1
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
2
|
Zambrano CA, Escobar D, Ramos-Santiago T, Bollinger I, Stitzel J. Serine residues in the α4 nicotinic acetylcholine receptor subunit regulate surface α4β2 * receptor expression and clustering. Biochem Pharmacol 2018; 159:64-73. [PMID: 30414940 DOI: 10.1016/j.bcp.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE Chronic nicotine exposure upregulates α4β2* nicotinic acetylcholine receptors (nAChRs) in the brain. The goal of this study was to examine the role of three serine residues in the large cytoplasmic loop of the α4 subunit on α4β2* upregulation in neurons. EXPERIMENTAL APPROACH Serine residues S336, S470 and S530 in mouse α4 were mutated to alanine and then re-expressed in primary neurons from cortex, hippocampus and subcortex of α4 KO mice. Mutant and wild type α4 expressing neurons were treated with nicotine (0.1, 1 and 10 μM) and assessed for α4β2* upregulation. KEY RESULTS α4β2* nAChRs expressing S336A or S470A mutants were deficient at cell surface upregulation in both subcortex and hippocampal neurons. S530A α4β2* mutants exhibited aberrant surface upregulation in subcortical neurons. None of the mutants affected surface upregulation in cortical neurons or upregulation of total α4β2* binding sites in any region. Further, dense domains or clusters of α4β2* nAChRs were observed in the neuronal surface. The impact of nicotine exposure on the intensity, area, and density of these clusters was dependent upon individual mutations. CONCLUSIONS AND IMPLICATIONS Effects of α4 nAChR mutants on surface upregulation varied among brain regions, suggesting that the cellular mechanism of α4β2* upregulation is complex and involves cellular identity. We also report for the first time that α4β2* nAChRs form clusters on the neuronal surface and that nicotine treatment alters the characteristics of the clusters in an α4 mutant-dependent manner. This finding adds a previously unknown layer of complexity to the effects of nicotine on α4β2* expression and function.
Collapse
Affiliation(s)
| | - Daniela Escobar
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - Tania Ramos-Santiago
- Institute for Behavioral Genetics, University of Colorado Boulder, USA; University of Puerto Rico, Rio Piedras
| | - Ian Bollinger
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - Jerry Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, USA; Department of Integrative Physiology, University of Colorado Boulder, USA
| |
Collapse
|
3
|
Machaalani R, Ghazavi E, Hinton T, Makris A, Hennessy A. Immunohistochemical expression of the nicotinic acetylcholine receptor (nAChR) subunits in the human placenta, and effects of cigarette smoking and preeclampsia. Placenta 2018; 71:16-23. [DOI: 10.1016/j.placenta.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 09/29/2018] [Indexed: 01/03/2023]
|
4
|
Evaluation of the Phosphoproteome of Mouse Alpha 4/Beta 2-Containing Nicotinic Acetylcholine Receptors In Vitro and In Vivo. Proteomes 2018; 6:proteomes6040042. [PMID: 30326594 PMCID: PMC6313896 DOI: 10.3390/proteomes6040042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023] Open
Abstract
Activation of nicotinic acetylcholine receptors containing α4 and β2 subunits (α4/β2* nAChRs) in the mammalian brain is necessary for nicotine reinforcement and addiction. We previously identified interactions between α4/β2* nAChRs and calcium/calmodulin-dependent protein kinase II (CaMKII) in mouse and human brain tissue. Following co-expression of α4/β2 nAChR subunits with CaMKII in HEK cells, mass spectrometry identified 8 phosphorylation sites in the α4 subunit. One of these sites and an additional site were identified when isolated α4/β2* nAChRs were dephosphorylated and subsequently incubated with CaMKII in vitro, while 3 phosphorylation sites were identified following incubation with protein kinase A (PKA) in vitro. We then isolated native α4/β2* nAChRs from mouse brain following acute or chronic exposure to nicotine. Two CaMKII sites identified in HEK cells were phosphorylated, and 1 PKA site was dephosphorylated following acute nicotine administration in vivo, whereas phosphorylation of the PKA site was increased back to baseline levels following repeated nicotine exposure. Significant changes in β2 nAChR subunit phosphorylation were not observed under these conditions, but 2 novel sites were identified on this subunit, 1 in HEK cells and 1 in vitro. These experiments identified putative CaMKII and PKA sites on α4/β2* nAChRs and novel nicotine-induced phosphorylation sites in mouse brain that can be explored for their consequences on receptor function.
