1
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
2
|
He J, Niu X, Chen X, Ma B, Ren Y, Qi W, Zhan X, Meng Y, Li J, Li H. Overlapping syndrome of anti-MOG antibody-associated disease and anti-mGluR5 encephalitis manifested as optic neuritis: A case report. Medicine (Baltimore) 2024; 103:e39146. [PMID: 39151524 PMCID: PMC11332747 DOI: 10.1097/md.0000000000039146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
RATIONALE Anti-Myelin oligodendrocyte glycoprotein (MOG) and anti-metabotropic glutamate receptor 5 (mGluR5) double antibody positive encephalitis characterized by optic neuritis is extremely rare. We present a case of overlapping syndrome of MOG-IgG-associated disease and anti-mGluR5 encephalitis manifested as optic neuritis. PATIENT CONCERNS A 60-year-old Chinses woman presented to the hospital with progressive vision loss and headache for 1 week. The cerebrospinal fluid examination was within the normal range. Visual evoked potentials study disclosed prolonged latency of P100 bilaterally. Fundus examination revealed indistinct boundaries of both optic discs. Her brain magnetic resonance imaging showed patchy hyperintensity in the posterior horn of the left ventricle and the left optic nerve. Her serum was positive for anti-MOG and anti-mGluR5 antibodies. DIAGNOSIS The patient was diagnosed with overlapping syndrome of anti-MOG antibody-associated disease and anti-mGluR5 encephalitis mainly based on the clinical symptoms and further test of the antibody in serum. INTERVENTIONS AND OUTCOMES She was subsequently subjected to empirical treatment with intravenous methylprednisolone. After discharge, she was given a tapering dose of oral prednisone, alongside mycophenolate mofetil. On outpatient follow-up, her symptoms showed no relapse after 1 month, and her condition remained stable. LESSONS Early recognition of autoimmune encephalitis is crucial. The detection of cerebrospinal fluid and serum of autoimmune encephalitis and demyelinating diseases of the CNS, including MOG-IgG and mGluR5-IgG, should be strengthened in order to make a precise diagnosis and develop a comprehensive treatment plan in a timely manner.
Collapse
Affiliation(s)
- Jianhang He
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Niu
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Chen
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Boya Ma
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yazhou Ren
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Weimin Qi
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiuping Zhan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yue Meng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianxia Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Zhang M, Zhi N, Feng J, Liu Y, Zhang M, Liu D, Yuan J, Dong Y, Jiang S, Ge J, Wu S, Zhao X. ITPR2 Mediated Calcium Homeostasis in Oligodendrocytes is Essential for Myelination and Involved in Depressive-Like Behavior in Adolescent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306498. [PMID: 38476116 PMCID: PMC11132048 DOI: 10.1002/advs.202306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ming Zhang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Na Zhi
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Jiaxiang Feng
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Yingqi Liu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Meixia Zhang
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dingxi Liu
- First Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'an710061P. R. China
| | - Jie Yuan
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Yuhao Dong
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Sufang Jiang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Junye Ge
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Shengxi Wu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Xianghui Zhao
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| |
Collapse
|
4
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
5
|
Fu J, Peng L, Yang Y, Xie Y, Li Z, Rong B. Case report: Overlapping syndrome mimicking infectious meningoencephalitis in a patient with coexistent MOG, NMDAR, mGluR5 antibody positivity. Front Immunol 2022; 13:919125. [PMID: 35990698 PMCID: PMC9389075 DOI: 10.3389/fimmu.2022.919125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
A 38-year-old Chinese Han man presented with fever, headache and difficulty in language expression. The initial cerebrospinal fluid (CSF) analysis revealed lymphocytic-predominant pleocytosis with a normal glucose level, and magnetic resonance imaging (MRI) showed extensive cortical edema in left cerebral hemisphere. He received the antiviral treatment. However, one week later, he developed psychomotor agitation and seizures. Lumbar puncture was performed again and further testing for autoantibodies was conducted in both the CSF and serum. His CSF was positive for anti-myelin oligodendrocyte glycoprotein (MOG), anti-N-methyl-D-aspartate receptor (NMDAR) and anti-metabotropic glutamate receptor 5 (mGluR5) antibodies. He was diagnosed with overlapping syndrome of MOG antibody-related cerebral cortical encephalitis and anti-NMDAR, anti-mGluR5 autoimmune encephalitis. He received intravenous methylprednisolone and immunoglobulin, followed by oral prednisone and mycophenolate mofetil. His psychomotor agitation and seizures were relieved, and he gradually recovered his language expression ability. We reported for the first time a case that was positive for coexistent MOG, NMDAR, mGluR5 antibodies, which was initially misdiagnosed as infectious meningoencephalitis. This case widens the clinical spectrum of the overlapping syndrome recently reported.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Xie
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zuoxiao Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benbing Rong
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Benbing Rong,
| |
Collapse
|
6
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
7
|
He L, Yang H, Feng J, Wei T, Huang Y, Zhang X, Wang Z. Knockdown of G protein-coupled receptor-17 (GPR17) facilitates the regeneration and repair of myelin sheath post-periventricular leukomalacia (PVL). Bioengineered 2021; 12:7314-7324. [PMID: 34569901 PMCID: PMC8806752 DOI: 10.1080/21655979.2021.1979352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The G protein-coupled receptor-17 (GPR17) plays an important role in regulating the differentiation of oligodendrocytes and remyelination, which is a key negative regulator of oligodendrocyte differentiation. The present study aimed to investigate the function of GPR17 in the white matter of periventricular leukomalacia (PVL) neonatal rats. The PVL model was established in 2-day old neonatal rats by intracerebral injection of LPS (1 mg/kg). Compared to sham, GPR17 was significantly upregulated, while Olig1 was significantly downregulated in the PVL group at 1 d, 3 days, and 7 days post-modeling. Compared to the negative control (NC) group, the expression of GPR17 was suppressed, while that of Olig1 was elevated in the siRNA-GPR17 group as time progressed; the opposite results were observed in the GPR17-overexpressed group. Decreased formation of myelin sheaths as well as poor structure and loose arrangement were observed in the PVL group. Similar observations were found in the PVL + siRNA-GPR17 group at 1 d and 3 days post-modeling. However, on day 7 post-modeling, a dramatic increase in the formation of myelin sheath as well as thicker myelin sheaths were observed in the PVL + siRNA-GPR17 group. The migration ability of oligodendrocyte progenitor cells (OPCs) isolated from animals was found to be significantly suppressed in the GPR17-overexpressed group, accompanied by the downregulation of Olig1. Taken together, the regeneration and repair of myelin sheaths post-PVL white matter injury were induced by downregulating the GPR17 gene, which elevated the expression of Olig1.
