1
|
Chen JL, Kuo CC. Inhibition of resurgent Na + currents by rufinamide. Neuropharmacology 2024; 247:109835. [PMID: 38228283 DOI: 10.1016/j.neuropharm.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Na+ channels are essential for the genesis of action potentials in most neurons. After opening by membrane depolarization, Na+ channels enter a series of inactivated states (e.g. the fast, intermediate, and slow inactivated states; or If, Ii, and Is). The inactivated Na+ channel may recover via the open state upon membrane repolarization, giving rise to "resurgent" Na+ currents which could be critical for densely repetitive or burst discharges. We incubated CHO-K1 cells transfected with human NaV1.7 cDNA and measured resurgent currents with whole-cell patch recordings. We found Ii is the major inactivated state responsible for the genesis of resurgent currents. Rufinamide, in therapeutic concentrations, could selectively bind to Ii to slow the recovery process and dose-dependently inhibit resurgent currents. The other Na+ channel-inhibiting antiseizure medications (ASM), such as phenytoin and lacosamide (selectively binds to If and Is, separately), fail to show a similar inhibitory effect in clinically relevant concentrations. Resurgent currents are decreased with lengthening of the prepulse, presumably because of redistribution of the channel from Ii to If. Rufinamide could accentuate the decrease to mimic a use-dependent inhibitory effect. The molecular action of slowing of recovery from inactivation by binding to Ii also explains the highly correlative inhibitory effect of rufinamide on both transient and resurgent Na+ currents. The modest but correlative inhibition of both currents may make a novel synergistic effect and thus strong-enough suppression of pathological repetitive and especially burst discharges. Rufinamide may thus have a unique spectrum of therapeutic applications for disorders with excessive neural excitabilities.
Collapse
Affiliation(s)
- Jian-Lin Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Issabekov G, Matsumoto T, Hoshi H, Fukasawa K, Ichikawa S, Shigihara Y. Resting-state brain activity distinguishes patients with generalised epilepsy from others. Seizure 2024; 115:50-58. [PMID: 38183828 DOI: 10.1016/j.seizure.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
PURPOSE Epilepsy is a prevalent neurological disorder characterised by repetitive seizures. It is categorised into three types: generalised epilepsy (GE), focal epilepsy (FE), and combined generalised and focal epilepsy. Correctly subtyping the epilepsy is important to select appropriate treatments. The types are mainly determined (i.e., diagnosed) by their semiologies supported by clinical examinations, such as electroencephalography and magnetoencephalography (MEG). Although these examinations are traditionally based on visual inspections of interictal epileptic discharges (IEDs), which are not always visible, alternative analyses have been anticipated. We examined if resting-state brain activities can distinguish patients with GE, which would help us to diagnose the type of epilepsy. METHODS The 5 min resting-state brain activities acquired using MEG were obtained retrospectively from 15 patients with GE. The cortical source of the activities was estimated at each frequency band from delta to high-frequency oscillation (HFO). These estimated activities were compared with reference datasets from 133 healthy individuals and control data from 29 patients with FE. RESULTS Patients with GE showed larger theta in the occipital, alpha in the left temporal, HFO in the rostral deep regions, and smaller HFO in the caudal ventral regions. Their area under the curves of the receiver operating characteristic curves was around 0.8-0.9. The distinctive pattern was not found for data from FE. CONCLUSION Patients with GE show distinctive resting-state brain activity, which could be a potential biomarker and used complementarily to classical analysis based on the visual inspection of IEDs.
Collapse
Affiliation(s)
- Galymzhan Issabekov
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Takahiro Matsumoto
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro 080-0833, Japan
| | - Keisuke Fukasawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya 360-8567, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya 360-8567, Japan; Precision Medicine Centre, Hokuto Hospital, Obihiro 080-0833, Japan.
| |
Collapse
|
3
|
Kropf E, Shekari A, Jaberi S, Puri A, Wu C, Fahnestock M. Age-induced nitrative stress decreases retrograde transport of proNGF via TrkA and increases proNGF retrograde transport and neurodegeneration via p75 NTR. Front Mol Neurosci 2023; 16:1241420. [PMID: 38025269 PMCID: PMC10679388 DOI: 10.3389/fnmol.2023.1241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Axonal transport of pro nerve growth factor (proNGF) is impaired in aged basal forebrain cholinergic neurons (BFCNs), which is associated with their degeneration. ProNGF is neurotrophic in the presence of its receptor tropomyosin-related kinase A (TrkA) but induces apoptosis via the pan-neurotrophin receptor (p75NTR) when TrkA is absent. It is well established that TrkA is lost while p75NTR is maintained in aged BFCNs, but whether aging differentially affects transport of proNGF via each receptor is unknown. Nitrative stress increases during aging, but whether age-induced nitrative stress differentially affects proNGF transport via TrkA versus p75NTR has not yet been studied. Answering these questions is essential for developing an accurate understanding of the mechanisms contributing to age-induced loss of proNGF transport and BFCN degeneration. Methods In this study, fluorescence microscopy was used to analyze axonal transport of quantum dot labeled proNGF in rat BFCNs in vitro. Receptor specific effects were studied with proNGF mutants that selectively bind to either TrkA (proNGF-KKE) or p75NTR (proNGF-Δ9-13). Signaling factor activity was quantified via immunostaining. Results Young BFCNs transported proNGF-KKE but not proNGF-Δ9-13, and proNGF transport was not different in p75NTR knockout BFCNs compared to wildtype BFCNs. These results indicate that young BFCNs transport proNGF via TrkA. In vitro aging increased transport of proNGF-Δ9-13 but decreased transport of proNGF-KKE. Treatment with the nitric oxide synthase inhibitor L-NAME reduced retrograde transport of proNGF-Δ9-13 in aged BFCNs while increasing retrograde transport of proNGF-KKE but did not affect TrkA or p75NTR levels. ProNGF-Δ9-13 induced greater pro-apoptotic signaling and neurodegeneration and less pro-survival signaling relative to proNGF-KKE. Discussion Together, these results indicate that age-induced nitrative stress decreases proNGF transport via TrkA while increasing proNGF transport via p75NTR. These transport deficits are associated with decreased survival signaling, increased apoptotic signaling, and neurodegeneration. Our findings elucidate the receptor specificity of age-and nitrative stress-induced proNGF transport deficits. These results may help to rescue the neurotrophic signaling of proNGF in aging to reduce age-induced loss of BFCN function and cognitive decline.
