of this ganglioside in mouse embryonic stem cells is transient, and does not reflect cell fate. Our findings show that the ganglioside 9OacGD3 is expressed heterogeneously and transiently in ES cells, and this expression corresponds to higher levels of Sox2 and Nestin transcripts.
Collapse
Affiliation(s)
- Ricardo Luiz Azevedo-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Chavali PL, Saini RKR, Zhai Q, Vizlin-Hodzic D, Venkatabalasubramanian S, Hayashi A, Johansson E, Zeng ZJ, Mohlin S, Påhlman S, Hansford L, Kaplan DR, Funa K. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis 2014; 5:e1502. [PMID: 25356871 PMCID: PMC4237266 DOI: 10.1038/cddis.2014.449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 12/23/2022]
Abstract
Nuclear orphan receptor TLX (Drosophilatailless homolog) is essential for the maintenance of neural stem/progenitor cell self-renewal, but its role in neuroblastoma (NB) is not well understood. Here, we show that TLX is essential for the formation of tumor spheres in three different NB cell lines, when grown in neural stem cell media. We demonstrate that the knock down of TLX in IMR-32 cells diminishes its tumor sphere-forming capacity. In tumor spheres, TLX is coexpressed with the neural progenitor markers Nestin, CD133 and Oct-4. In addition, TLX is coexpressed with the migratory neural progenitor markers CD15 and matrix metalloproteinase-2 (MMP-2) in xenografts of primary NB cells from patients. Subsequently, we show the effect of TLX on the proliferative, invasive and migratory properties of IMR-32 cells. We attribute this to the recruitment of TLX to both MMP-2 and Oct-4 gene promoters, which resulted in the respective gene activation. In support of our findings, we found that TLX expression was high in NB patient tissues when compared with normal peripheral nervous system tissues. Further, the Kaplan–Meier estimator indicated a negative correlation between TLX expression and survival in 88 NB patients. Therefore, our results point at TLX being a crucial player in progression of NB, by promoting self-renewal of NB tumor-initiating cells and altering their migratory and invasive properties.
Collapse
Affiliation(s)
- P L Chavali
- 1] Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden [2] Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - R K R Saini
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| | - Q Zhai
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| | - D Vizlin-Hodzic
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| | - S Venkatabalasubramanian
- 1] Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden [2] School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - A Hayashi
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| | - E Johansson
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| | - Z-j Zeng
- 1] Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden [2] Molecular Biology Research Center, School of Biological Science and Technology, Central South University, Changsha, China
| | - S Mohlin
- Center for Molecular Pathology, Lund University, Skåne University Hospital, Malmö SE 20502, Sweden
| | - S Påhlman
- Center for Molecular Pathology, Lund University, Skåne University Hospital, Malmö SE 20502, Sweden
| | - L Hansford
- 1] Program in Cell Biology, Hospital for Sick Children, Toronto, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - D R Kaplan
- 1] Program in Cell Biology, Hospital for Sick Children, Toronto, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - K Funa
- Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, Gothenburg SE 40530, Sweden
| |
Collapse
|
16
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Stipcevic T, Knight CP, Kippin TE. Stimulation of adult neural stem cells with a novel glycolipid biosurfactant. Acta Neurol Belg 2013; 113:501-6. [PMID: 23846482 DOI: 10.1007/s13760-013-0232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
Glycolipids are amphipathic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated, proliferative, multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3, is a glycolipid isolated from the bacteria Pseudomonas aeruginosa. In the previous studies, di-rhamnolipid enhanced dermal tissue healing and regeneration. The present study provides the first assessment of di-rhamnolipid, and glycolipid biosurfactants in general, on the nervous system. Treatment of neural stem cells isolated from the lateral ventricle of adult mice and cultured in defined media containing growth factors at 0.5 and 1 μg/ml of di-rhamnolipid increased the number of neurospheres (2.7- and 2.8-fold, respectively) compared to controls and this effect remained even after passaging in the absence of di-rhamnolipid. In addition, neural stem cells treated with di-rhamnolipid at 50 and 100 μg/ml in defined media supplemented with fetal calf serum and without growth factors exhibited increased cell viability, indicating an interaction between di-rhamnolipid and serum components in the regulation of neural stem cells and neuroprogenitors. Intracerebroventricular administration of di-rhamnolipid at 300 and 120 ng/day increased the number of neurospheres (1.3- and 1.63-fold, respectively) that could be derived from the anterior lateral ventricles of adult mice. These results indicate that di-rhamnolipid stimulates proliferation of neural stem cells and increases their endogenous pools which may have therapeutic potential in managing neurodegenerative or neuropsychiatric disorders and promoting nervous tissue regeneration following injury.