Collapse
|
5
|
Vivekanandarajah A, Chan YL, Chen H, Machaalani R. Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem. Neurotoxicology 2016; 53:53-63. [DOI: 10.1016/j.neuro.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023]
|
6
|
Vivekanandarajah A, Waters KA, Machaalani R. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Int J Dev Neurosci 2015; 47:183-91. [DOI: 10.1016/j.ijdevneu.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Arunnjah Vivekanandarajah
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
| | - Karen A. Waters
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| | - Rita Machaalani
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| |
Collapse
|
7
|
Lee AM, Wu DF, Dadgar J, Wang D, McMahon T, Messing RO. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization. Br J Pharmacol 2015; 172:4430-41. [PMID: 26103136 DOI: 10.1111/bph.13228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. EXPERIMENTAL APPROACH Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce(-/-) and wild-type mice. KEY RESULTS Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce(-/-) mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce(-/-) than in wild-type mice. CONCLUSIONS AND IMPLICATIONS PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation.
Collapse
Affiliation(s)
- A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - D-F Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - J Dadgar
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - D Wang
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - T McMahon
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - R O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Stokes C, Treinin M, Papke RL. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci 2015; 36:514-23. [PMID: 26067101 DOI: 10.1016/j.tips.2015.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/10/2023]
Abstract
The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype has a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains have defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein-binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction.
Collapse
Affiliation(s)
- Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1-42 fibril formation. Sci Rep 2015; 5:10171. [PMID: 26018135 PMCID: PMC4446900 DOI: 10.1038/srep10171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 04/01/2015] [Indexed: 11/09/2022] Open
Abstract
Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer's disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi(2)Se(3) in aqueous solution. Then we separated few-layer Bi(2)Se(3) with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ(1-42) aggregation. The results show that smaller and thinner few-layer Bi(2)Se(3) had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi(2)Se(3) and Aβ(1-42) monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi(2)Se(3) for Aβ(1-42) monomers. Few-layer Bi(2)Se(3) also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi(2)Se(3) in the biomedical field.
Collapse
|
10
|
Biaggi-Labiosa NM, Avilés-Pagán E, Caballero-Rivera D, Báez-Pagán CA, Lasalde-Dominicci JA. Engineering α4β2 nAChRs with reduced or increased nicotine sensitivity via selective disruption of consensus sites in the M3-M4 cytoplasmic loop of the α4 subunit. Neuropharmacology 2015; 99:273-84. [PMID: 25957813 DOI: 10.1016/j.neuropharm.2015.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022]
Abstract
The α4β2 neuronal nicotinic acetylcholine receptor (nAChR) plays a crucial role in nicotine addiction. These receptors are known to desensitize and up-regulate after chronic nicotine exposure, but the mechanism remains unknown. Currently, the structure and functional role of the intracellular domains of the nAChR are obscure. To study the effect of subunit phosphorylation on α4β2 nAChR function and expression, eleven residues located in the M3-M4 cytoplasmic loop were mutated to alanine and aspartic acid. Two-electrode voltage clamp and 125I-labeled epibatidine binding assays were performed on Xenopus oocytes to assess agonist activation and receptor expression. When ACh was used as an agonist, a decrease in receptor activation was observed for the majority of the mutations. When nicotine was used as an agonist, four mutations exhibited a statistically significant hypersensitivity to nicotine (S438D, S469A, Y576A, and S589A). Additionally, two mutations (S516D and T536A) that displayed normal activation with ACh displayed remarkable reductions in sensitivity to nicotine. Binding assays revealed a constitutive up-regulation in these two nicotine mutations with reduced nicotine sensitivity. These results suggest that consensus phosphorylation residues in the M3-M4 cytoplasmic loop of the α4 subunit play a crucial role in regulating α4β2 nAChR agonist selectivity and functional expression. Furthermore, these results suggest that disruption of specific interactions at PKC putative consensus sites can render α4β2 nAChRs almost insensitive to nicotine without substantial effects on normal AChR function. Therefore, these PKC consensus sites in the M3-M4 cytoplasmic loop of the α4 nAChR subunit could be a target for smoking cessation drugs.
Collapse
Affiliation(s)
- Nilza M Biaggi-Labiosa
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 70377, San Juan, 00936-8377, Puerto Rico
| | - Emir Avilés-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 70377, San Juan, 00936-8377, Puerto Rico
| | - Daniel Caballero-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 70377, San Juan, 00936-8377, Puerto Rico.
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 70377, San Juan, 00936-8377, Puerto Rico; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico.
| |
Collapse
|
11
|
Machaalani R, Ghazavi E, Hinton T, Waters KA, Hennessy A. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta. Toxicol Appl Pharmacol 2014; 276:204-12. [PMID: 24607864 DOI: 10.1016/j.taap.2014.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 11/16/2022]
Abstract
Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women.