Collapse
Affiliation(s)
- Erika Kropf
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Sama Jaberi
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
5
|
Lisgaras CP, Scharfman HE. Interictal Spikes in Alzheimer's Disease: Preclinical Evidence for Dominance of the Dentate Gyrus and Cholinergic Control by Medial Septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537999. [PMID: 37163065 PMCID: PMC10168266 DOI: 10.1101/2023.04.24.537999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
HIGHLIGHTS Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power. Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
|
6
|
Contreras A, Djebari S, Temprano-Carazo S, Múnera A, Gruart A, Delgado-Garcia JM, Jiménez-Díaz L, Navarro-López JD. Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade. Neuropharmacology 2023:109668. [PMID: 37474000 DOI: 10.1016/j.neuropharm.2023.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Ana Contreras
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alejandro Múnera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain; Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
7
|
Kowalczyk T, Staszelis A, Bocian R, Siwiec M, Sowa JE, Tokarski K, Kaźmierska-Grębowska P, Caban B. Posterior hypothalamic theta rhythm: Electrophysiological basis and involvement of glutamatergic receptors. Hippocampus 2023; 33:844-861. [PMID: 36688619 DOI: 10.1002/hipo.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well-synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well-synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta-related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agata Staszelis
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Joanna E Sowa
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | | | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
De Niear MA, Smith GR, Robinson ML, Moses-Hampton MK, Lakhmani PG, Upright NA, Krause EL, Ramirez JJ. Lesion-induced sprouting promotes neurophysiological integration of septal and entorhinal inputs to granule cells in the dentate gyrus of rats. Neurobiol Learn Mem 2023; 198:107723. [PMID: 36621561 DOI: 10.1016/j.nlm.2023.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Axonal sprouting of dentate gyrus (DG) afferents after entorhinal cortex (EC) lesion is a model preparation to assess lesion-induced functional reorganization in a denervated target structure. Following a unilateral EC lesion, the surviving contralateral entorhinal projection, termed the crossed temporodentate pathway (CTD), and the heterotypic septal input to the DG, the septodentate pathway (SD), undergo extensive axonal sprouting. We explored whether EC lesion alters the capacity of the SD pathway to influence CTD-evoked granule cell excitability in the DG. We recorded extracellular field excitatory postsynaptic potentials (fEPSPs) after CTD stimulation alone and paired SD-CTD stimulation. Male rats were given unilateral EC lesions or sham operations; evoked fEPSPs in the DG were recorded at 4-, 15-, and 90-days post-entorhinal lesion to assess functional reorganization of the CTD and SD pathways. We found significantly increased fEPSP amplitudes in cases with unilateral lesions compared to sham-operates at 15- and 90-days post lesion. Within each time point, paired SD-CTD stimulation resulted in significantly depressed fEPSP amplitudes compared to amplitudes evoked after CTD stimulation alone and this effect was solely seen in cases with EC lesion. In cases where granule cell discharge was observed, SD stimulation increased discharge amplitude elicited by the CTD stimulation at 90-days postlesion. These findings demonstrate that synaptic remodeling following unilateral cortical lesion results in a synergistic interaction between two established hippocampal afferents that is not seen in uninjured brains. This work may be important for models of neurodegenerative disease and neural injury that target these structures and associated hippocampal circuitry.
Collapse
Affiliation(s)
- Matthew A De Niear
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Medical Scientist Training Program, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Garrett R Smith
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Mercedes L Robinson
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Malcolm K Moses-Hampton
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Puneet G Lakhmani
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Nicholas A Upright
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Emma L Krause
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Julio J Ramirez
- Neuroscience Program, Davidson College, Davidson, NC 28035, USA; Department of Psychology, Davidson College, Davidson, NC 28035, USA.
| |
Collapse
|
9
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
10
|
Cole ER, Grogan DP, Laxpati NG, Fernandez AM, Skelton HM, Isbaine F, Gutekunst CA, Gross RE. Evidence supporting deep brain stimulation of the medial septum in the treatment of temporal lobe epilepsy. Epilepsia 2022; 63:2192-2213. [PMID: 35698897 DOI: 10.1111/epi.17326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4-7-Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure-resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta-rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure-resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alejandra M Fernandez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry M Skelton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
12
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
13
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
14
|
Haraguchi R, Hoshi H, Ichikawa S, Hanyu M, Nakamura K, Fukasawa K, Poza J, Rodríguez-González V, Gómez C, Shigihara Y. The Menstrual Cycle Alters Resting-State Cortical Activity: A Magnetoencephalography Study. Front Hum Neurosci 2021; 15:652789. [PMID: 34381340 PMCID: PMC8350571 DOI: 10.3389/fnhum.2021.652789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Resting-state neural oscillations are used as biomarkers for functional diseases such as dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes requires the identification and minimisation of potential confounding factors. While several studies have indicated that the menstrual cycle also alters brain activity, most of these studies were based on visual inspection rather than objective quantitative measures. In the present study, we aimed to clarify the effect of the menstrual cycle on spontaneous neural oscillations based on quantitative magnetoencephalography (MEG) parameters. Resting-state MEG activity was recorded from 25 healthy women with normal menstrual cycles. For each woman, resting-state brain activity was acquired twice using MEG: once during their menstrual period (MP) and once outside of this period (OP). Our results indicated that the median frequency and peak alpha frequency of the power spectrum were low, whereas Shannon spectral entropy was high, during the MP. Theta intensity within the right temporal cortex and right limbic system was significantly lower during the MP than during the OP. High gamma intensity in the left parietal cortex was also significantly lower during the MP than during the OP. Similar differences were also observed in the parietal and occipital regions between the proliferative (the late part of the follicular phase) and secretory phases (luteal phase). Our findings suggest that the menstrual cycle should be considered to ensure accurate interpretation of functional neuroimaging in clinical practice.