Collapse
|
18
|
Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci U S A 2013; 110:19137-42. [PMID: 24198336 DOI: 10.1073/pnas.1307224110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mounting evidence supports the notion that gangliosides serve regulatory roles in neurogenesis; little is known, however, about how these glycosphingolipids function in neural stem cell (NSC) fate determination. We previously demonstrated that ganglioside GD3 is a major species in embryonic mouse brain: more than 80% of the NSCs obtained by the neurosphere method express GD3. To investigate the functional role of GD3 in neurogenesis, we compared the properties of NSCs from GD3-synthase knockout (GD3S-KO) mice with those from their wild-type littermates. NSCs from GD3S-KO mice showed decreased self-renewal ability compared with those from the wild-type animals, and that decreased ability was accompanied by reduced expression of EGF receptor (EGFR) and an increased degradation rate of EGFR and EGF-induced ERK signaling. We also showed that EGFR switched from the low-density lipid raft fractions in wild-type NSCs to the high-density layers in the GD3S-KO NSCs. Immunochemical staining revealed colocalization of EGFR and GD3, and EGFR could be immunoprecipitated from the NSC lysate with an anti-GD3 antibody from the wild-type, but not from the GD3S-KO, mice. Tracking the localization of endocytosed EGFR with endocytosis pathway markers indicated that more EGFR in GD3S-KO NSCs translocated through the endosomal-lysosomal degradative pathway, rather than through the recycling pathway. Those findings support the idea that GD3 interacts with EGFR in the NSCs and that the interaction is responsible for sustaining the expression of EGFR and its downstream signaling to maintain the self-renewal capability of NSCs.
Collapse
|
19
|
Kumar A, Torii T, Ishino Y, Muraoka D, Yoshimura T, Togayachi A, Narimatsu H, Ikenaka K, Hitoshi S. The Lewis X-related α1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J Biol Chem 2013; 288:28859-68. [PMID: 23986452 DOI: 10.1074/jbc.m113.469403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lewis X (Le(X), Galβ1-4(Fucα1-3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. Le(X) antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the Le(X) moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9(-/-) embryos, suggesting that Fut9-synthesized Le(X) is dispensable for the maintenance of NSCs. Another α1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique α1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.
Collapse
Affiliation(s)
- Akhilesh Kumar
- From the Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, and
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Itokazu Y, Kato-Negishi M, Nakatani Y, Ariga T, Yu RK. Effects of amyloid β-peptides and gangliosides on mouse neural stem cells. Neurochem Res 2013; 38:2019-27. [PMID: 23851714 DOI: 10.1007/s11064-013-1108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 01/04/2023]
Abstract
The interaction of amyloid β-proteins (Aβs) with membrane lipids has been postulated as an early event in Aβ fibril formation in Alzheimer's disease. We evaluated the effects of several putative bioactive Aβs and gangliosides on neural stem cells (NSCs) isolated from embryonic mouse brains or the subventricular zone of adult mouse brains. Incubation of the isolated NSCs with soluble Aβ1-40 alone did not cause any change in the number of NSCs, but soluble Aβ1-42 increased their number. Aggregated Aβ1-40 and Aβ1-42 increased the number of NSCs but soluble and aggregated Aβ25-35 decreased the number. Soluble Aβ1-40 and Aβ1-42 did not affect the number of apoptotic cells but aggregated Aβ1-40 and Aβ1-42 did. When NSCs were treated with a combination of GM1 or GD3 and soluble Aβ1-42, cell proliferation was enhanced, indicating that both GM1 and GD3 as well as Aβs are involved in promoting cell proliferation and survival of NSCs. These observations suggest the potential of beneficial effects of using gangliosides and Aβs for promoting NSC proliferation.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | | | | | | | | |
Collapse
|
21
|
Chaubey S, Wolfe JH. Transplantation of CD15-enriched murine neural stem cells increases total engraftment and shifts differentiation toward the oligodendrocyte lineage. Stem Cells Transl Med 2013; 2:444-54. [PMID: 23681951 PMCID: PMC3673756 DOI: 10.5966/sctm.2012-0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic approach for neurological diseases. However, only a limited number of cells can be transplanted into the brain, resulting in relatively low levels of engraftment. This study investigated the potential of using a cell surface marker to enrich a primary NSC population to increase stable engraftment in the recipient brain. NSCs were enriched from the neonatal mouse forebrain using anti-CD15 (Lewis X antigen, or SSEA-1) in a "gentle" fluorescence-activated cell sorting protocol, which yielded >98% CD15-positive cells. The CD15-positive cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, after withdrawal of growth factors, demonstrating multipotentiality. CD15-positive cells were expanded in vitro and injected bilaterally into the ventricles of neonatal mice. Cells from enriched and unenriched donor populations were found throughout the neuraxis, in both neurogenic and non-neurogenic regions. Total engraftment was similar at 7 days postinjection, but by 28 days postinjection, after brain organogenesis was complete, the survival of donor cells was significantly increased in CD15-enriched grafts over the unenriched cell grafts. The engrafted cells were heterogeneous in morphology and differentiated into all three neural lineages. Furthermore, in the CD15-enriched grafts, there was a significant shift toward differentiation into oligodendrocytes. This strategy may allow better delivery of therapeutic cells to the developing central nervous system and may be particularly useful for treating diseases involving white matter lesions.