Collapse
Affiliation(s)
- Liufang He
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, China
| | - Hui Yang
- Department of Neonatology, Shenzhen Children Hospital, Shenzhen, China
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children Hospital, Shenzhen, China
| | - Tingyan Wei
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, China
| | - Yong Huang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, China
| | - Xueli Zhang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, China
| | - Zhangxing Wang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, China
| |
Collapse
|
8
|
Turan F, Yilmaz Ö, Schünemann L, Lindenberg TT, Kalanithy JC, Harder A, Ahmadi S, Duman T, MacDonald RB, Winter D, Liu C, Odermatt B. Effect of modulating glutamate signaling on myelinating oligodendrocytes and their development-A study in the zebrafish model. J Neurosci Res 2021; 99:2774-2792. [PMID: 34520578 DOI: 10.1002/jnr.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Funda Turan
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Öznur Yilmaz
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Lena Schünemann
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Tobias T Lindenberg
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany
| | - Jeshurun C Kalanithy
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Alexander Harder
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Shiva Ahmadi
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Türker Duman
- Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London, UK
| | - Dominic Winter
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Changsheng Liu
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Saitta KS, Lercher LD, Sainato DM, Patel A, Huang Y, McAuliffe WG, Dreyfus CF. CHPG enhances BDNF and myelination in cuprizone-treated mice through astrocytic metabotropic glutamate receptor 5. Glia 2021; 69:1950-1965. [PMID: 33811383 PMCID: PMC9847144 DOI: 10.1002/glia.24003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023]
Abstract
It is well recognized that astrocytes can produce factors known to affect the myelination process. One such factor, brain-derived neurotrophic factor (BDNF), can enhance the differentiation of oligodendrocyte lineage cells following a demyelinating lesion. Our previous work indicated that enhancing astrocyte-derived BDNF via injection of a general agonist of Group I/II metabotropic glutamate receptors (mGluRs) into the lesion increased myelin proteins in the cuprizone model of demyelination after 4 hr. To determine if this observation has potential therapeutic significance, we now use a more specific mGluR agonist, 2-chloro-5-hydroxyphenylglycine (CHPG), which binds to mGluR5, to examine effects on myelination through the clinically relevant approach of a peripheral injection. In initial studies, intraperitoneal injection of CHPG resulted in an increase in myelin proteins within the lesioned corpus callosum. These effects were blocked when either BDNF or the CHPG receptor, mGluR5, was deleted from glial fibrillary acidic protein (GFAP)+ astrocytes or when the BDNF receptor, tropomyosin receptor kinase B (TrkB), was deleted from proteolipid protein (PLP)+ oligodendrocytes. Moreover, injection of CHPG over 2 weeks not only elevated BDNF and myelin proteins, but also enhanced myelination and reversed behavioral deficits. Interestingly, effects on myelin and myelin proteins were not seen in the control animals, indicating that a lesion is critical in eliciting effects. Taken together, the data suggest that the mGluR agonist CHPG may be a potential therapeutic strategy for treating demyelinating diseases and that it works by enhancing the release of BDNF from astrocytes.
Collapse
Affiliation(s)
- Kyle S. Saitta
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Lauren D. Lercher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Danielle M. Sainato
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ashish Patel
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Yangyang Huang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - W. Geoffrey McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Cheryl F. Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| |
Collapse
|
10
|
Hughes EG, Stockton ME. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front Cell Dev Biol 2021; 9:714169. [PMID: 34368163 PMCID: PMC8335399 DOI: 10.3389/fcell.2021.714169] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
In the central nervous system, oligodendrocytes produce myelin sheaths that enwrap neuronal axons to provide trophic support and increase conduction velocity. New oligodendrocytes are produced throughout life through a process referred to as oligodendrogenesis. Oligodendrogenesis consists of three canonical stages: the oligodendrocyte precursor cell (OPC), the premyelinating oligodendrocyte (preOL), and the mature oligodendrocyte (OL). However, the generation of oligodendrocytes is inherently an inefficient process. Following precursor differentiation, a majority of premyelinating oligodendrocytes are lost, likely due to apoptosis. If premyelinating oligodendrocytes progress through this survival checkpoint, they generate new myelinating oligodendrocytes in a process we have termed integration. In this review, we will explore the intrinsic and extrinsic signaling pathways that influence preOL survival and integration by examining the intrinsic apoptotic pathways, metabolic demands, and the interactions between neurons, astrocytes, microglia, and premyelinating oligodendrocytes. Additionally, we will discuss similarities between the maturation of newly generated neurons and premyelinating oligodendrocytes. Finally, we will consider how increasing survival and integration of preOLs has the potential to increase remyelination in multiple sclerosis. Deepening our understanding of premyelinating oligodendrocyte biology may open the door for new treatments for demyelinating disease and will help paint a clearer picture of how new oligodendrocytes are produced throughout life to facilitate brain function.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael E Stockton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
11
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Association between human gray matter metabotropic glutamate receptor-5 availability in vivo and white matter properties: a [ 11C]ABP688 PET and diffusion tensor imaging study. Brain Struct Funct 2020; 225:1805-1816. [PMID: 32495131 DOI: 10.1007/s00429-020-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Excitatory corticofugal projections in the subcortical white matter (WM) convey signals arising from local neuronal activity in the gray matter (GM). We hypothesized that metabotropic glutamate receptor-5 (mGluR5) availability in GM, as a surrogate marker for local glutamatergic neuronal activity, correlates with WM properties in healthy brain. We examined the relationship in healthy individuals between GM mGluR5 availability measured in vivo using [11C]ABP688 positron emission tomography (PET) and WM properties measured as fractional anisotropy (FA) using diffusion tensor imaging (DTI). Twenty-three healthy volunteers underwent this multimodal imaging. We calculated mGluR5 availability, [11C]ABP688 binding potential (BPND), using the simplified reference tissue model, and generated DTI FA maps using FMRIB's Diffusion Toolbox (FDT) along with Tract-Based Spatial Statistics (TBSS). To investigate the relationship between mGluR5 availability and FA, we performed voxel-wise and region of interest (ROI)-based analyses. The voxel-wise analysis showed significant positive correlations between the whole cerebral GM [11C]ABP688 BPND and the FA in widespread WM regions including the corpus callosum body, internal capsule, and corona radiata (FWE corrected p < 0.05). The ROI-based analysis also revealed significant positive correlations (Bonferroni-corrected threshold p < 0.00021) between [11C]ABP688 BPND in the frontal and parietal cortical GM and FA in the internal capsule (anterior limb and retrolenticular part). Using a novel multimodal imaging interrogation, we provide the first evidence that GM mGluR5 availability is significantly positively associated with WM properties in healthy subjects. Future comparison studies could determine whether this relationship is perturbed in neuropsychiatric disorders with dysregulated mGluR5 signaling.
Collapse
|
13
|
Suárez-Pozos E, Thomason EJ, Fuss B. Glutamate Transporters: Expression and Function in Oligodendrocytes. Neurochem Res 2020; 45:551-560. [PMID: 30628017 PMCID: PMC6616022 DOI: 10.1007/s11064-018-02708-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Glutamate, the main excitatory neurotransmitter of the vertebrate central nervous system (CNS), is well known as a regulator of neuronal plasticity and neurodevelopment. Such glutamate function is thought to be mediated primarily by signaling through glutamate receptors. Thus, it requires a tight regulation of extracellular glutamate levels and a fine-tuned homeostasis that, when dysregulated, has been associated with a wide range of central pathologies including neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. In the mammalian CNS, extracellular glutamate levels are controlled by a family of sodium-dependent glutamate transporters belonging to the solute carrier family 1 (SLC1) that are also referred to as excitatory amino acid transporters (EAATs). The presumed main function of EAATs has been best described in the context of synaptic transmission where EAATs expressed by astrocytes and neurons effectively regulate extracellular glutamate levels so that synapses can function independently. There is, however, increasing evidence that EAATs are expressed by cells other than astrocytes and neurons, and that they exhibit functions beyond glutamate clearance. In this review, we will focus on the expression and functions of EAATs in the myelinating cells of the CNS, oligodendrocytes. More specifically, we will discuss potential roles of oligodendrocyte-expressed EAATs in contributing to extracellular glutamate homeostasis, and in regulating oligodendrocyte maturation and CNS myelination by exerting signaling functions that have traditionally been associated with glutamate receptors. In addition, we will provide some examples for how dysregulation of oligodendrocyte-expressed EAATs may be involved in the pathophysiology of neurologic diseases.