Collapse
Affiliation(s)
- Rika Haraguchi
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Mayuko Hanyu
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan
| | - Kohei Nakamura
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan.,Genomics Unit, Keio Cancer Centre, Keio University School of Medicine, Minato, Japan
| | | | - Jesús Poza
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain.,Instituto de Investigación en Matemáticas (IMUVA), University of Valladolid, Valladolid, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan.,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
15
|
The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021; 470:100-115. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. Experimental evidence indicates that the supramammillary nucleus and posterior hypothalamic nuclei, considered as the posterior hypothalamic area, comprise a critical node of this ascending pathway. The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
Collapse
|
16
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
17
|
Staszelis A, Kowalczyk T. The role of the posterior hypothalamic area
in the generation of theta rhythm. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theta rhythm is one of the best synchronized patterns of the oscillatory activity recorded in
the mammalian brain. In humans, this rhythm is associated with REM sleep, spatial navigation,
memory functions, analytical and language processes. On the other hand, it can be treated as
a non-specific marker of such pathological states of the central nervous system as Alzheimer’s
disease or epilepsy. The hippocampal formation is the key structure involved in the generation
of this bioelectric phenomenon, both in humans and rodents (the most commonly studied laboratory
animals). Theta rhythm appearance in the hippocampus is dependent on the interaction
of multiple different structures of the nervous system. One of them is the posterior hypothalamic
area (PHa), which constitutes a crucial part of the neuronal system modulating the ability
of the hippocampal formation to generate theta rhythm. Although the research results encompassed
in this paper emphasize the essential role of the PHa as a modulator of the hippocampal
theta rhythm, it was the authors’ intent to indicate that this area is also capable of generating
local rhythmical theta oscillations, independently of the influence of other brain structures.
Collapse
Affiliation(s)
- Agata Staszelis
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Tomasz Kowalczyk
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
18
|
Isla AG, Balleza-Tapia H, Fisahn A. Efficacy of preclinical pharmacological interventions against alterations of neuronal network oscillations in Alzheimer's disease: A systematic review. Exp Neurol 2021; 343:113743. [PMID: 34000250 DOI: 10.1016/j.expneurol.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.
Collapse
Affiliation(s)
- Arturo G Isla
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden.
| |
Collapse
|
19
|
Mercurio S, Alberti C, Serra L, Meneghini S, Berico P, Bertolini J, Becchetti A, Nicolis SK. An early Sox2-dependent gene expression programme required for hippocampal dentate gyrus development. Open Biol 2021; 11:200339. [PMID: 33622105 PMCID: PMC8061699 DOI: 10.1098/rsob.200339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Chiara Alberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Pietro Berico
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jessica Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
20
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
21
|
Hoshi H, Shigihara Y. Age- and gender-specific characteristics of the resting-state brain activity: a magnetoencephalography study. Aging (Albany NY) 2020; 12:21613-21637. [PMID: 33147568 PMCID: PMC7695396 DOI: 10.18632/aging.103956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/01/2020] [Indexed: 12/29/2022]
Abstract
Aging and gender influence regional brain activities. Although these biases should be considered during the clinical examinations using magnetoencephalography, they have yet to be standardized. In the present study, resting-state magnetoencephalography data were recorded from 54 healthy females and 48 males aged 22 to 75 years, who were controlled for cognitive performance. The regional oscillatory power was estimated for each frequency band (delta, theta, alpha, beta, low-gamma, and high-gamma) using the sLORETA-like algorithm and the biases of age and gender were evaluated, respectively. The results showed that faster oscillatory powers increased with age in the rostral regions and decreased in the caudal regions, while few slower oscillatory powers changed with age. Gender differences in oscillatory powers were found in a broad frequency range, mostly in the caudal brain regions. The present study characterized the effects of healthy aging and gender asymmetricity on the regional resting-state brain activity, with the aim to facilitate the accurate and efficient use of magnetoencephalography in clinical practice.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro-shi, Hokkaido, Japan
| | | |
Collapse
|
22
|
Shigihara Y, Hoshi H, Fukasawa K, Ichikawa S, Kobayashi M, Sakamoto Y, Negishi K, Haraguchi R, Konno S. Resting-State Magnetoencephalography Reveals Neurobiological Bridges Between Pain and Cognitive Impairment. Pain Ther 2020; 10:349-361. [PMID: 33095348 PMCID: PMC8119570 DOI: 10.1007/s40122-020-00213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 12/04/2022] Open
Abstract
Introduction Pain has been identified as a risk factor for cognitive dysfunction, which in turn affects pain perception. Although pain, cognitive dysfunction, and their interaction are clinically important, the neural mechanism connecting the two phenomena remains unclear. Methods The resting-state brain activity of 38 participants was measured using magnetoencephalography before and after the patients underwent selective nerve root block (SNRB) for the treatment of their pain. We then assessed the extent to which these data correlated with the subjective levels of pain experienced by the patients across SNRB based on the visual analogue scale and the cognitive status of the patients measured after SNRB using the Japanese versions of the Mini-Mental State Examination (MMSE-J). Results Slow oscillations (delta) in the right precentral gyrus, right middle temporal gyrus, and left superior frontal gyrus were negatively correlated with the subjective level of pain, and fast oscillations (gamma) in the right insular cortex and right middle temporal gyrus before SNRB were negatively correlated with the MMSE-J score afterwards. These correlations disappeared after SNRB. Conclusion The presently observed changes in neural activity, as indicated by oscillation changes, might represent the transient bridge between pain and cognitive dysfunction in patients with severe pain. Our findings underscore the importance of treating pain before a transient diminishment of cognitive function becomes persistent.
Collapse
Affiliation(s)
- Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan. .,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan.
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | | | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Yuki Sakamoto
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | | | - Rika Haraguchi
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Shin Konno
- Department of Orthopaedics, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
23
|
Shigihara Y, Hoshi H, Shinada K, Okada T, Kamada H. Non-pharmacological treatment changes brain activity in patients with dementia. Sci Rep 2020; 10:6744. [PMID: 32317774 PMCID: PMC7174400 DOI: 10.1038/s41598-020-63881-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Non-pharmacological treatment (NPT) improves cognitive functions and behavioural disturbances in patients with dementia, but the underlying neural mechanisms are unclear. In this observational study, 21 patients with dementia received NPTs for several months. Patients were scanned using magnetoencephalography twice during the NPT period to evaluate NPT effects on resting-state brain activity. Additionally, cognitive functions and behavioural disturbances were measured using the Mini-Mental State Examination (MMSE-J) and a short version of the Dementia Behaviour Disturbance Scale (DBD-13) at the beginning and the end of the NPT period. In contrast to the average DBD-13 score, the average MMSE-J score improved after the NPT period. Magnetoencephalography data revealed a reduced alpha activity in the right temporal lobe and fusiform gyrus, as well as an increased low-gamma activity in the right angular gyrus. DBD-13 score changes were correlated with beta activity in the sensorimotor area. These findings corroborate previous studies confirming NPT effects on brain activity in healthy participants and people at risk of dementia. Our results provide additional evidence that brains of patients with dementia have the capacity for plasticity, which may be responsible for the observed NPT effects. In dementia, NPT might lead to improvements in the quality of life.