Collapse
Affiliation(s)
- Sushma Chaubey
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John H. Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Differential Expression of Micro-Heterogeneous LewisX-Type Glycans in the Stem Cell Compartment of the Developing Mouse Spinal Cord. Neurochem Res 2013; 38:1285-94. [DOI: 10.1007/s11064-013-1048-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
|
23
|
Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, Poetsch A, Faissner A. A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 2013; 288:16538-16545. [PMID: 23615909 DOI: 10.1074/jbc.m112.419812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing and adult CNS multipotent neural stem cells reside in distinct niches. Specific carbohydrates and glycoproteins are expressed in these niche microenvironments which are important regulators of stem cell maintenance and differentiation fate. LewisX (LeX), also known as stage-specific embryonic antigen-1 or CD15, is a defined carbohydrate moiety expressed in niche microenvironments of the developing and adult CNS. LeX-glycans are involved in stem cell proliferation, migration, and stemness. A few LeX carrier proteins are known, but a systematic analysis of the targets of LeX glycosylation in vivo has not been performed so far. Using LeX glycosylation as a biomarker we aimed to discover new glycoproteins with a potential functional relevance for CNS development. By immunoaffinity chromatography we enriched LeX glycoproteins from embryonic and postnatal mouse brains and used one-dimensional nLC-ESI-MS/MS for their identification. We could validate phosphacan, tenascin-C, and L1-CAM as major LeX carrier proteins present in vivo. Furthermore, we identified LRP1, a member of the LDL receptor family, as a new LeX carrier protein expressed by mouse neural stem cells. Surprisingly, little is known about LRP1 function for neural stem cells. Thus, we generated Lrp1 knock-out neural stem cells by Cre-mediated recombination and investigated their properties. Here, we provide first evidence that LRP1 is necessary for the differentiation of neural stem cells toward oligodendrocytes. However, this function is independent of LeX glycosylation.
Collapse
Affiliation(s)
- Eva Hennen
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Dina Safina
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Ute Haussmann
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philipp Wörsdörfer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Andreas Faissner
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany.
| |
Collapse
|
24
|
Suzuki-Anekoji M, Suzuki A, Wu SW, Angata K, Murai KK, Sugihara K, Akama TO, Khoo KH, Nakayama J, Fukuda MN, Fukuda M. In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse. J Biol Chem 2012; 288:5007-16. [PMID: 23269668 PMCID: PMC3576103 DOI: 10.1074/jbc.m112.433474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10−/− mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10−/− females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10−/− females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.
Collapse
Affiliation(s)
- Misa Suzuki-Anekoji
- Glycobiology Unit, Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
LewisX: A neural stem cell specific glycan? Int J Biochem Cell Biol 2012; 44:830-3. [DOI: 10.1016/j.biocel.2012.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
|
26
|
Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K. Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 2012; 287:24356-64. [PMID: 22645129 DOI: 10.1074/jbc.m112.365643] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
27
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|
28
|
Gasimli L, Linhardt RJ, Dordick JS. Proteoglycans in stem cells. Biotechnol Appl Biochem 2012; 59:65-76. [PMID: 23586787 DOI: 10.1002/bab.1002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/18/2012] [Indexed: 12/18/2022]
Abstract
The remarkable promise of pluripotent and multipotent stem cells (SCs) imparts tremendous optimism for advancement of regenerative medicine, developmental biology, and drug discovery. Perhaps the greatest challenge is to finely direct, control, and command their differentiation. As those processes are managed on many levels, including genomic, transcriptomic, and epigenomic, examination of all of these components will yield powerful tools for manipulation of SCs. Carbohydrates surround all cells, including SCs as a glycocalyx. Of particular interest is the class of carbohydrates known as proteoglycans (PGs), which are a diverse group of glycoconjugates consisting of core protein with one or more glycosaminoglycan (GAG) chains attached. They are primarily located in the extracellular matrix as well as at cell surfaces, where they are bound or anchored to the membrane through their core proteins. GAG chains are linear, anionic, and highly heterogeneous carbohydrates consisting of repeating disaccharides. PGs facilitate interaction of cells with the extracellular environment by interacting with chemokines, growth factors, and other signaling molecules. Core proteins are involved in many signaling pathways, both individually, as well as through attached proteins via GAG-mediated interactions. These essential and accessible functions make PGs an excellent target for manipulating SCs and guiding their fate. Studying the role of PGs in cell development will yield valuable insight into the mechanism of SC differentiation and suggest approaches toward directing those pathways. Such studies may also help identify valuable markers for distinguishing between various cell populations during differentiation.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
29
|
Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 2012; 37:1344-54. [PMID: 22350518 DOI: 10.1007/s11064-012-0719-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 12/12/2022]
Abstract
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Suzuki-Anekoji M, Suzuki M, Kobayashi T, Sato Y, Nakayama J, Suzuki A, Bao X, Angata K, Fukuda M. HNK-1 glycan functions as a tumor suppressor for astrocytic tumor. J Biol Chem 2011; 286:32824-33. [PMID: 21784847 DOI: 10.1074/jbc.m111.245886] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with β1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-β1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containing HNK-1 glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from β1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.