Collapse
Affiliation(s)
- Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
14
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
15
|
Perlman K, Couturier CP, Yaqubi M, Tanti A, Cui QL, Pernin F, Stratton JA, Ragoussis J, Healy L, Petrecca K, Dudley R, Srour M, Hall JA, Kennedy TE, Mechawar N, Antel JP. Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia 2020; 68:1291-1303. [PMID: 31958186 DOI: 10.1002/glia.23777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.
Collapse
Affiliation(s)
- Kelly Perlman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Charles P Couturier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Arnaud Tanti
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics and Bioengineering, McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Luke Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Roy Dudley
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Jeffrey A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
17
|
Zhang M, Liu Y, Wu S, Zhao X. Ca 2+ Signaling in Oligodendrocyte Development. Cell Mol Neurobiol 2019; 39:1071-1080. [PMID: 31222426 DOI: 10.1007/s10571-019-00705-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
Calcium signaling has essential roles in the development of the nervous system, from neural induction to the proliferation, migration, and differentiation of both neuronal and glia cells. The temporal and spatial dynamics of Ca2+ signals control the highly diverse yet specific transcriptional programs that establish the complex structures of the nervous system. Ca2+-signaling pathways are shaped by interactions among metabotropic signaling cascades, ion channels, intracellular Ca2+ stores, and a multitude of downstream effector proteins that activate specific genetic programs. Progress in the last decade has led to significant advances in our understanding of the functional architecture of Ca2+ signaling networks involved in oligodendrocyte development. In this review, we summarize the molecular and functional organizations of Ca2+-signaling networks during the differentiation of oligodendrocyte, especially its impact on myelin gene expression, proliferation, migration, and myelination. Importantly, the existence of multiple routes of Ca2+ influx opens the possibility that the activity of calcium channels can be manipulated pharmacologically to encourage oligodendrocyte maturation and remyelination after demyelinating episodes in the brain.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuming Liu
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xianghui Zhao
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
18
|
Habermacher C, Angulo MC, Benamer N. Glutamate versus GABA in neuron-oligodendroglia communication. Glia 2019; 67:2092-2106. [PMID: 30957306 DOI: 10.1002/glia.23618] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
In the central nervous system (CNS), myelin sheaths around axons are formed by glial cells named oligodendrocytes (OLs). In turn, OLs are generated by oligodendrocyte precursor cells (OPCs) during postnatal development and in adults, according to a process that depends on the proliferation and differentiation of these progenitors. The maturation of OL lineage cells as well as myelination by OLs are complex and highly regulated processes in the CNS. OPCs and OLs express an array of receptors for neurotransmitters, in particular for the two main CNS neurotransmitters glutamate and GABA, and are therefore endowed with the capacity to respond to neuronal activity. Initial studies in cell cultures demonstrated that both glutamate and GABA signaling mechanisms play important roles in OL lineage cell development and function. However, much remains to be learned about the communication of glutamatergic and GABAergic neurons with oligodendroglia in vivo. This review focuses on recent major advances in our understanding of the neuron-oligodendroglia communication mediated by glutamate and GABA in the CNS, and highlights the present controversies in the field. We discuss the expression, activation modes and potential roles of synaptic and extrasynaptic receptors along OL lineage progression. We review the properties of OPC synaptic connectivity with presynaptic glutamatergic and GABAergic neurons in the brain and consider the implication of glutamate and GABA signaling in activity-driven adaptive myelination.
Collapse
Affiliation(s)
- Chloé Habermacher
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,Université Paris Descartes, Paris, France
| | - María C Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,Université Paris Descartes, Paris, France
| | - Najate Benamer
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
19
|
Kula B, Chen T, Kukley M. Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non‐synaptic? Glia 2019; 67:2071-2091. [DOI: 10.1002/glia.23617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bartosz Kula
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Graduate Training Centre for NeuroscienceUniversity of Tübingen Tübingen Germany
| | - Ting‐Jiun Chen
- Center for Neuroscience ResearchChildren's Research Institute, Children's National Medical Center Washington District of Columbia
| | - Maria Kukley
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Research Institute for OphthalmologyUniversity Hospital Tübingen Tübingen Germany
| |
Collapse
|
20
|
Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection? Front Mol Neurosci 2018; 11:414. [PMID: 30483053 PMCID: PMC6243036 DOI: 10.3389/fnmol.2018.00414] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are characterized by excitotoxicity and neuroinflammation that finally lead to slow neuronal degeneration and death. Although neurons are the principal target, glial cells are important players as they contribute by either exacerbating or dampening the events that lead to neuroinflammation and neuronal damage. A dysfunction of the glutamatergic system is a common event in the pathophysiology of these diseases. Metabotropic glutamate (mGlu) receptors belong to a large family of G protein-coupled receptors largely expressed in neurons as well as in glial cells. They often appear overexpressed in areas involved in neurodegeneration, where they can modulate glutamatergic transmission. Of note, mGlu receptor upregulation may involve microglia or, even more frequently, astrocytes, where their activation causes release of factors potentially able to influence neuronal death. The expression of mGlu receptors has been also reported on oligodendrocytes, a glial cell type specifically involved in the development of multiple sclerosis. Here we will provide a general overview on the possible involvement of mGlu receptors expressed on glial cells in the pathogenesis of different neurodegenerative disorders and the potential use of subtype-selective mGlu receptor ligands as candidate drugs for the treatment of neurodegenerative disorders. Negative allosteric modulators (NAM) of mGlu5 receptors might represent a relevant pharmacological tool to develop new neuroprotective strategies in these diseases. Recent evidence suggests that targeting astrocytes and microglia with positive allosteric modulators (PAM) of mGlu3 receptor or oligodendrocytes with mGlu4 PAMS might represent novel pharmacological approaches for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Agata Copani
- Department of Drug Sciences, University of Catania, Catania, Italy.,Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Troina, Italy
| |
Collapse
|
21
|
Metabotropic glutamate receptor subtype 5 is altered in LPS-induced murine neuroinflammation model and in the brains of AD and ALS patients. Eur J Nucl Med Mol Imaging 2018; 46:407-420. [PMID: 30291374 DOI: 10.1007/s00259-018-4179-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present study was to determine the expression levels of mGluR5 in different mouse strains after induction of neuroinflammation by lipopolysaccharide (LPS) challenge and in the brains of patients with Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) post mortem to investigate mGluR5 expression in human neurodegenerative diseases. METHODS C57BL/6 and CD1 mice were injected intraperitoneally with either 10 mg/kg LPS or saline. mGluR5 and TSPO mRNA levels were measured after 1 and 5 days by qPCR, and mGluR5 protein levels were determined by PET imaging with the mGluR5-specific radiotracer [18F]PSS232. mGluR5 expression was evaluated in the post-mortem brain slices from AD and ALS patients using in vitro autoradiography. RESULTS mGluR5 and TSPO mRNA levels were increased in brains of C57BL/6 and CD1 mice 1 day after LPS treatment and remained significantly increased after 5 days in C57BL/6 mice but not in CD1 mice. Brain PET imaging with [18F]PSS232 confirmed increased mGluR5 levels in the brains of both mouse strains 1 day after LPS treatment. After 5 days, mGluR5 levels in CD1 mice declined to the levels in vehicle-treated mice but remained high in C57BL/6 mice. Autoradiograms revealed a severalfold higher binding of [18F]PSS232 in post-mortem brain slices from AD and ALS patients compared with the binding in control brains. CONCLUSION LPS-induced neuroinflammation increased mGluR5 levels in mouse brain and is dependent on the mouse strain and time after LPS treatment. mGluR5 levels were also increased in human AD and ALS brains in vitro. PET imaging of mGluR5 levels could potentially be used to diagnose and monitor therapy outcomes in patients with AD and ALS.