Collapse
Affiliation(s)
- Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro City, Japan.
- Department of Neurosurgery, Hokuto Hospital, Obihiro City, Japan.
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro City, Japan
| | - Keita Shinada
- Geriatric Health Services Facility Kakehashi, Hokuto Hospital Group, Obihiro City, Japan
| | - Toyoji Okada
- Department of Clinical Laboratory, Hokuto Hospital, Obihiro City, Japan
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Obihiro City, Japan
| |
Collapse
|
24
|
Tsamis KI, Lagartos Donato MJ, Dahl AG, O'Reilly KC, Witter MP. Development and topographic organization of subicular projections to lateral septum in the rat brain. Eur J Neurosci 2020; 52:3140-3159. [PMID: 32027422 DOI: 10.1111/ejn.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Abstract
One of the main subcortical targets of hippocampal formation efferents is the lateral septum. Previous studies on the subicular projections, as a main output structure of the hippocampus, have shown a clear topographic organization of septal innervation, related to the origin of the fibres along the dorsoventral axis of the subiculum in the adult brain. In contrast, studies on the developing brain depict an extensive rearrangement of subicular projections during the prenatal period, shifting from the medial septum to the lateral septum. Our study aimed to describe the postnatal development of subicular projections to the septum. We injected anterograde tracers into the subiculum of 57 pups of different postnatal ages. Injections covered the proximodistal and dorsoventral axis of the subiculum. The age of the pups at day of tracer injection ranged from the day of birth to postnatal day 30. Analyses revealed that from the first postnatal day projections from subiculum preferentially target the lateral septum. Sparse innervation in the lateral septum was already present in the first few postnatal days, and during the following 3 weeks, the axonal distribution gradually expanded. Subicular projections to the lateral septum are topographically organized depending on the origin along the dorsoventral axis of the subiculum, in line with the adult innervation pattern. Different origins along the proximodistal axis of the subiculum are reflected in changes in the strength of septal innervation. The findings demonstrate that in case of the development of subicular projections, axonal expansion is more prominent than axonal pruning.
Collapse
Affiliation(s)
- Konstantinos I Tsamis
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria J Lagartos Donato
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Annelene G Dahl
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Centre for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
25
|
Tokuda K, Katori Y, Aihara K. Chaotic dynamics as a mechanism of rapid transition of hippocampal local field activity between theta and non-theta states. CHAOS (WOODBURY, N.Y.) 2019; 29:113115. [PMID: 31779345 DOI: 10.1063/1.5110327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
We propose a dynamical model of the local hippocampal circuit realizing the transition between the theta and non-theta states. We model the interaction between hippocampal local rhythm generators and the external periodic input from the medial septum and diagonal band of Broca (MS-DBB). With our model, bifurcation of the nonlinear dynamics serves as a mechanism that realizes two distinctive oscillations in the hippocampus, where the amplitude of the oscillatory input from the MS-DBB works as a bifurcation parameter. We model the network of the hippocampal interneurons with a network of simple class 1 neuron models connected mutually with gap junctions. The model neurons exhibit highly synchronous periodic oscillations under the existence of an external force from the MS-DBB, just as the real hippocampus shows theta oscillation under the rhythmic input from the MS-DBB. The model shows diffusion-induced chaotic dynamics under an aperiodic MS-DBB activity, just as the large amplitude irregular activity appears following the disappearance of the rhythmicity of the MS-DBB neurons in the real brain. The model is consistent with both previous experimental findings reporting the existence of local rhythm generators in the hippocampus and the executive role of the MS-DBB in synchronizing theta oscillation in vivo. Our model also replicates the traveling waves of theta oscillations in two-dimensionally coupled networks.
Collapse
Affiliation(s)
- Keita Tokuda
- Department of Pharmacy, Faculty of Medicine, The University of Tokyo Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuichi Katori
- School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
26
|
Alcantara-Gonzalez D, Villasana-Salazar B, Peña-Ortega F. Single amyloid-beta injection exacerbates 4-aminopyridine-induced seizures and changes synaptic coupling in the hippocampus. Hippocampus 2019; 29:1150-1164. [PMID: 31381216 DOI: 10.1002/hipo.23129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Accumulation of amyloid-beta (Aβ) in temporal lobe structures, including the hippocampus, is related to a variety of Alzheimer's disease symptoms and seems to be involved in the induction of neural network hyperexcitability and even seizures. Still, a direct evaluation of the pro-epileptogenic effects of Aβ in vivo, and of the underlying mechanisms, is missing. Thus, we tested whether the intracisternal injection of Aβ modulates 4-aminopyridine (4AP)-induced epileptiform activity, hippocampal network function, and its synaptic coupling. When tested 3 weeks after its administration, Aβ (but not its vehicle) reduces the latency for 4AP-induced seizures, increases the number of generalized seizures, exacerbates the time to fully recover from seizures, and favors seizure-induced death. These pro-epileptogenic effects of Aβ correlate with a reduction in the power of the spontaneous hippocampal network activity, involving all frequency bands in vivo and only the theta band (4-10 Hz) in vitro. The pro-epileptogenic effects of Aβ also correlate with a reduction of the Schaffer-collateral CA1 synaptic coupling in vitro, which is exacerbated by the sequential bath application of 4-AP and Aβ. In summary, Aβ produces long-lasting pro-epileptic effects that can be due to alterations in the hippocampal circuit, impacting its coordinated network activity and its synaptic efficiency. It is likely that normalizing synaptic coupling and/or coordinated neural network activity (i.e., theta activity) may contribute not only to improve cognitive function in Alzheimer's disease but also to avoid hyperexcitation in conditions of amyloidosis.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| |
Collapse
|
27
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
28
|
Watanabe K, Irie K, Hanashima C, Takebayashi H, Sato N. Diencephalic progenitors contribute to the posterior septum through rostral migration along the hippocampal axonal pathway. Sci Rep 2018; 8:11728. [PMID: 30082833 PMCID: PMC6078977 DOI: 10.1038/s41598-018-30020-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Septal nuclei are telencephalic structures associated with a variety of brain functions as part of the limbic system. The two posterior septal nuclei, the triangular septal nucleus (TS) and the bed nuclei of the anterior commissure (BAC), are involved in fear and anxiety through their projections to the medial habenular nucleus. However, the development of both the TS and BAC remains unclear. Here, we found a novel caudal origin and putative migratory stream of mouse posterior septal neurons arising from the thalamic eminence (TE), a transient developmental structure at the rostral end of the rodent diencephalon. TE-derived cells, which have glutamatergic identity, migrated rostrally and entered the telencephalic territory by passing beneath the third ventricle. Subsequently, they turned dorsally toward the posterior septum. We also observed that TS and BAC neurons in the postnatal septum were labeled with GFP by in utero electroporation into the TE, suggesting a shared origin. Furthermore, TE-derived septal neurons migrated along the fornix, an efferent pathway from the hippocampus. These results demonstrate that posterior septal neurons have a distinct extratelencephalic origin from other septal nuclei. This heterogeneous origin may contribute to neuronal diversity of the septal nuclear complex.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| | - Koichiro Irie