Collapse
Affiliation(s)
- Misa Suzuki-Anekoji
- Tumor Microenvironment Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.
Collapse
|
32
|
Hennen E, Czopka T, Faissner A. Structurally distinct LewisX glycans distinguish subpopulations of neural stem/progenitor cells. J Biol Chem 2011; 286:16321-31. [PMID: 21385876 DOI: 10.1074/jbc.m110.201095] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that the stem and progenitor cell population that builds the central nervous system is very heterogeneous. Stem cell markers with the potential to divide this cell pool into subpopulations with distinct characteristics are sparse. We were looking for new cell type-specific antigens to further subdivide the progenitor pool. Here, we introduce the novel monoclonal antibody clone 5750. We show that it specifically labels cell surfaces of neural stem and progenitor cells. When 5750-expressing cells were isolated by fluorescence-activated cell sorting from embryonic mouse brains, the sorted population showed increased neurosphere forming capacity and multipotency. Neurospheres generated from 5750-positive cells could self-renew and remained multipotent even after prolonged passaging. Carbohydrate binding assays revealed that the 5750 antibody specifically binds to LewisX-related carbohydrates. Interestingly, we found that the LewisX epitope recognized by clone 5750 differs from those detected by other anti-LewisX antibody clones like 487(LeX), SSEA-1(LeX), and MMA(LeX). Our data further reveal that individual anti-LewisX clones can be successfully used to label and deplete different subpopulations of neural cells in vivo and in vitro. In conclusion, we present a new tool for the isolation and characterization of neural subpopulations and provide insights into the complexity of cell surface glycosylation.
Collapse
Affiliation(s)
- Eva Hennen
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
33
|
|
34
|
Hamanoue M, Okano H. Cell surface N-glycans-mediated isolation of mouse neural stem cells. J Cell Physiol 2010; 226:1433-8. [PMID: 20945342 DOI: 10.1002/jcp.22436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The isolation of neural stem cells (NSCs) has been hampered by the lack of valid cell-surface antigens on NSCs, and novel valuable markers have been proposed. Glycan (oligosaccharide chain) is a potential candidate as a marker to isolate NSCs, because the species and the combination order of saccharides in glycan generate remarkable structural diversity and specificity. At present, the expression of hundreds of glycoconjugates with glycans have been found in the NSCs; however, just a few glycan-epitopes have been identified as valuable cell-surface markers. This review focused on the isolation of NSC using glycoprotein, especially complex type N-glycans. The cell-surface N-glycan-mediated isolation of NSCs is therefore expected to provide a comprehensive understanding of the biologic characteristics of NSCs in the brain, and thereby help to develop novel strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Makoto Hamanoue
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
35
|
Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK. HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem 2010; 285:37293-301. [PMID: 20855890 DOI: 10.1074/jbc.m110.157081] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into neuronal and glial cells. NSCs are the source for neurogenesis during central nervous system development from fetal and adult stages. Although the human natural killer-1 (HNK-1) carbohydrate epitope is expressed predominantly in the nervous system and involved in intercellular adhesion, cell migration, and synaptic plasticity, the expression patterns and functional roles of HNK-1-containing glycoconjugates in NSCs have not been fully recognized. We found that HNK-1 was expressed in embryonic mouse NSCs and that this expression was lost during the process of differentiation. Based on proteomics analysis, it was revealed that the HNK-1 epitopes were almost exclusively displayed on an extracellular matrix protein, tenascin-C (TNC), in the mouse embryonic NSCs. Furthermore, the HNK-1 epitope was found to be present only on the largest isoform of the TNC molecules. In addition, the expression of HNK-1 was dependent on expression of the largest TNC variant but not by enzymes involved in the biosynthesis of HNK-1. By knocking down HNK-1 sulfotransferase or TNC by small interfering RNA, we further demonstrated that HNK-1 on TNC was involved in the proliferation of NSCs via modulation of the expression level of the epidermal growth factor receptor. Our finding provides insights into the function of HNK-1 carbohydrate epitopes in NSCs to maintain stemness during neural development.