Collapse
|
22
|
Butt AM, Vanzulli I, Papanikolaou M, De La Rocha IC, Hawkins VE. Metabotropic Glutamate Receptors Protect Oligodendrocytes from Acute Ischemia in the Mouse Optic Nerve. Neurochem Res 2017; 42:2468-2478. [PMID: 28365868 PMCID: PMC5603641 DOI: 10.1007/s11064-017-2220-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 12/01/2022]
Abstract
Studies by Bruce Ransom and colleagues have made a major contribution to show that white matter is susceptible to ischemia/hypoxia. White matter contains axons and the glia that support them, notably myelinating oligodendrocytes, which are highly vulnerable to ischemic-hypoxic damage. Previous studies have shown that metabotropic GluRs (mGluRs) are cytoprotective for oligodendrocyte precursor cells and immature oligodendrocytes, but their potential role in adult white matter was unresolved. Here, we report that group 1 mGluR1/5 and group 2 mGluR3 subunits are expressed in optic nerves from mice aged postnatal day (P)8-12 and P30-35. We demonstrate that activation of group 1 mGluR protects oligodendrocytes against oxygen-glucose deprivation (OGD) in developing and young adult optic nerves. In contrast, group 2 mGluR are shown to be protective for oligodendrocytes against OGD in postnatal but not young adult optic nerves. The cytoprotective effect of group 1 mGluR requires activation of PKC, whilst group 2 mGluR are dependent on negatively regulating adenylyl cyclase and cAMP. Our results identify a role for mGluR in limiting injury of oligodendrocytes in developing and young adult white matter, which may be useful for protecting oligodendrocytes in neuropathologies involving excitoxicity and ischemia/hypoxia.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | - Ilaria Vanzulli
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Maria Papanikolaou
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Irene Chacon De La Rocha
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Virginia E Hawkins
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK. .,Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
23
|
The neuroprotective effects of orthosteric agonists of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 2016; 111:195-211. [PMID: 27600687 DOI: 10.1016/j.neuropharm.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates neuronal excitability. Here, we evaluated the neuroprotective potential of four structurally diverse activators of group II and III mGluRs: an orthosteric agonist of group II (LY354740), an orthosteric agonist of group III (ACPT-I), an allosteric agonist of mGluR7 (AMN082) and a positive allosteric modulator (PAM) of mGluR4 (VU0361737). Neurotoxicity was induced by the pro-apoptotic agents: staurosporine (St) and doxorubicin (Dox) or the excitotoxic factor glutamate (Glu). The effects were analyzed in primary hippocampal (HIP) and cerebellar granule cell (CGC) cultures at two developmental stages, at 7 and 12 days in vitro (DIV). The data reveal a general neuroprotective effect of group II and III mGluR activators against the St- and Glu- but not Dox-induced cell damage. We found that neuroprotective effects of group II and III mGluR orthosteric agonists (LY354740 and ACPT-I) were higher at 12 DIV when compared to 7 DIV cells. In contrast, the efficiency of allosteric mGluR agents (AMN082 and VU0361737) did not differ between 7 and 12 DIV in both, St and Glu models of neuronal cell damage. Interestingly, the protective effects of activators of group II and III mGluRs were blocked by relevant antagonists only against Glu-induced neurotoxicity. Moreover, the observed neuroprotective action of group II and III mGluR activators in the St model was associated with a decreased number of PI-positive cells and no alterations in the caspase-3 activity. Finally, we showed that MAPK/ERK pathway activation was potentially involved in the mechanism of ACPT-I- and AMN082-induced neuroprotection against the St-evoked cellular damage. Our comparative study demonstrated the developmental stage-dependent neuroprotective effect of orthosteric group II and III mGluR agonists. In comparison to allosteric modulators, orthosteric compounds may provide more specific tools for suppression of neuronal cell loss associated with various chronic neurodegenerative conditions. Our results also suggest that the inhibition of intracellular pathways mediating necrotic, rather than apoptotic cascades, may be involved in neuroprotective effects of activators of group II and III mGluRs.
Collapse
|
24
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Zantomio D, Chana G, Laskaris L, Testa R, Everall I, Pantelis C, Skafidas E. Convergent evidence for mGluR5 in synaptic and neuroinflammatory pathways implicated in ASD. Neurosci Biobehav Rev 2015; 52:172-7. [PMID: 25704074 DOI: 10.1016/j.neubiorev.2015.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/25/2015] [Accepted: 02/07/2015] [Indexed: 01/05/2023]
Abstract
The pathogenesis of Autism Spectrum Disorder (ASD), a serious neurodevelopmental disorder, is poorly understood. We review evidence for alterations in glutamatergic signalling in the aetiology of ASD, with a focus on the metabotropic glutamate receptor-5 (mGluR5). mGluR5 signalling is important for synapse formation, neuroplasticity and long term potentiation as well as neuroprotection and has been shown to have a regulatory role in neuroinflammation. Evidence for neuroinflammation in ASD is supported by increase in pro-inflammatory cytokines in the blood and cerebrospinal fluid (CSF) and increased number and activation of microglia in postmortem dorsolateral prefrontal cortex (DLPFC). mGlur5 signalling has also been shown to downregulate microglial activation. Therefore, we focus on mGluR5 as a potential unifying explanation for synapse alteration and neuroinflammation seen in ASD. Data from mGluR5 knockout mouse models, and syndromic and non syndromic forms of ASD are discussed in relation to how alterations in mGluR5 are associated with ASD symptoms. This review supports altered mGluR5 functioning as a convergent point in ASD pathogenesis and indicates more research is warranted into mGluR5 as a potential therapeutic target.