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| |
Collapse
|
29
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Some technical issues of vagal nerve stimulation. An approach using a hippocampal formation theta rhythm. Brain Res Bull 2018; 140:402-410. [DOI: 10.1016/j.brainresbull.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/22/2023]
|
30
|
Misra A, Long X, Sperling MR, Sharan AD, Moxon KA. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin. Epilepsia 2018; 59:636-649. [PMID: 29442363 DOI: 10.1111/epi.14007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To gain understanding of the neuronal mechanisms underlying regional seizure spread, the impact of regional synchrony between seizure focus and downstream networks on neuronal activity during the transition to seizure in those downstream networks was assessed. METHODS Seven patients undergoing diagnostic intracranial electroencephalographic studies for surgical resection of epileptogenic regions were implanted with subdural clinical electrodes into the cortex (site of seizure initiation) and mesial temporal lobe (MTL) structures (downstream) as well as microwires into MTL. Neural activity was recorded (24/7) in parallel with the clinical intracranial electroencephalogram recordings for the duration of the patient's diagnostic stay. Changes in (1) regional synchrony (ie, coherence) between the presumptive neocortical seizure focus and MTL, (2) local synchrony between MTL neurons and their local field potential, and (3) neuronal firing rates within MTL in the time leading up to seizure were examined to study the mechanisms underlying seizure spread. RESULTS In seizures of neocortical origin, an increase in regional synchrony preceded the spread of seizures into MTL (predominantly hippocampal). Within frequencies similar to those of regional synchrony, MTL networks showed an increase in unit-field coherence and a decrease in neuronal firing rate, specifically for inhibitory interneuron populations but not pyramidal cell populations. SIGNIFICANCE These results suggest a mechanism of spreading seizures whereby the seizure focus first synchronizes local field potentials in downstream networks to the seizure activity. This change in local field coherence modifies the activity of interneuron populations in these downstream networks, which leads to the attenuation of interneuronal firing rate, effectively shutting down local interneuron populations prior to the spread of seizure. Therefore, regional synchrony may influence the failure of downstream interneurons to prevent the spread of the seizures during generalization.
Collapse
Affiliation(s)
- Amrit Misra
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Xianda Long
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ashwini D Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen A Moxon
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.,Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
31
|
Sánchez-Rodríguez I, Temprano-Carazo S, Nájera A, Djebari S, Yajeya J, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Activation of G-protein-gated inwardly rectifying potassium (Kir3/GirK) channels rescues hippocampal functions in a mouse model of early amyloid-β pathology. Sci Rep 2017; 7:14658. [PMID: 29116174 PMCID: PMC5676742 DOI: 10.1038/s41598-017-15306-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
The hippocampus plays a critical role in learning and memory. Its correct performance relies on excitatory/inhibitory synaptic transmission balance. In early stages of Alzheimer’s disease (AD), neuronal hyperexcitability leads to network dysfunction observed in cortical regions such as the hippocampus. G-protein-gated potassium (GirK) channels induce neurons to hyperpolarize, contribute to the resting membrane potential and could compensate any excesses of excitation. Here, we have studied the relationship between GirK channels and hippocampal function in a mouse model of early AD pathology. Intracerebroventricular injections of amyloid-β (Aβ1-42) peptide—which have a causal role in AD pathogenesis—were performed to evaluate CA3–CA1 hippocampal synapse functionality in behaving mice. Aβ increased the excitability of the CA3–CA1 synapse, impaired long-term potentiation (LTP) and hippocampal oscillatory activity, and induced deficits in novel object recognition (NOR) tests. Injection of ML297 alone, a selective GirK activator, was also translated in LTP and NOR deficits. However, increasing GirK activity rescued all hippocampal deficits induced by Aβ due to the restoration of excitability values in the CA3–CA1 synapse. Our results show a synaptic mechanism, through GirK channel modulation, for the prevention of the hyperexcitability that causally contributes to synaptic, network, and cognitive deficits found in early AD pathogenesis.
Collapse
Affiliation(s)
- Irene Sánchez-Rodríguez
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Alberto Nájera
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Souhail Djebari
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Javier Yajeya
- University of Salamanca, Instituto de Neurociencias de Castilla y León, Salamanca, Spain
| | - Agnès Gruart
- Pablo de Olavide University, Division of Neurosciences, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain.
| |
Collapse
|
32
|
Tsanov M. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Eur J Neurosci 2017; 48:2783-2794. [DOI: 10.1111/ejn.13746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
33
|
Stypulkowski PH, Stanslaski SR, Giftakis JE. Modulation of hippocampal activity with fornix Deep Brain Stimulation. Brain Stimul 2017; 10:1125-1132. [DOI: 10.1016/j.brs.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/03/2017] [Accepted: 09/02/2017] [Indexed: 12/25/2022] Open
|
34
|
Magno L, Barry C, Schmidt-Hieber C, Theodotou P, Häusser M, Kessaris N. NKX2-1 Is Required in the Embryonic Septum for Cholinergic System Development, Learning, and Memory. Cell Rep 2017; 20:1572-1584. [PMID: 28813670 PMCID: PMC5565637 DOI: 10.1016/j.celrep.2017.07.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023] Open
Abstract
The transcription factor NKX2-1 is best known for its role in the specification of subsets of cortical, striatal, and pallidal neurons. We demonstrate through genetic fate mapping and intersectional focal septal deletion that NKX2-1 is selectively required in the embryonic septal neuroepithelium for the development of cholinergic septohippocampal projection neurons and large subsets of basal forebrain cholinergic neurons. In the absence of NKX2-1, these neurons fail to develop, causing alterations in hippocampal theta rhythms and severe deficiencies in learning and memory. Our results demonstrate that learning and memory are dependent on NKX2-1 function in the embryonic septum and suggest that cognitive deficiencies that are sometimes associated with pathogenic mutations in NKX2-1 in humans may be a direct consequence of loss of NKX2-1 function.