Collapse
Affiliation(s)
- Hirokazu Yagi
- From the Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, Georgia 30912
| | | | | | | | | | | | | |
Collapse
|
36
|
Yagi H, Yanagisawa M, Kato K, Yu RK. Lysosome-associated membrane protein 1 is a major SSEA-1-carrier protein in mouse neural stem cells. Glycobiology 2010; 20:976-81. [PMID: 20360060 PMCID: PMC2902283 DOI: 10.1093/glycob/cwq054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/21/2010] [Accepted: 03/27/2010] [Indexed: 12/29/2022] Open
Abstract
Stage-specific embryonic antigen-1 (SSEA-1) is a well-known carbohydrate antigenic epitope of undifferentiated cells, including neural stem cells (NSCs). However, the exact nature of the carrier proteins has not been fully characterized. Using proteomics analyses, we herein report that a lysosomal protein, LAMP-1, is a major carrier protein of SSEA-1 in NSCs, despite the common belief that SSEA-1 is mainly expressed on the cell surface and constitutes a component of the extracellular matrix. Furthermore, we found that SSEA-1 on LAMP-1 is completely ablated in differentiated cells derived from NSCs. Our finding raises the possibility that the expression of SSEA-1-positive LAMP-1 is associated with the "stemness" of NSCs.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
37
|
Suzuki Y, Yanagisawa M, Yagi H, Nakatani Y, Yu RK. Involvement of beta1-integrin up-regulation in basic fibroblast growth factor- and epidermal growth factor-induced proliferation of mouse neuroepithelial cells. J Biol Chem 2010; 285:18443-51. [PMID: 20371608 DOI: 10.1074/jbc.m110.114645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, beta1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and beta1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total beta1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of beta1-integrin localization on the NEC surface. bFGF- and EGF-induced beta1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of beta1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of beta1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small beta1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of beta1-integrin expression levels. Those results suggest that regulation of beta1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through beta1-integrin would not be expected to be completely identical, however, for bFGF and EGF.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
38
|
Yanagisawa M, Yu RK. O-linked beta-N-acetylglucosaminylation in mouse embryonic neural precursor cells. J Neurosci Res 2010; 87:3535-45. [PMID: 19598243 DOI: 10.1002/jnr.22170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In neural stem cells (NSCs), glycoconjugates and carbohydrate antigens are known not only to serve as excellent cell surface biomarkers for cellular differentiation and development but also to play important functional roles in determining cell fate. O-linked beta-N-acetylglucosamine (O-GlcNAc), which modifies nuclear and cytoplasmic proteins on the serine and threonine residues, is also expected to play an important regulatory role. It is not known, however, whether O-GlcNAc is expressed in NSCs or what the function of this expression is. In this study, we evaluated the patterns and possible functions of O-GlcNAcylation in mouse embryonic neuroepithelial cells (NECs), which are known to be rich in NSCs. We confirmed the expression of O-GlcNAc transferase, O-GlcNAcase, and several O-GlcNAcylated proteins in NECs. Treatment of NECs with O-GlcNAcase inhibitors, PUGNAc and streptozotocin, induced robust accumulation of O-GlcNAc in NECs and reduction of number of NECs. In O-GlcNAcase inhibitor-treated NECs, the Ras-mitogen-activated protein kinase pathway and the phosphatidylinositol 3-kinase-Akt pathway, important for proliferation and survival, respectively, were intact, but caspase-3, an executioner for cell death, was activated. These results suggest the possibility that O-GlcNAc is involved in cell death signaling in NECs. Furthermore, in NECs, we identified an O-GlcNAc-modified protein, Sp1 transcription factor. Our study is the first to evaluate expression and functions of O-GlcNAc in NECs.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
39
|
Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S. The 3'-phosphoadenosine 5'-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 2009; 4:e8262. [PMID: 20011239 PMCID: PMC2788424 DOI: 10.1371/journal.pone.0008262] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022] Open
Abstract
Recently, we have identified two 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent K(m) value of 1.54 microM or 1.49 microM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Takuya Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Masahiro Wakao
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Kohrimoto, Kagoshima, Japan
| | - Kazumi Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Akiko Kinoshita-Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hidenao Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Yasuo Suda
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Kohrimoto, Kagoshima, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
