1
|
Wang YM, Cai XL, Zhang RT, Zhang YJ, Zhou HY, Wang Y, Wang Y, Huang J, Wang YY, Cheung EFC, Chan RCK. Altered brain structural and functional connectivity in schizotypy. Psychol Med 2022; 52:834-843. [PMID: 32677599 DOI: 10.1017/s0033291720002445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of 'brain disconnection' and 'brain connectivity compensation' to 'brain connectivity decompensation'. METHODS In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated. RESULTS We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network. CONCLUSIONS These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China
- Sino-Danish Center for Education and Research, Beijing100190, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China
- Sino-Danish Center for Education and Research, Beijing100190, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yan-Yu Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Department of Psychology, Weifang Medical University, Shandong Province, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China
- Sino-Danish Center for Education and Research, Beijing100190, PR China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
2
|
The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 2019; 42:1031-1039. [PMID: 31786745 DOI: 10.1007/s12272-019-01196-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter that is required for the control of synaptic excitation/inhibition and neural oscillation. GABA is synthesized by glutamic acid decarboxylases (GADs) that are widely distributed and localized to axon terminals of inhibitory neurons as well as to the soma and, to a lesser extent, dendrites. The expression and activity of GADs is highly correlated with GABA levels and subsequent GABAergic neurotransmission at the inhibitory synapse. Dysregulation of GADs has been implicated in various neurological disorders including epilepsy and schizophrenia. Two isoforms of GADs, GAD67 and GAD65, are expressed from separate genes and have different regulatory processes and molecular properties. This review focuses on the recent advances in understanding the structure of GAD, its transcriptional regulation and post-transcriptional modifications in the central nervous system. This may provide insights into the pathological mechanisms underlying neurological diseases that are associated with GAD dysfunction.
Collapse
|
3
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
4
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
5
|
Leke R, Silveira TR, Escobar TDC, Schousboe A. Expression of Glutamate Decarboxylase (GAD) mRNA in the brain of bile duct ligated rats serving as a model of hepatic encephalopathy. Neurochem Res 2013; 39:605-11. [PMID: 23904086 DOI: 10.1007/s11064-013-1116-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy (HE) is a neurologic disorder that involves different pathophysiological mechanisms, including disturbances in the GABAergic neurotransmitter system. Albeit an overall increase in the level of neurotransmitter GABA has not been found in HE, alterations in GABA receptors and metabolism have been described. Moreover, it has been reported that bile duct ligated (BDL) rats, an animal model for the study of HE, exhibited an altered GABA biosynthesis involving preferentially the tricarboxylic (TCA) cycle. In this context it should be noted that the GABA synthesizing enzyme glutamate decarboxylase (GAD) is expressed in the brain in two isoforms GAD67 and GAD65, GAD65 being related to the synthesis of GABA that occurs via the TCA cycle and coupled to the vesicular pool of the neurotransmitter. The aim of the present study was to investigate whether changes in mRNA expression of GAD67 and GAD65 were related to the altered GABA biosynthesis previously observed. To study this, cerebral cortices and hippocampi were dissected from control and BDL rats, total mRNA was isolated and cDNA was synthesized by reverse transcription reaction. Subsequently samples were analyzed for gene expression of GAD67 and GAD65 by qPCR multiplex assay, using GAPDH as endogenous control. No changes in GAD67 and GAD65 mRNA expression between control and BDL rats either in cerebral cortex or in hippocampus were observed indicating that the HE condition did not lead to changes in GAD mRNA expression. However, other regulatory mechanism might be affecting GAD activity and to clarify this additional studies need to be conducted.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Avenida Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil,
| | | | | | | |
Collapse
|
6
|
Varshavsky A. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci 2012; 21:1634-61. [PMID: 22930402 PMCID: PMC3527701 DOI: 10.1002/pro.2148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
7
|
Puskarjov M, Ahmad F, Kaila K, Blaesse P. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J Neurosci 2012; 32:11356-64. [PMID: 22895718 PMCID: PMC6621186 DOI: 10.1523/jneurosci.6265-11.2012] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022] Open
Abstract
The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl(-) concentration ([Cl(-)](i)) that forms the basis for hyperpolarizing GABA(A) receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here, we show that the application of protein synthesis inhibitors cycloheximide and emetine to acute rat hippocampal slices have no effect on total KCC2 protein level and K-Cl cotransporter function. Furthermore, blocking constitutive lysosomal degradation with leupeptin did not induce significant changes in KCC2 protein levels. These findings indicate a low basal turnover rate of the total KCC2 protein pool. In the presence of the glutamate receptor agonist NMDA, the total KCC2 protein level decreased to about 30% within 4 h, and this effect was blocked by calpeptin and MDL-28170, inhibitors of the calcium-activated protease calpain. Interictal-like activity induced by incubation of hippocampal slices in an Mg(2+)-free solution led to a fast reduction in KCC2-mediated Cl(-) transport efficacy in CA1 pyramidal neurons, which was paralleled by a decrease in both total and plasmalemmal KCC2 protein. These effects were blocked by the calpain inhibitor MDL-28170. Taken together, these findings show that calpain activation leads to cleavage of KCC2, thereby modulating GABAergic signaling.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Faraz Ahmad
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Peter Blaesse
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
- Institute of Physiology I, Westfälische Wilhelms-University Münster, D-48149 Münster, Germany
| |
Collapse
|
8
|
Buddhala C, Suarez M, Modi J, Prentice H, Ma Z, Tao R, Wu JY. Calpain cleavage of brain glutamic acid decarboxylase 65 is pathological and impairs GABA neurotransmission. PLoS One 2012; 7:e33002. [PMID: 22427928 PMCID: PMC3299728 DOI: 10.1371/journal.pone.0033002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2-3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65 bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission.