Collapse
Affiliation(s)
- Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Polyvios Theodotou
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
35
|
Shubina L, Aliev R, Kitchigina V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res 2017; 1661:1-14. [DOI: 10.1016/j.brainres.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
|
36
|
The ontogenetic development of neurons containing calcium-binding proteins in the septum of the guinea pig: Late onset of parvalbumin immunoreactivity versus calbindin and calretinin. J Chem Neuroanat 2017; 79:22-31. [DOI: 10.1016/j.jchemneu.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
37
|
Papazoglou A, Soos J, Lundt A, Wormuth C, Ginde VR, Müller R, Henseler C, Broich K, Xie K, Ehninger D, Haenisch B, Weiergräber M. Gender-Specific Hippocampal Dysrhythmia and Aberrant Hippocampal and Cortical Excitability in the APPswePS1dE9 Model of Alzheimer's Disease. Neural Plast 2016; 2016:7167358. [PMID: 27840743 PMCID: PMC5093295 DOI: 10.1155/2016/7167358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT) based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ) and increase in gamma (γ) power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ) and gamma (γ) power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future.
Collapse
Affiliation(s)
- Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Julien Soos
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Varun Raj Ginde
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Kan Xie
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| |
Collapse
|
38
|
Classifying amygdala kindling stages using quantitative assessments of extracellular recording of EEG in rats. Brain Res Bull 2016; 127:148-155. [PMID: 27659238 DOI: 10.1016/j.brainresbull.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE Determining different seizure stage specific features in a kindling model is a crucial step in developing efficient objective techniques for early prediction and treatment of seizures. This study identified and categorized kindling stages based on their electrophysiological features through processing extracellular field potentials of Amygdala rapid kindling. METHODS Thirteen Wistar rats (200±10g) were divided into 2 groups including kindle (n=7) and sham (n=6) and respectively underwent an amygdala rapid kindling and placebo stimulation. EEG signals in each stage were classified into 7 bands: delta (0-4Hz), theta (4-8Hz), alpha (8-12Hz), low beta (12-16Hz), mid beta (16-20Hz), high beta (20-28Hz) and gamma (28-40Hz). Spectral power and power of sub bands of stage 3 (localized seizure stage (SS)) and stages 4 and 5 (generalized SSs) were compared between kindling and sham groups. RESULT Spectral analyses showed larger spikes in delta and theta subbands in the stages of 3, 4, and 5 of kindling, compared with sham animals. Generalized SSs contained more spikes than the localized SS in the kindling. Kindling process was accompanied by reduction in high beta and gamma oscillations and increase in delta sub band power which were significant in the generalized SSs. The theta/alpha ratio in the localized SS was higher than the generalized SSs and sham group, but the difference with the sham group was statistically significant. CONCLUSION Our results showed that reduced high beta and gamma and increased delta oscillations power are associated with behavioral seizure progression.
Collapse
|
39
|
Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2016; 222:1385-1400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
The basal forebrain (BF) is an important regulator of hippocampal and cortical activity. In Alzheimer's disease (AD), there is a significant loss and dysfunction of cholinergic neurons within the BF, and also a hypertrophy of fibers containing the neuropeptide galanin. Understanding how galanin interacts with BF circuitry is critical in determining what role galanin overexpression plays in the progression of AD. Here, we examined the location and function of galanin in the medial septum/diagonal band (MS/DBB) region of the BF. We show that galanin fibers are located throughout the MS/DBB and intermingled with both cholinergic and GABAergic neurons. Whole-cell patch clamp recordings from MS/DBB neurons in acute slices reveal that galanin decreases tetrodotoxin-sensitive spontaneous GABA release and dampens muscarinic receptor-mediated increases in GABA release in the MS/DBB. These effects are not blocked by pre-exposure to β-amyloid peptide (Aβ1-42). Optogenetic activation of cholinergic neurons in the MS/DBB increases GABA release back onto cholinergic neurons, forming a functional circuit within the MS/DBB. Galanin disrupts this cholinergic-GABAergic circuit by blocking the cholinergic-induced increase in GABA release. These data suggest that galanin works in the BF to reduce inhibitory input onto cholinergic neurons and to prevent cholinergic-induced increase in inhibitory tone. This disinhibition of cholinergic neurons could serve as a compensatory mechanism to counteract the loss of cholinergic signaling that occurs during the progression of AD.
Collapse
|
40
|
Bender AC, Luikart BW, Lenck-Santini PP. Cognitive Deficits Associated with Nav1.1 Alterations: Involvement of Neuronal Firing Dynamics and Oscillations. PLoS One 2016; 11:e0151538. [PMID: 26978272 PMCID: PMC4792481 DOI: 10.1371/journal.pone.0151538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 11/19/2022] Open
Abstract
Brain oscillations play a critical role in information processing and may, therefore, be essential to uncovering the mechanisms of cognitive impairment in neurological disease. In Dravet syndrome (DS), a mutation in SCN1A, coding for the voltage-gated sodium channel Nav1.1, is associated with severe cognitive impairment and seizures. While seizure frequency and severity do not correlate with the extent of impairment, the slowing of brain rhythms may be involved. Here we investigate the role of Nav1.1 on brain rhythms and cognition using RNA interference. We demonstrate that knockdown of Nav1.1 impairs fast- and burst-firing properties of neurons in the medial septum in vivo. The proportion of neurons that fired phase-locked to hippocampal theta oscillations was reduced, and medial septal regulation of theta rhythm was disrupted. During a working memory task, this deficit was characterized by a decrease in theta frequency and was negatively correlated with performance. These findings suggest a fundamental role for Nav1.1 in facilitating fast-firing properties in neurons, highlight the importance of precise temporal control of theta frequency for working memory, and imply that Nav1.1 deficits may disrupt information processing in DS via a dysregulation of brain rhythms.