Collapse
Affiliation(s)
- Daniela Zantomio
- Department of Haematology, Austin Health, Heidelberg, VIC, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Liliana Laskaris
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Renee Testa
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria, Australia; Department of Psychology, Monash University, Clayton, Vic, Australia
| | - Ian Everall
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Christos Pantelis
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia; Centre for Integrative Brain Function, Australia.
| |
Collapse
|
26
|
Jantas D, Greda A, Leskiewicz M, Grygier B, Pilc A, Lason W. Neuroprotective effects of mGluR II and III activators against staurosporine- and doxorubicin-induced cellular injury in SH-SY5Y cells: New evidence for a mechanism involving inhibition of AIF translocation. Neurochem Int 2015; 88:124-37. [PMID: 25661514 DOI: 10.1016/j.neuint.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/06/2014] [Accepted: 12/28/2014] [Indexed: 12/12/2022]
Abstract
There are several experimental data sets demonstrating the neuroprotective effects of activation of group II and III metabotropic glutamate receptors (mGluR II/III), however, their effect on neuronal apoptotic processes has yet to be fully recognized. Thus, the comparison of the neuroprotective potency of the mGluR II agonist LY354740, mGluR III agonist ACPT-I, mGluR4 PAM VU0361737, mGluR8 PAM AZ12216052 and allosteric mGluR7 agonist AMN082 against staurosporine (St-) and doxorubicin (Dox)-induced cell death has been performed in undifferentiated (UN-) and retinoic acid differentiated (RA-) human neuroblastoma SH-SY5Y cells. The highest neuroprotection in UN-SH-SY5Y cells was noted for AZ12216052 (0.01-1 µM) and VU0361737 (1-10 µM), with both agents partially attenuating the St- and Dox-evoked cell death. LY354740 (0.01-10 µM) and ACPT-I (10 µM) were protective only against the St-evoked cell damage, whereas AMN082 (0.001-0.01 µM) attenuated only the Dox-induced cell death. In RA-SH-SY5Y, a moderate neuroprotective response of mGluR II/III activators was observed for LY354740 (10 µM) and AZ12216052 (0.01 and 10 µM), which afforded protection only against the St-induced cell damage. The protection mediated by mGluR II/III activators against the St- and Dox-evoked cell death in UN-SH-SY5Y cells was not related to attenuation of caspase-3 activity, however, a decrease in the number of TUNEL-positive nuclei was found. Moreover, mGluR II/III activators attenuated the cytosolic level of the apoptosis inducing factor (AIF), which was increased after St and Dox exposure. Our data point to differential neuroprotective efficacy of various mGluR II/III activators in attenuating St- and Dox-evoked cell damage in SH-SY5Y cells, and dependence of the effects on the cellular differentiation state, as well on the type of the pro-apoptotic agent that is employed. Moreover, the neuroprotection mediated by mGluR II/III activators is accompanied by inhibition of caspase-3-independent DNA fragmentation evoked by AIF translocation.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland.
| | - A Greda
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland
| | - M Leskiewicz
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland
| | - B Grygier
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland
| | - A Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smetna 12 Street, Krakow PL 31-343, Poland
| |
Collapse
|
27
|
Wioland L, Dupont JL, Doussau F, Gaillard S, Heid F, Isope P, Pauillac S, Popoff MR, Bossu JL, Poulain B. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell Microbiol 2014; 17:369-88. [PMID: 25287162 DOI: 10.1111/cmi.12373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/29/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
Abstract
Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway.
Collapse
Affiliation(s)
- Laetitia Wioland
- Centre National de la Recherche Scientifique Associé à l'Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, 5 rue Blaise Pascal, Strasbourg, cedex F-67084, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martinez-Lozada Z, Waggener CT, Kim K, Zou S, Knapp PE, Hayashi Y, Ortega A, Fuss B. Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIβ's actin-binding/-stabilizing domain. Glia 2014; 62:1543-1558. [PMID: 24866099 PMCID: PMC4107011 DOI: 10.1002/glia.22699] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Signaling via the major excitatory amino acid glutamate has been implicated in the regulation of various aspects of the biology of oligodendrocytes, the myelinating cells of the central nervous system (CNS). In this respect, cells of the oligodendrocyte lineage have been described to express a variety of glutamate-responsive transmembrane proteins including sodium-dependent glutamate transporters. The latter have been well characterized to mediate glutamate clearance from the extracellular space. However, there is increasing evidence that they also mediate glutamate-induced intracellular signaling events. Our data presented here show that the activation of oligodendrocyte expressed sodium-dependent glutamate transporters, in particular GLT-1 and GLAST, promotes the morphological aspects of oligodendrocyte maturation. This effect was found to be associated with a transient increase in intracellular calcium levels and a transient phosphorylation event at the serine (S)(371) site of the calcium sensor calcium/calmodulin-dependent kinase type IIβ (CaMKIIβ). The potential regulatory S(371) site is located within CaMKIIβ's previously defined actin-binding/-stabilizing domain, and phosphorylation events within this domain were identified in our studies as a requirement for sodium-dependent glutamate transporter-mediated promotion of oligodendrocyte maturation. Furthermore, our data provide good evidence for a role of these phosphorylation events in mediating detachment of CaMKIIβ from filamentous (F)-actin, and hence allowing a remodeling of the oligodendrocyte's actin cytoskeleton. Taken together with our recent findings, which demonstrated a crucial role of CaMKIIβ in regulating CNS myelination in vivo, our data strongly suggest that a sodium-dependent glutamate transporter-CaMKIIβ-actin cytoskeleton axis plays an important role in the regulation of oligodendrocyte maturation and CNS myelination.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F, México
| | - Christopher T. Waggener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | - Karam Kim
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | - Yasunori Hayashi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama 338-8570, Japan
| | - Arturo Ortega
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F, México
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| |
Collapse
|
29
|
Cavaliere F, Benito-Muñoz M, Panicker M, Matute C. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation. Front Cell Neurosci 2013; 7:261. [PMID: 24391542 PMCID: PMC3866621 DOI: 10.3389/fncel.2013.00261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/01/2013] [Indexed: 12/21/2022] Open
Abstract
Multipotent cells from the juvenile subventricular zone (SVZ) possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes, or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX) as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) Leioa, Spain ; Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU) Zamudio, Spain ; Instituto de Salud Carlos III, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas Leioa, Spain
| | - Monica Benito-Muñoz
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) Leioa, Spain ; Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU) Zamudio, Spain ; Instituto de Salud Carlos III, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas Leioa, Spain
| | - Mitradas Panicker
- National Centre for Biological Sciences, UAS-GKVK Campus Bangalore, India
| | - Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) Leioa, Spain ; Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU) Zamudio, Spain ; Instituto de Salud Carlos III, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas Leioa, Spain
| |
Collapse
|
30
|
Long PM, Moffett JR, Namboodiri AMA, Viapiano MS, Lawler SE, Jaworski DM. N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J Biol Chem 2013; 288:26188-26200. [PMID: 23884408 DOI: 10.1074/jbc.m113.487553] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.
Collapse
Affiliation(s)
- Patrick M Long
- From the Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - John R Moffett
- the Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Aryan M A Namboodiri
- the Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Mariano S Viapiano
- the Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Sean E Lawler
- the Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Diane M Jaworski
- From the Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405,.
| |
Collapse
|
31
|
Pacey LKK, Xuan ICY, Guan S, Sussman D, Henkelman RM, Chen Y, Thomsen C, Hampson DR. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013; 22:3920-30. [PMID: 23740941 DOI: 10.1093/hmg/ddt246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1-3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80-85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.