40
|
Kwon EJ, Lasiene J, Jacobson BE, Park IK, Horner PJ, Pun SH. Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials 2009; 31:2417-24. [PMID: 20004466 DOI: 10.1016/j.biomaterials.2009.11.086] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/24/2009] [Indexed: 12/22/2022]
Abstract
Targeted gene therapy can potentially minimize undesirable off-target toxicity due to specific delivery. Neuron-specific gene delivery in the central nervous system is challenging because neurons are non-dividing and also outnumbered by glial cells. One approach is to transfect dividing neural stem and progenitor cells (NSCs and NPCs, respectively). In this work, we demonstrate cell-specific gene delivery to NPCs in the brains of adult mice using a peptide-modified polymeric vector. Tet1, a 12-amino acid peptide which has been shown to bind specifically to neuronal cells, was utilized as a neuronal targeting ligand. The cationic polymer polyethylenimine (PEI) was covalently modified with polyethylene glycol (PEG) for in vivo salt stability and Tet1 for neuron targeting to yield a Tet1-PEG-PEI conjugate. When plasmid DNA encoding the reporter gene luciferase was complexed with Tet1-PEG-PEI and delivered in vivo via an injection into the lateral ventricle, Tet1-PEG-PEI complexes mediated increased luciferase expression levels in brain tissue when compared to unmodified PEI-PEG complexes. In addition, cells transfected by Tet1-PEG-PEI complexes were found to be exclusively adult NPCs whereas untargeted PEG-PEI complexes were found to transfect a heterogenous population of cells. Thus, we have demonstrated targeted, nonviral delivery of nucleic acids to adult NPCs using the Tet1 targeting ligand. These materials could potentially be used to deliver therapeutic genes for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ester J Kwon
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Solari M, Paquin J, Ducharme P, Boily M. P19 neuronal differentiation and retinoic acid metabolism as criteria to investigate atrazine, nitrite, and nitrate developmental toxicity. Toxicol Sci 2009; 113:116-26. [PMID: 19808863 DOI: 10.1093/toxsci/kfp243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atrazine and nitrogenous fertilizers are agrochemical contaminants frequently detected in water systems in North America. Several studies reported their ability to affect amphibian and mammalian development. Retinoids, supplied in the diet or synthesized by cells, are essential to embryogenesis. Disturbance of their homeostasis may lead to teratogenic effects. Retinoic acid (RA) is a major retinoid regulator of cell proliferation and differentiation. Previous studies reported alterations of retinoid stores in bullfrogs of Yamaska River subwatersheds (Québec, Canada), a region of intensive agricultural activities associated with atrazine, nitrate, and nitrite contaminants. These contaminants could affect RA metabolism and RA-mediated processes. Mouse P19 embryonic stem cells, which can differentiate to neurons in response to RA, were used to test this hypothesis. Cells were cultured in the absence or presence of contaminants during neuroinduction with RA and assayed by flow cytometry for expression of stage-specific embryonic antigen-1 (SSEA1) (embryonic marker) and betaIII-tubulin (neuronal marker). Cell cultures were also analyzed for RA metabolism by high performance liquid chromotagraphy (HPLC). Downregulation of SSEA1 paralleled betaIII-tubulin upregulation in an RA concentration-dependent manner. Atrazine, nitrate, and nitrite did not affect differentiation at environmentally encountered micromolar concentrations. However, low molar nitrite prevented RA-induced SSEA1 downregulation and decreased betaIII-tubulin appearance. Decreased cell viability/proliferation accompanied these differentiation effects. P19 cells metabolized RA to polar retinoids. RA metabolism was not affected at any concentration of atrazine, nitrate, or nitrite. Environmentally relevant levels of these contaminants, thus, had no gross effect on neurodifferentiation and RA catabolism of embryonic stem cells. P19 cell-based bioassays may provide valuable tools in monitoring developmental toxicity.
Collapse
Affiliation(s)
- Mathieu Solari
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
| | | | | | | |
Collapse
|
43
|
Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett 2009; 584:1694-9. [PMID: 19716368 DOI: 10.1016/j.febslet.2009.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 01/13/2023]
Abstract
Stem cells, such as embryonic stem cells, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells, are undifferentiated cells that are endowed with a high potential for proliferation and the capacity for self-renewal with retention of pluri/multipotency to differentiate into their progenies. Recently, studies regarding the biological functions of glycolipids and cell surface microdomains (caveolae, lipid rafts, or glycolipid-enriched microdomains) in stem cells are emerging. In this review, we introduce the expression patterns of glycolipids and the functional roles of cell surface microdomains in stem cells.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