Collapse
Affiliation(s)
- Alex C. Bender
- Department of Neurology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States of America
| | - Bryan W. Luikart
- Department of Physiology & Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States of America
| | - Pierre-Pascal Lenck-Santini
- Department of Neurological Sciences, University of Vermont, Burlington, VT, United States of America
- Institut de Neurobiologie de la Méditerranée, INSERM, Marseille, France
| |
Collapse
|
41
|
Neuroprotection of medial septal cholinergic neurons by memantine after intralateral septal injection of Aβ1-40. Neuroreport 2016; 26:450-4. [PMID: 25919992 DOI: 10.1097/wnr.0000000000000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive disorder of the brain that leads to memory loss, dementia, and death. Several lines of evidence suggest that the accumulation of amyloid-β (Aβ) peptides may trigger the dysfunction and degeneration observed in the AD brain. The basal forebrain, including the septal region, which regulates the excitability of the hippocampus and neocortex, is affected early in AD because its neurons are vulnerable to Aβ peptides. In addition, connections between lateral and medial septal regions (medial septum and diagonal band of Broca) have been demonstrated in previous studies. To demonstrate the involvement of excitotoxicity in Aβ-induced septal damage, we compared rats injected with Aβ1-40 into the lateral septal region structure with rats treated with memantine (a noncompetitive NMDA receptor antagonist), before, during, and after Aβ1-40 injection. Medial septal cholinergic neurons were immunochemically identified and their numbers were estimated using Image J cell count. Our results show that Aβ1-40-treated animals have a significantly low number of medial septum and diagonal band of Broca cholinergic neurons compared with the Aβ/memantine-treated group.
Collapse
|
42
|
Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. Anat Sci Int 2015; 91:398-406. [PMID: 26643381 DOI: 10.1007/s12565-015-0316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.
Collapse
|
43
|
Sandler RA, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Hippocampal closed-loop modeling and implications for seizure stimulation design. J Neural Eng 2015; 12:056017. [PMID: 26355815 DOI: 10.1088/1741-2560/12/5/056017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. APPROACH Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. MAIN RESULTS Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. SIGNIFICANCE Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mayordomo-Cava J, Yajeya J, Navarro-López JD, Jiménez-Díaz L. Amyloid-β(25-35) Modulates the Expression of GirK and KCNQ Channel Genes in the Hippocampus. PLoS One 2015. [PMID: 26218288 PMCID: PMC4517786 DOI: 10.1371/journal.pone.0134385] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early stages of Alzheimer's disease (AD), synaptic dysfunction induced by toxic amyloid-β (Aβ) is present before the accumulation of histopathological hallmarks of the disease. This scenario produces impaired functioning of neuronal networks, altered patterns of synchronous activity and severe functional deficits mainly due to hyperexcitability of hippocampal networks. The molecular mechanisms underlying these alterations remain unclear but functional evidence, shown by our laboratory and others, points to the involvement of receptors/channels which modulate neuronal excitability, playing a pivotal role in early Aβ-induced AD pathogenesis. In particular, two potassium channels that control neuronal excitability, G protein-coupled activated inwardly-rectifying potassium channel (GirK), and voltage-gated K channel (KCNQ), have been recently linked to Aβ pathophysiology in the hippocampus. Specifically, by using Aβ25-35, we previously found that GirK conductance is greatly decreased in the hippocampus, and similar effects have also been reported on KCNQ conductance. Thus, in the present study, our goal was to determine the effect of Aβ on the transcriptional expression pattern of 17 genes encoding neurotransmitter receptors and associated channels which maintain excitatory-inhibitory neurotransmission balance in hippocampal circuits, with special focus in potassium channels. For this purpose, we designed a systematic and reliable procedure to analyze mRNA expression by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in hippocampal rat slices incubated with Aβ25-35. We found that: 1) Aβ down-regulated mRNA expression of ionotropic GluN1 and metabotropic mGlu1 glutamate receptor subunits as previously reported in other AD models; 2) Aβ also reduced gene expression levels of GirK2, 3, and 4 subunits, and KCNQ2 and 3 subunits, but did not change expression levels of its associated GABAB and M1 receptors, respectively. Our results provide evidence that Aβ can modulate the expression of these channels which could affect the hippocampal activity balance underlying learning and memory processes impaired in AD.
Collapse
Affiliation(s)
- Jennifer Mayordomo-Cava
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Javier Yajeya
- University of Salamanca, Department of Physiology & Pharmacology, Salamanca, Spain
| | - Juan D. Navarro-López
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
- * E-mail: (LJD); (JDNL)
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
- * E-mail: (LJD); (JDNL)
| |
Collapse
|
45
|
Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plast 2015; 2015:781731. [PMID: 25922768 PMCID: PMC4398951 DOI: 10.1155/2015/781731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling.
Collapse
|
46
|
Moretti DV. Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: evidence from EEG, MRI, and SPECT brain modifications. Front Aging Neurosci 2015; 7:31. [PMID: 25926789 PMCID: PMC4396516 DOI: 10.3389/fnagi.2015.00031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Temporo-parietal and medial temporal cortex atrophy are associated with mild cognitive impairment (MCI) due to Alzheimer disease (AD) as well as the reduction of regional cerebral blood perfusion in hippocampus. Moreover, the increase of EEG alpha3/alpha2 power ratio has been associated with MCI due to AD and with an increase in theta frequency power in a group of subjects with impaired cerebral perfusion in hippocampus. METHODS Seventy four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording and high resolution 3D magnetic resonance imaging (MRI). Among the patients, a subset of 27 subjects underwent also perfusion single-photon emission computed tomography and hippocampal atrophy evaluation. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of alpha3/alpha2 power ratio and difference of cortical thickness among the groups estimated. RESULTS Higher alpha3/alpha2 power ratio group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Subjects with higher alpha3/alpha2 frequency power ratio showed a constant trend to a lower perfusion than lower alpha3/alpha2 group. Moreover, this group correlates with both a bigger hippocampal atrophy and an increase of theta frequency power. CONCLUSION Higher EEG alpha3/alpha2 power ratio was associated with temporo-parietal cortical thinning, hippocampal atrophy and reduction of regional cerebral perfusion in medial temporal cortex. In this group an increase of theta frequency power was detected inMCI subjects. The combination of higher EEG alpha3/alpha2 power ratio, cortical thickness measure and regional cerebral perfusion reveals a complex interplay between EEG cerebral rhythms, structural and functional brain modifications.