Collapse
|
32
|
Clifton NE, Morisot N, Girardon S, Millan MJ, Loiseau F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology (Berl) 2013; 225:579-94. [PMID: 22983144 DOI: 10.1007/s00213-012-2845-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/08/2012] [Indexed: 12/20/2022]
Abstract
Metabotropic glutamate-5 receptors (mGluR5), which physically and functionally interact with N-methyl-D-Aspartate (NMDA) receptors, likewise control cognitive processes and have been proposed as targets for novel classes of antipsychotic agent. Since social cognition is impaired in schizophrenia and disrupted by NMDA receptor antagonists like dizocilpine, we evaluated its potential modulation by mGluR5. Acute administration (0.63-40 mg/kg) of the mGluR5 positive allosteric modulators (PAMs), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and ADX47273, reversed a delay-induced impairment in social novelty discrimination (SND) in adult rats. The action of CDPPB was blocked by the mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (2.5-10 mg/kg), and was also expressed upon microinjection into frontal cortex (0.63-10 μg/side), but not striatum. Supporting an interrelationship between mGluR5 and NMDA receptors, enhancement of SND by CDPPB was blocked by dizocilpine (0.08 mg/kg) while, reciprocally, dizocilpine-induced impairment in SND was attenuated by CDPPB (10 mg/kg). The SND deficit elicited by post-natal administration of phencyclidine (10 mg/kg, days 7-11) was reversed by CDPPB or ADX47273 in adults at week 8. This phencyclidine-induced impairment in cognition emerged in adult rats from week 7 on, and chronic, pre-symptomatic treatment of adolescent rats with CDPPB over weeks 5-6 (10 mg/kg per day) prevented the appearance of SND deficits in adults until at least week 13. In conclusion, as evaluated by a SND procedure, mGluR5 PAMs promote social cognition via actions expressed in interaction with NMDA receptors and exerted in frontal cortex. MGluR5 PAMs not only reverse but also (when given during adolescence) prevent the emergence of cognitive impairment associated with a developmental model of schizophrenia.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience Research and Development Unit, Institut de Recherches Servier, 125 Chemin de ronde, Croissy-sur-Seine, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Yang P, Zhang J, Zhao L, Jiao Q, Jin H, Xiao X, Zhang H, Hu M, Lu H, Liu Y. Developmental distribution pattern of metabotropic glutamate receptor 5 in prenatal human hippocampus. Neurosci Bull 2012; 28:704-14. [PMID: 23225313 DOI: 10.1007/s12264-012-1286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However, little is known about mGluR5 in the prenatal human brain. Here, we aimed to explore the expression pattern and cellular distribution of mGluR5 in human fetal hippocampus. METHODS Thirty-four human fetuses were divided into four groups according to gestational age: 9-11, 14-16, 22-24 and 32-36 weeks. The hippocampus was dissected out and prepared. The protein and mRNA expression of mGluR5 were evaluated by Western blot and immunohistochemistry or real-time PCR. The cellular distribution of mGluR5 was observed with double-labeling immunofluorescence. RESULTS Both mGluR5 mRNA and protein were detected in the prenatal human hippocampus by real-time PCR and immunoblotting, and the expression levels increased gradually over time. The immunohistochemistry results were consistent with immunoblotting and showed that mGluR5 immunoreactivity was mainly present in the inner marginal zone (IMZ), hippocampal plate (HP) and ventricular zone (VZ). The double-labeling immunofluorescence showed that mGluR5 was present in neural stem cells (nestin-positive), neuroblasts (DCX-positive) and mature neurons (NeuN-positive), but not in typical astrocytes (GFAP-positive). The cells co-expressing mGluR5 and nestin were mainly located in the IMZ, HP and subplate at 11 weeks, all layers at 16 weeks, and CA1 at 24 weeks. As development proceeded, the number of mGluR5/nestin double-positive cells decreased gradually so that there were only a handful of double-labeled cells at 32 weeks. However, mGluR5/DCX double-positive cells were only found in the HP, IZ and IMZ at 11 weeks. CONCLUSION The pattern of mGluR5 expression by neural stem/progenitor cells, neuroblasts and neurons provides important anatomical evidence for the role of mGluR5 in the regulation of human hippocampal development.
Collapse
Affiliation(s)
- Pengbo Yang
- Institute of Neurobiology, Key Laboratory for Environment and Genes Related to Diseases of the Ministry of Education, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Durand D, Carniglia L, Caruso C, Lasaga M. mGlu3 receptor and astrocytes: partners in neuroprotection. Neuropharmacology 2012; 66:1-11. [PMID: 22564439 DOI: 10.1016/j.neuropharm.2012.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/28/2012] [Accepted: 04/08/2012] [Indexed: 01/11/2023]
Abstract
Astrocytes are currently studied intensively because of their now highlighted relevance as key players with neurons that modulate a wide range of central functions, from synaptic plasticity and synaptogenesis to regulation of metabolic and neuroinflammatory processes. Since the discovery of mGlu3 receptors on astrocytes, accumulating evidence supports a role of these receptors not only in maintaining synaptic homeostasis and treating psychiatric disorders but also in promoting astrocyte survival in several pathologic conditions. This review focuses on providing up-to-date knowledge regarding effects of activating astroglial mGlu3 receptors on psychiatric disorders, astrocyte and neuronal survival, and neurodegenerative diseases. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), School of Medicine, University of Buenos Aires, Paraguay 2155 Piso 10, CABA 1121 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
35
|
Loane DJ, Stoica BA, Faden AI. Metabotropic glutamate receptor-mediated signaling in neuroglia. ACTA ACUST UNITED AC 2012; 1:136-150. [PMID: 22662309 DOI: 10.1002/wmts.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I-III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial-neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
36
|
Abstract
Glutamate toxicity from hypoxia-ischaemia during the perinatal period causes white matter injury that can result in long-term motor and intellectual disability. Blocking ionotropic glutamate receptors (GluRs) has been shown to inhibit oligodendrocyte injury in vitro, but GluR antagonists have not yet proven helpful in clinical studies. The opposite approach of activating GluRs on developing oligodendrocytes shows promise in experimental studies on rodents as reported by Jartzie et al., in this issue. Group I metabotropic glutamate receptors (mGluRs) are expressed transiently on developing oligodendrocytes in humans during the perinatal period, and the blood-brain-barrier permeable agonist of group I mGluRs, 1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), reduces white matter damage significantly in a rat model of perinatal hypoxia-ischaemia. The results suggest drugs activating this class of GluRs could provide a new therapeutic approach for preventing cerebral palsy and other neurological consequences of diffuse white matter injury in premature infants.
Collapse
|
37
|
Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. ACTA ACUST UNITED AC 2011; 6:277-88. [PMID: 22169210 DOI: 10.1017/s1740925x11000111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral white matter injury in premature infants, known as periventricular leukomalacia (PVL), is common after hypoxia-ischemia (HI). While ionotropic glutamate receptors (iGluRs) can mediate immature white matter injury, we have previously shown that excitotoxic injury to premyelinating oligodendrocytes (preOLs) in vitro can be attenuated by group I metabotropic glutamate receptor (mGluR) agonists. Thus, we evaluated mGluR expression in developing white matter in rat and human brain, and tested the protective efficacy of a central nervous system (CNS)-penetrating mGluR agonist on injury to developing oligodendrocytes (OLs) in vivo. Group I mGluRs (mGluR1 and mGluR5) were strongly expressed on OLs in neonatal rodent cerebral white matter throughout normal development, with highest expression early in development on preOLs. Specifically at P6, mGluR1 and mGLuR5 were most highly expressed on GalC-positive OLs compared to neurons, axons, astrocytes and microglia. Systemic administration of (1S,3R) 1-aminocyclopentane-trans-1,3,-dicarboxylic acid (ACPD) significantly attenuated the loss of myelin basic protein in the white matter following HI in P6 rats. Assessment of postmortem human tissue showed both mGluR1 and mGluR5 localized on immature OLs in white matter throughout development, with mGluR5 highest in the preterm period. These data indicate group I mGluRs are highly expressed on OLs during the peak period of vulnerability to HI and modulation of mGluRs is protective in a rodent model of PVL. Group I mGluRs may represent important therapeutic targets for protection from HI-mediated white matter injury.