44
|
Yanagisawa M, Yu RK. N-glycans modulate the activation of gp130 in mouse embryonic neural precursor cells. Biochem Biophys Res Commun 2009; 386:101-4. [PMID: 19501045 DOI: 10.1016/j.bbrc.2009.05.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 10/20/2022]
Abstract
gp130 is a ubiquitously expressed glycoprotein and signal transducer of interleukin 6 family of cytokines. It has been reported that gp130 has 11 potential N-glycosylation sites in the extracellular domain, and nine of them are actually N-glycosylated. However, the structure and functional role of the carbohydrate chains carried by gp130 are totally unknown. In this study, we examined the functional role of N-glycans of gp130 in mouse neuroepithelial cells. In neuroepithelial cells treated with tunicamycin, an N-glycosylation inhibitor, unglycosylated form of gp130 was detected. The unglycosylated gp130 was not phosphorylated in response to leukemia inhibitory factor stimulation. Although the unglycosylated gp130 was found to be expressed on the cell surface, it could not form a heterodimer with leukemia inhibitory factor receptor. These results suggest that N-glycans are required for the activation, but not for the localization, of gp130 in neuroepithelial cells.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
45
|
Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int J Cancer 2008; 123:73-84. [PMID: 18398829 DOI: 10.1002/ijc.23492] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metastasis is the process by which cancer cells disseminate from the primary neoplasm and invade surrounding tissue and distant organs, and is the primary cause of morbidity and mortality for cancer patients. Most conventional cancer therapies are ineffective in managing tumor metastasis. This has been due in large part to the absence of in vivo metastatic models that represent the full spectrum of metastatic disease. Here we identify 3 new spontaneously arising tumors in the inbred VM mouse strain, which has a relatively high incidence of CNS tumors. Two of the tumors (VM-M2 and VM-M3) reliably expressed all of the major biological processes of metastasis to include local invasion, intravasation, immune system survival, extravasation and secondary tumor formation involving liver, kidney, spleen, lung and brain. Metastasis was assessed through visual organ inspection, histology, immunohistochemistry and bioluminescence imaging. The metastatic VM tumor cells also expressed multiple properties of macrophages including morphological appearance, surface adhesion, phagocytosis, total lipid composition (glycosphingolipids and phospholipids) and gene expression (CD11b, Iba1, F4/80, CD68, CD45 and CXCR4). The third tumor (VM-NM1) grew rapidly and expressed properties of neural stem/progenitor cells, but was neither invasive nor metastatic. Our data indicate that spontaneous brain tumors can arise from different cell types in VM mice and that metastatic cancer can represent a disease of macrophage-like cells similar to those described in several human metastatic cancers. The new VM tumor model will be useful for defining the biological processes of cancer metastasis and for evaluating potential therapies for tumor management.
Collapse
|
46
|
Revoltella RP, Papini S, Rosellini A, Michelini M, Franceschini V, Ciorba A, Bertolaso L, Magosso S, Hatzopoulos S, Lorito G, Giordano P, Simoni E, Ognio E, Cilli M, Saccardi R, Urbani S, Jeffery R, Poulsom R, Martini A. Cochlear Repair by Transplantation of Human Cord Blood CD133+ Cells to Nod-Scid Mice Made Deaf with Kanamycin and Noise. Cell Transplant 2008; 17:665-78. [DOI: 10.3727/096368908786092685] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We investigated the fate of human cord blood CD133+ hematopoietic stem cells (HSC) transplanted intravenously (IV) into irradiated nodscid mice previously made deaf by ototoxic treatment with kanamycin and/or intense noise, to verify whether HSC engraft the cochlea and contribute to inner ear restoration, in vivo. We tested the presence of HLA.DQα1 by PCR, used for traceability of engrafted cells, finding evidence that HSC migrated to various host tissues, including the organ of Corti (OC). By histology, antibody and lectin-staining analysis, we confirmed that HSC IV transplantation in mice previously damaged by ototoxic agents correlated with the repair process and stimulation ex novo of morphological recovery in the inner ear, while the cochlea of control oto-injured, nontransplanted mice remained seriously damaged. Dual color FISH analysis also provided evidence of positive engraftment in the inner ear and in various mouse tissues, also revealing small numbers of heterokaryons, probably derived from fusion of donor with endogenous cells, for up to 2 months following transplantation. These observations offer the first evidence that transplanted human HSC migrating to the inner ear of oto-injured mice may provide conditions for the resumption of deafened cochlea, emerging as a potential strategy for inner ear rehabilitation.