Collapse
Affiliation(s)
- Davide V. Moretti
- Istituto di Ricovero e Cura a Carattere Scientifico San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| |
Collapse
|
47
|
Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res 2015; 111:33-44. [PMID: 25769371 DOI: 10.1016/j.eplepsyres.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is a medical emergency associated with a high rate of mortality if not treated promptly. Exogenous and endogenous cannabinoids have been shown to possess anticonvulsant properties both in vivo and in vitro. Here we study the influence of endocannabinoid metabolism on the development of kainic acid-induced SE in guinea pigs. For this purpose, the inhibitors of endocannabinoid transport, AM404, and enzymatic (fatty acid amide hydrolase) degradation, URB597, were applied. Cannabinoid CB1 receptor antagonist, AM251, was also tested. Animal behavior as well as local electric field potentials in four structures: medial septum, hippocampus, entorhinal cortex and amygdala were analyzed when AM404 (120nmol), URB597 (4.8nmol) or AM251 (20nmol) were administrated alone or together with 0.4μg of kainic acid. All substances were injected i.c.v. AM404, URB597 or AM251 administered alone did not alter markedly local field potentials of all four studied structures in the long-term compared with their basal activity. AM404 and URB597 significantly alleviated kainic acid-induced SE, decreasing behavioral manifestations, duration of seizure events and SE in general without changing the amplitude of local field potentials. AM251 did not produce distinct effects on SE in terms of our experimental paradigm. There was no apparent change of the seizure initiation pattern when kainic acid was coadministrated with AM404, URB597 or AM251. The present study provides electrophysiologic and behavioral evidences that inhibition of endocannabinoid metabolism plays a protective role against kainic acid-induced SE and may be employed for therapeutic purposes. Further investigations of the influences of cannabinoid-related compounds on SE genesis and especially epileptogenesis are required.
Collapse
|
48
|
Vega-Flores G, Gruart A, Delgado-García JM. Involvement of the GABAergic septo-hippocampal pathway in brain stimulation reward. PLoS One 2014; 9:e113787. [PMID: 25415445 PMCID: PMC4263242 DOI: 10.1371/journal.pone.0113787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022] Open
Abstract
The hippocampus is a structure related to several cognitive processes, but not very much is known about its putative involvement in positive reinforcement. In its turn, the septum has been related to instrumental brain stimulation reward (BSR) by its electrical stimulation with trains of pulses. Although the anatomical relationships of the septo-hippocampal pathway are well established, the functional relationship between these structures during rewarding behaviors remains poorly understood. To explore hippocampal mechanisms involved in BSR, CA3-evoked field excitatory and inhibitory postsynaptic potentials (fEPSPs, fIPSPs) were recorded in the CA1 area during BSR in alert behaving mice. The synaptic efficiency was determined from changes in fEPSP and fIPSP amplitudes across the learning of a BSR task. The successive BSR sessions evoked a progressive increase of the performance in inverse relationship with a decrease in the amplitude of fEPSPs, but not of fIPSPs. Additionally, we evaluated CA1 local field potentials (LFPs) during a preference task, comparing 8-, 20-, and 100-Hz trains of septal BSR. We corroborate a clear preference for BSR at 100 Hz (in comparison with BSR at 20 Hz or 8 Hz), in parallel with an increase in the spectral power of the low theta band, and a decrease in the gamma. These results were replicated by intrahippocampal injections of a GABAB antagonist. Thus, the GABAergic septo-hippocampal pathway seems to carry information involved in the encoding of reward properties, where GABAB receptors seem to play a key role. With regard to the dorsal hippocampus, fEPSPs evoked at the CA3-CA1 synapse seem to reflect the BSR learning process, while hippocampal rhythmic activities are more related to reward properties.
Collapse
Affiliation(s)
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | | |
Collapse
|
49
|
Leão RN, Targino ZH, Colom LV, Fisahn A. Interconnection and synchronization of neuronal populations in the mouse medial septum/diagonal band of Broca. J Neurophysiol 2014; 113:971-80. [PMID: 25392162 DOI: 10.1152/jn.00367.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The medial septum/diagonal band of Broca (MS/DBB) is crucial for hippocampal theta rhythm generation (4-12 Hz). However, the mechanisms behind theta rhythmogenesis are still under debate. The MS/DBB consists, in its majority, of three neuronal populations that use acetylcholine, GABA, or glutamate as neurotransmitter. While the firing patterns of septal neurons enable the MS/DBB to generate rhythmic output critical for the generation of the hippocampal theta rhythm, the ability to synchronize these action potentials is dependent on the interconnectivity between the three major MS/DBB neuronal populations, yet little is known about intraseptal connections. Here we assessed the connectivity between pairs of MS/DBB neurons with paired patch-clamp recordings. We found that glutamatergic and GABAergic neurons provide intraseptal connections and produce sizable currents in MS/DBB postsynaptic cells. We also analyzed linear and nonlinear relationships between the action potentials fired by pairs of neurons belonging to various MS/DBB neuronal populations. Our results show that while the synchrony index for action potential firing was significantly higher in pairs of GABAergic neurons, coherence of action potential firing in the theta range was similarly low in all pairs analyzed. Recurrence analysis demonstrated that individual action potentials were more recurrent in cholinergic neurons than in other cell types. Implementing sparse connectivity in a computer model of the MS/DBB network reproduced our experimental data. We conclude that the interplay between the intrinsic membrane properties of different MS/DBB neuronal populations and the connectivity among these populations underlie the ability of the MS/DBB network to critically contribute to hippocampal theta rhythmogenesis.
Collapse
Affiliation(s)
- Richardson N Leão
- The Beijer Laboratory for Gene and Neurosciences, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Zé H Targino
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luis V Colom
- Center for Biomedical Studies, the University of Texas at Brownsville, Texas; and
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department NVS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Sandler RA, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus. J Comput Neurosci 2014; 38:89-103. [PMID: 25260381 DOI: 10.1007/s10827-014-0530-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023]
Abstract
Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N = 7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73 %) CA3→CA1 models and 96/145 (66 %) CA1→CA3 models had significant predictive power, thus confirming a predictive 'Granger' causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3's role as an endogenous hippocampal pacemaker.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, DRB 367, 1042 Downey Way Los Angeles, Los Angeles, CA, 90089, USA,
| | | | | | | | | | | |
Collapse
|