Collapse
|
38
|
Holopainen IE, Laurén HB. Glutamate signaling in the pathophysiology and therapy of prenatal insults. Pharmacol Biochem Behav 2011; 100:825-34. [PMID: 21443898 DOI: 10.1016/j.pbb.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
Birth asphyxia and hypoxia-ischemia (HI) are important factors affecting the normal development and maturation of the central nervous system (CNS). Depending on the maturity of the brain, HI-induced damage at different ages is region-selective, the white matter (WM) peripheral to the lateral ventricles being selectively vulnerable to damage in premature infants. As a squeal of primary or secondary HI in the preterm infant, the brain injury comprises periventricular leukomalasia (PVL), accompanied by neuronal and axonal damage, which affects several brain regions. Premature delivery and improved neonatal intensive care have led to a survival rate of about 75% to 90% of infants weighting under 1500g both in Europe and in the United States. However, about 5-10% of these survivors exhibit cerebral palsy (CP), and many have cognitive, behavioral, attentional or socialization deficits. In this review, we first shortly discuss developmental changes in the expression of the excitatory glutamate receptors (GluRs), and then in more detail elucidate the contribution of GluRs to oligodendrocyte (OL) damage both in experimental models and in preterm human infants. Finally, therapeutic interventions targeted at GluRs at the young age are discussed in the light of results obtained from recent experimental HI animal models and from humans.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology, Drug Development and Therapeutics, and Medicity Research Laboratory, Institute of Biomedicine University of Turku, Tykistökatu 6A, 4th floor, FIN-20014 Turku, Finland.
| | | |
Collapse
|
39
|
Maiese K, Chong ZZ, Shang YC, Hou J. Therapeutic promise and principles: metabotropic glutamate receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:1-14. [PMID: 19750024 PMCID: PMC2740993 DOI: 10.4161/oxim.1.1.6842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
The importance and essential functions of glial cells in the nervous system are now beginning to be understood and appreciated. Glial cell lines have been instrumental in the elucidation of many of these properties. In this Overview, the origin and properties of most of the existing cell lines for the major glial types: oligodendroglia, astroglia, microglia and Schwann cells, are documented. Particular emphasis is given to the culture conditions for each cell line and the degree to which the line can differentiate in vitro and in vivo. The major molecular markers for each glial cell lines are indicated. Finally, methods by which the glial cell lines have been developed are noted and the future directions of glial cell line research are discussed.
Collapse
|
41
|
Kolodziejczyk K, Saab AS, Nave KA, Attwell D. Why do oligodendrocyte lineage cells express glutamate receptors? F1000 BIOLOGY REPORTS 2010; 2:57. [PMID: 21173873 PMCID: PMC2990618 DOI: 10.3410/b2-57] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of glutamate receptors on oligodendrocytes and their precursor cells is poorly understood, with their only clear action being to damage these cells in pathological conditions. Here we review recent studies of glutamate signalling to oligodendrocyte lineage cells, and explore what its physiological function may be.
Collapse
Affiliation(s)
- Karolina Kolodziejczyk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonGower Street, London WC1E 6BTUK
| | - Aiman S Saab
- Abteilung Neurogenetik, Max-Planck-Institut für Experimentelle MedizinHermann-Rein-Strasse 3, 37075 GöttingenGermany
| | - Klaus-Armin Nave
- Abteilung Neurogenetik, Max-Planck-Institut für Experimentelle MedizinHermann-Rein-Strasse 3, 37075 GöttingenGermany
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College LondonGower Street, London WC1E 6BTUK
| |
Collapse
|
42
|
Sypecka J, Sarnowska A, Domanska-Janik K. Crucial role of the local micro-environment in fate decision of neonatal rat NG2 progenitors. Cell Prolif 2009; 42:661-71. [PMID: 19614677 DOI: 10.1111/j.1365-2184.2009.00618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells. MATERIALS AND METHODS Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7-14 days in co-culture, cells were stained with neural markers. RESULTS NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ(+) and even MAP-2(+) cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression. CONCLUSIONS The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2(+)/PDGFRalpha(+)/CNP(+) progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2(+) multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.
Collapse
Affiliation(s)
- J Sypecka
- NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
43
|
Zhao L, Zhao ST, Qian ZM, Zhang C, Wu XM, Du F, Ke Y. Activation of group III metabotropic glutamate receptor reduces intracellular calcium in beta-amyloid peptide [31-35]-treated cortical neurons. Neurotox Res 2009; 16:174-83. [PMID: 19526293 DOI: 10.1007/s12640-009-9068-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/06/2008] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
It is unknown whether amyloid beta-protein 31-35 (Abeta[31-35]) has effects similar to Abeta[1-40] and Abeta[25-35] on the intracellular calcium ([Ca(2+)]i) to induce a disruption of calcium homeostasis. In this study, we investigated the effects of Abeta[31-35] on [Ca(2+)]i in primary cultured cortical neurons using real time fluorescence imaging technique and the Ca(2+)-sensitive dye Furo-2/AM. It was found that Abeta[31-35] (25 microM) could induce a significant elevation in [Ca(2+)]i and a decrease in the average latency in the cortical neurons in a dose-dependent manner. To examine whether the activation of group III mGluRs could block the changes in [Ca(2+)]i and protect neurons from apoptosis induced by Abeta[31-35], we then investigated the effects of L: -serine-O-phosphate (L: -SOP) and (R,S)-4-phosphonophenylglycine ((R,S)-PPG), the selective agonists of group III metabotropic glutamate receptors (mGluRs), on [Ca(2+)]i and apoptosis in neurons treated by Abeta[31-35]. We demonstrated that L: -SOP or (R,S)-PPG (100 microM) treatment suppresses significantly the elevation of [Ca(2+)]i induced by Abeta[31-35] and also induces an almost complete recovery of both the fluorescence intensity and apoptotic cells (%) to the control level in the neurons. These results suggest that Abeta[31-35] may be the shortest sequence responsible for the neuronal toxicity of Abeta protein and that the neuroprotective role of the activation of group III mGluRs from the apoptosis induced by Abeta[31-35] might be partly due to its ability to inhibit the increased calcium influx, which results from Abeta[31-35].