Collapse
Affiliation(s)
- Roberto P. Revoltella
- Foundation onlus “Staminali e Vita”, Institute of Biomedical Technologies, C.N.R., 56127 Pisa, Italy
| | - Sandra Papini
- Foundation onlus “Staminali e Vita”, Institute of Biomedical Technologies, C.N.R., 56127 Pisa, Italy
| | - Alfredo Rosellini
- Foundation onlus “Staminali e Vita”, Institute of Biomedical Technologies, C.N.R., 56127 Pisa, Italy
| | - Monica Michelini
- Foundation onlus “Staminali e Vita”, Institute of Biomedical Technologies, C.N.R., 56127 Pisa, Italy
| | - Valeria Franceschini
- Department of Evolution and Experimental Biology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciorba
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Lucia Bertolaso
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Sara Magosso
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Stavros Hatzopoulos
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Guiscardo Lorito
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Pietro Giordano
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Edi Simoni
- Audiology Unit, Bioacoustic Center and National Institute of Neuroscience, University Hospital S. Anna, University of Ferrara, 44100 Ferrara, Italy
| | - Emanuela Ognio
- Animal Model Facility, National Institute for Cancer Research (IST), 16132 Genua, Italy
| | - Michele Cilli
- Animal Model Facility, National Institute for Cancer Research (IST), 16132 Genua, Italy
| | - Riccardo Saccardi
- Bone Marrow Transplantation Center, Department of Haematology, University Hospital, 50134 Florence, Italy
| | - Serena Urbani
- Bone Marrow Transplantation Center, Department of Haematology, University Hospital, 50134 Florence, Italy
| | - Rosemary Jeffery
- Histopathology Unit, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | - Richard Poulsom
- Histopathology Unit, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | - Alessandro Martini
- Histopathology Unit, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| |
Collapse
|
47
|
Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008; 49:1157-75. [PMID: 18334715 DOI: 10.1194/jlr.r800007-jlr200] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
48
|
Muramatsu H, Kusano T, Sato M, Oda Y, Kobori K, Muramatsu T. Embryonic stem cells deficient in I beta1,6-N-acetylglucosaminyltransferase exhibit reduced expression of embryoglycan and the loss of a Lewis X antigen, 4C9. Glycobiology 2008; 18:242-9. [PMID: 18184719 DOI: 10.1093/glycob/cwm138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Embryoglycan is a class of branched high-molecular-weight poly-N-acetyllactosamines characteristically expressed in early embryonic cells and has been shown to be involved in the intercellular adhesion of early embryonic cells in vitro. Branching of poly-N-acetyllactosamine chains is performed by beta1,6-N-acetylglucosaminylation of the galactosyl residue. We previously knocked out the gene encoding I beta1, 6-N-acetylglucosaminyltransferase (IGnT), and the resultant deficient mice were born without any abnormality, although the mice exhibited various deficits in later life. In the present investigation, we produced embryonic stem (ES) cells from IGnT-deficient embryos. The mutant ES cells exhibited a reduced capability in embryoglycan synthesis. Thus, IGnT is a major enzyme involved in the branching of poly-N-acetyllactosamine chains in embryoglycan. Since ES cells are equivalent to multipotential cells of the embryonic ectoderm in early postimplantation embryos, this result indicates that an abundance of embryoglycan in these cells is not essential for normal embryogenesis. The IGnT-deficient ES cells continued to express SSEA-1, but lacked the expression of 4C9 antigen, although the epitope of 4C9 antigen was confirmed to be Lewis X by a transfection experiment. The result establishes the distinct nature of 4C9 antigenicity, which requires either Lewis X epitope on I-branch or clustering of Lewis X epitope, best accomplished by poly-N-acetyllactosamine branching. Alpha6-integrin was newly identified as a carrier of embryoglycan. The IGnT-deficient ES cells adhered to dishes coated with laminin, which is a ligand for alpha6-integrin, significantly less than wild-type ES cells, raising the possibility that embryoglycan in ES cells enhances alpha6-integrin-dependent adhesion in vitro.
Collapse
Affiliation(s)
- Hisako Muramatsu
- Department of Biochemistry, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya 468-8550, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Yu RK, Yanagisawa M. Glycosignaling in neural stem cells: involvement of glycoconjugates in signal transduction modulating the neural stem cell fate. J Neurochem 2007; 103 Suppl 1:39-46. [DOI: 10.1111/j.1471-4159.2007.04710.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Yang CR, Liour SS, Dasgupta S, Yu RK. Inhibition of neuronal migration by JONES antibody is independent of 9-O-acetyl GD3 in GD3-synthase knockout mice. J Neurosci Res 2007; 85:1381-90. [PMID: 17385751 DOI: 10.1002/jnr.21264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been shown previously that the migration of granule neurons in neonatal cerebellum can be inhibited by a monoclonal antibody (Mab) JONES. Because the inhibition is presumed to be mediated through binding of the JONES antibody to 9-O-acetyl GD3, we used GD3-synthase knockout (GD3S-/-) mice that do not express 9-O-acetyl GD3 and also have no detectable defect in brain development, to examine the mechanism of the inhibitory effect. We found no difference between the migration of granule neurons in the neonatal cerebellar explant culture in GD3S-/- mice and in wild-type mice. Addition of the Mab JONES, but not Mab R24 or A2B5, in the culture medium blocked the neuronal migration in the explant culture of the wild-type mice. The inhibitory effect of Mab JONES was also observed, however, in the explant culture of GD3S-/- mice. Immuno-HPTLC analysis showed at least two JONES-positive glycolipids bands in the lipid extract of GD3S+/+ mice, and none was detected in that of GD3S-/- mice. Western blot analysis of the cerebellum homogenate of wild-type and GD3S-/- mice identified at least 3 JONES-positive protein bands, one of which is beta1-integrin. Because the JONES antibody also blocked neuronal migration in the cerebellar explant culture of GD3S-/- mice that do not express 9-O-acetyl-GD3, it suggested an alternative mechanism for the inhibitory effect of the antibody, at least in the GD3S knockout mice, and the inhibitory effect of the JONES antibody on neuronal migration could be mediated through its binding to beta1-integrin.
Collapse
Affiliation(s)
- Chia-Ron Yang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|