Collapse
Affiliation(s)
- Chandana Buddhala
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Marjorie Suarez
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Jigar Modi
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Howard Prentice
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Zhiyuan Ma
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Rui Tao
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| | - Jang Yen Wu
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America,
| |
Collapse
|
9
|
Baptista MS, Melo CV, Armelão M, Herrmann D, Pimentel DO, Leal G, Caldeira MV, Bahr BA, Bengtson M, Almeida RD, Duarte CB. Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons. PLoS One 2010; 5:e10139. [PMID: 20405034 PMCID: PMC2853570 DOI: 10.1371/journal.pone.0010139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 03/16/2010] [Indexed: 12/22/2022] Open
Abstract
Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms—GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during excitotoxicity and the first molecular target of the UPS affected in this cell death process.
Collapse
Affiliation(s)
- Márcio S. Baptista
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos V. Melo
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Mário Armelão
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Dennis Herrmann
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Diogo O. Pimentel
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Margarida V. Caldeira
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ben A. Bahr
- Biotechnology Research and Training Center, University of North Carolina, Pembroke, North Carolina, United States of America
| | - Mário Bengtson
- Department of Cancer and Cell Biology, Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Ramiro D. Almeida
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Liu H, Li S, Zhang Y, Yan Y, Li Y. Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis. Acta Biochim Biophys Sin (Shanghai) 2009; 41:545-53. [PMID: 19578718 DOI: 10.1093/abbs/gmp043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glutamate decarboxylase 65 (GAD65) produces gamma-aminobutyric acid, the main inhibitory neurotransmitter in adult mammalian brain. Previous experiments, performed in brain, showed that GAD65 gene possesses two TATA-less promoters, although the significance is unknown. Here, by rapid amplification of cDNA ends method, two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis. RT-PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation, suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level. By using GAD65-specific antibodies, western blotting analysis showed that the 58-kDa GAD65, N-terminal 69 amino acids truncated form of full-length GAD65 protein, was developmentally expressed during post-natal testis maturation, suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing. Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis, primary spermatocytes and spermatids of postnatal of Day 90 testis. The above results suggested that GAD65 gene expression is dynamically regulated at multiple levels during post-natal testis maturation.
Collapse
Affiliation(s)
- Haixiong Liu
- Shanghai Key Laboratory for Molecular Andrology, Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
11
|
Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 2009; 35:509-27. [PMID: 19155345 PMCID: PMC2669579 DOI: 10.1093/schbul/sbn176] [Citation(s) in RCA: 837] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia.
Collapse
Affiliation(s)
- Klaas E. Stephan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK,Laboratory for Social and Neural Systems Research, Institute for Empirical Research in Economics, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; tel: +44-207-8337472, fax: +44-207-8131420, e-mail:
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Chris D. Frith
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK,Centre of Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital, 8000-Aarhus, Denmark
| |
Collapse
|
12
|
A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int 2009; 55:9-12. [PMID: 19428801 DOI: 10.1016/j.neuint.2009.01.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/24/2022]
Abstract
This review focuses on the recent advances that were made in understanding the fundamental mechanisms of the regulation of l-glutamic acid decarboxylase (GAD; E.C. 4.1.1.15), the enzyme responsible for the synthesis of the major inhibitory neurotransmitter gamma-amino butyric acid (GABA). In the brain, there are two isoforms of GAD- GAD67 and GAD65, where 67 and 65 refer to their respective molecular weights in kDa. A number of neurodegenerative diseases are known to occur as a result of insufficient inhibition due to failure of GABA neurotransmission. Since the rate-limiting step in GABA biosynthesis is the decarboxylation of glutamate by GAD, it is important to understand how GAD is regulated. So far, we know that GAD is regulated at the transcriptional level by alternate splicing and at the post-translational level by protein phosphorylation, palmitoylation and activity-dependent cleavage. Here, we present new evidence of the presence of GAD65 associated with mitochondria in the axon terminal and project a model in which ATP generated by mitochondrial GAD65 may serve an important function in providing energy for GAD65 mediated GABA biosynthesis and packaging into synaptic vesicles by vesicular GABA transporter (VGAT).
Collapse
|
13
|
Post-translational Regulation of l-Glutamic Acid Decarboxylase in the Brain. Neurochem Res 2008; 33:1459-65. [DOI: 10.1007/s11064-008-9600-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|