Collapse
Affiliation(s)
- Li Zhao
- Department of Neurobiology, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Regulated release of BDNF by cortical oligodendrocytes is mediated through metabotropic glutamate receptors and the PLC pathway. ASN Neuro 2009; 1:AN20090006. [PMID: 19570026 PMCID: PMC2695578 DOI: 10.1042/an20090006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A number of studies suggest that OLGs (oligodendrocytes), the myelinating cells of the central nervous system, are also a source of trophic molecules, such as neurotrophins that may influence survival of proximate neurons. What is less clear is how the release of these molecules may be regulated. The present study investigated the effects of BDNF (brain-derived neurotrophic factor) derived from cortical OLGs on proximate neurons, as well as regulatory mechanisms mediating BDNF release. Initial work determined that BDNF derived from cortical OLGs increased the numbers of VGLUT1 (vesicular glutamate transporter 1)-positive glutamatergic cortical neurons. Furthermore, glutamate acting through metabotropic, and not AMPA/kainate or NMDA (N-methyl-d-aspartate), receptors increased BDNF release. The PLC (phospholipase C) pathway is a key mediator of metabotropic actions to release BDNF in astrocytes and neurons. Treatment of OLGs with the PLC activator m-3M3FBS [N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide] induced robust release of BDNF. Moreover, release elicited by the metabotropic receptor agonist ACPD [trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] was inhibited by the PLC antagonist U73122, the IP3 (inositol triphosphate 3) receptor inhibitor 2-APB (2-aminoethoxydiphenylborane) and the intracellular calcium chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. Taken together, these results suggest that OLG lineage cells release BDNF, a molecule trophic for proximate neurons. BDNF release is regulated by glutamate acting through mGluRs (metabotropic glutamate receptors) and the PLC pathway. Thus glutamate and BDNF may be molecules that support neuron-OLG interactions in the cortex.
Collapse
Key Words
- brain-derived neurotrophic factor (bdnf)
- metabotropic glutamate receptor
- oligodendrocyte
- phospholipase c
- acpd, trans-(1s,3r)-1-aminocyclopentane-1,3-dicarboxylic acid
- 2-apb, 2-aminoethoxydiphenylborane
- bapta/am, 1,2-bis-(o-aminophenoxy)ethane-n,n,n′,n′-tetra-acetic acid tetrakis(acetoxymethyl ester
- bdnf, brain-derived neurotrophic factor
- bf, basal forebrain
- cc, corpus callosal
- cns, central nervous system
- dcg-iv, (2s,2′r,3′r)-2-(2′,3′-dicarboxycyclopropyl)glycine
- dhpg, (rs)-3,5-dihydroxyphenylglycine
- dmso, dimethyl sulfoxide
- ecl, enhanced chemiluminescence
- gdnf, glial cell line-derived neurotrophic factor
- igf-1, insulin-like growth factor-1
- ip3, inositol trisphosphate
- mcpg, (s)-α-methyl-4-carboxyphenylglycine
- mem, minimal essential medium
- mglur, metabotropic glutamate receptor
- m-3m3fbs, n-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide
- nm-15, nutrient medium-15
- nmda, n-methyl-d-aspartate
- nsfm, neuron serum-free medium
- nt, neurotrophin
- ocm, oligodendrocyte-derived conditioned medium
- olg, oligodendrocyte
- osfm, olg serum-free medium
- plc, phospholipase c
- vamp2, vesicle-associated membrane protein 2
- vglut1, vesicular glutamate transporter 1
Collapse
|
45
|
Kaur C, Ling E. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog Neurobiol 2009; 87:264-80. [DOI: 10.1016/j.pneurobio.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/12/2008] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
46
|
Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics 2009; 6:94-107. [PMID: 19110202 PMCID: PMC2634659 DOI: 10.1016/j.nurt.2008.10.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glutamate is a major excitatory neurotransmitter in the CNS that is involved in numerous cellular functions, including cell death and survival. Metabotropic glutamate receptors (mGluR) are G-protein coupled receptors that have been classified into three groups on the basis of signal transduction pathways and pharmacological profiles. Group I, II, and III mGluRs are found on cell types within and peripheral to the CNS, including neurons, microglia, astrocytes, oligodendrocytes, T- and B-cell lymphocytes, osteoblasts, hepatocytes, and endothelial cells, among others. These receptors have a number of effects on cells that can influence outcome after trauma, including reducing neuronal and oligodendroglial cell death, inflammation, and endothelial permeability. Thus, mGluRs are a promising multipotential therapeutic approach. Because the pathology of CNS trauma and neurodegeneration is multifactorial (including, for example, oxidative stress, mitochondrial breakdown, and inflammation), therapies that serve to modulate multiple pathophysiological pathways may prove more effective than those directed at a single target. This review examines the multipotential therapeutic utility of mGluR modulation in acute and chronic injury and neurodegeneration.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | |
Collapse
|
47
|
High-affinity choline uptake and acetylcholine-metabolizing enzymes in CNS white matter. A quantitative study. Neurochem Int 2008; 53:193-8. [PMID: 18674580 DOI: 10.1016/j.neuint.2008.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/08/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022]
Abstract
The presence of nicotinic and muscarinic receptors suggests the occurrence of cholinergic neurotransmission in white matter; however no quantitative information exists on acetylcholine formation and breakdown in white matter. We compared white structures of pig brain (fimbria, corpus callosum, pyramidal tracts, and occipital white matter) to gray structures (temporal, parietal and cerebellar cortices, hippocampus, and caudate) and found that sodium-dependent, high-affinity choline uptake in white structures was 25-31% of that in hippocampus. White matter choline acetyltransferase activity was 10-50% of the hippocampal value; the highest activity was found in fimbria. Acetylcholine esterase activity in white structures was 20-25% of that in hippocampus. The caudate, which is rich in cholinergic interneurons, gave values for all three parameters that were 2.8-4 times higher than in hippocampus. The results suggest a certain capacity for cholinergic neurotransmission in central nervous white matter. The white matter activity of pyruvate dehydrogenase, which provides acetyl-CoA for acetylcholine synthesis, ranged between 33 and 50% of the hippocampal activity; the activity in the caudate was similar to that in hippocampus and the other gray structures, which was true also for other enzymes of glucose metabolism: hexokinase, phosphoglucomutase, and glucose-6-phosphate dehydrogenase. Acetylcholine esterase activity in white matter was inhibited by the nerve agent soman, which may help explain the reported deleterious effect of soman on white matter. Further, this finding suggests that acetylcholine esterase inhibitors used in Alzheimer's disease may have an effect in white matter.
Collapse
|
48
|
Metabotropic Glutamate Receptors in Glial Cells. Neurochem Res 2008; 33:2436-43. [DOI: 10.1007/s11064-008-9694-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 12/29/2022]
|
49
|
Glutamatergic signaling in the brain's white matter. Neuroscience 2008; 158:266-74. [PMID: 18314276 DOI: 10.1016/j.neuroscience.2008.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/05/2008] [Indexed: 11/22/2022]
Abstract
Glutamatergic signaling has been exceptionally well characterized in the brain's gray matter, where it underlies fast information processing, learning and memory, and also generates the neuronal damage that occurs in pathological conditions such as stroke. The role of glutamatergic signaling in the white matter, an area until recently thought to be devoid of synapses, is less well understood. Here we review what is known, and highlight what is not known, of glutamatergic signaling in the white matter. We focus on how glutamate is released, the location and properties of the receptors it acts on, the interacting molecules that may regulate trafficking or signaling of the receptors, the possible functional roles of glutamate in the white matter, and its pathological effects including the possibility of treating white matter disorders with glutamate receptor blockers.
Collapse
|
50
|
Sarichelou I, Cappuccio I, Ferranti F, Mosillo P, Ciceroni C, Sale P, Stocchi F, Battaglia G, Nicoletti F, Melchiorri D. Metabotropic glutamate receptors regulate differentiation of embryonic stem cells into GABAergic neurons. Cell Death Differ 2008; 15:700-7. [DOI: 10.1038/sj.cdd.4402298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|