Collapse
Affiliation(s)
- R Machaalani
- Department of Medicine, The University of Sydney, NSW 2006, Australia; Bosch Institute, The University of Sydney, NSW 2006, Australia; The Children's Hospital at Westmead, NSW 2145, Australia.
| | - E Ghazavi
- Bosch Institute, The University of Sydney, NSW 2006, Australia; School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006, Australia
| | - T Hinton
- School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006, Australia
| | - K A Waters
- Department of Medicine, The University of Sydney, NSW 2006, Australia; The Children's Hospital at Westmead, NSW 2145, Australia
| | - A Hennessy
- School of Medicine, University of Western Sydney, NSW 2751, Australia; Heart Research Institute, 7 Eliza St Newtown, NSW 2042, Australia
| |
Collapse
|
12
|
McClure-Begley TD, Papke RL, Stone KL, Stokes C, Levy AD, Gelernter J, Xie P, Lindstrom J, Picciotto MR. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2014; 348:410-20. [PMID: 24385388 DOI: 10.1124/jpet.113.209767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.
Collapse
Affiliation(s)
- T D McClure-Begley
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (T.D.M.-B., A.D.L., J.G., M.R.P.); Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, Colorado (T.D.M.-B.); Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida (R.L.P., C.S.); W.M. Keck Biotechnology Research Laboratory (K.S.), Interdepartmental Neuroscience Program (A.D.L., M.R.P.), Department of Genetics (J.G., P.X.), and Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut (M.R.P.); Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut (J.G.); Center for Human Genome Variation, Duke University, Durham, North Carolina (P.X.); and Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, Pennsylvania (J.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [PMID: 22841933 DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
14
|
Beckel JM, Birder LA. Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat. J Physiol 2012; 590:1465-80. [PMID: 22250215 DOI: 10.1113/jphysiol.2011.226860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been previously determined that the epithelial lining of the urinary bladder, or urothelium, expresses two subtypes of nicotinic acetylcholine receptors (nAChRs) that mediate distinct physiological effects in vivo. These effects include inhibition of bladder reflexes through α7 receptors and an excitation of bladder reflexes through α3-containing (α3*) receptors. It is believed that urothelial receptors mediate their effects through modulating the release of neurotransmitters such as ATP that subsequently influence bladder afferent nerve excitability. Therefore, we examined the distribution of nAChRs in the urothelium, as well as their ability to influence the release of the neurotransmitter ATP. Immunofluorescent staining of both whole bladder tissue and primary urothelial cultures from the rat demonstrated that the urothelium contains both α3* and α7 receptors. In primary urothelial cultures, α7 stimulation with choline (10 μM to 1 mM) caused a decrease in basal ATP release while α3* stimulation with cytisine (1–100 μM) caused a concentration-dependent, biphasic response, with low concentrations (1–10 μM) inhibiting release and higher concentrations (50–100 μM) increasing release. These responses were mirrored in an in vitro, whole bladder preparation. In vivo, excitation of bladder reflexes in response to intravesical cytisine (100 μM) is blocked by systemic administration of the purinergic antagonist PPADS (1 or 3 μg kg(−1)). We also examined how each receptor subtype influenced intracellular Ca2+ levels in cultured urothelial cells. nAChR stimulation increased [Ca2+]i through distinct mechanisms: α7 through a ryanodine-sensitive intracellular mechanism and α3* through extracellular influx. In addition, our findings suggest interactions between nAChR subtypes whereby activation of α7 receptors inhibited the response to a subsequent activation of α3* receptors, preventing the increase in [Ca2+]i previously observed. This inhibitory effect appears to be mediated through protein kinase A- or protein kinase C-mediated pathways.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Pharmacology and Biological Chemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
15
|
Machaalani R, Say M, Waters KA. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol 2011; 257:396-404. [PMID: 22000980 DOI: 10.1016/j.taap.2011.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/29/2022]
Abstract
It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n=46) and non-SIDS infants (n=14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
16
|
Philibin SD, Hernandez A, Self DW, Bibb JA. Striatal signal transduction and drug addiction. Front Neuroanat 2011; 5:60. [PMID: 21960960 PMCID: PMC3176395 DOI: 10.3389/fnana.2011.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022] Open
Abstract
Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction.
Collapse
Affiliation(s)
- Scott D Philibin
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
17
|
Xie P, Kranzler HR, Krauthammer M, Cosgrove KP, Oslin D, Anton RF, Farrer LA, Picciotto MR, Krystal JH, Zhao H, Gelernter J. Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiatry 2011; 70:528-36. [PMID: 21683344 PMCID: PMC3199609 DOI: 10.1016/j.biopsych.2011.04.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 12/01/2022]
Abstract
BACKGROUND Several studies report association of alpha-4 nicotinic acetylcholine receptors (encoded by CHRNA4) with nicotine dependence (ND). A meta-analysis of genomewide linkage studies for ND implicated a single chromosomal region, which includes CHRNA4, as genome-wide significant. METHODS After establishing that common variants are unlikely to completely account for this linkage, we investigated the distribution of CHRNA4 rare variants by sequencing the coding exons and flanking intronic regions of CHRNA4 in 209 European American (EA) ND cases and 183 EA control subjects. Because most of the rare variants that we detected (and all nonsynonymous changes) were in Exon 5, we sequenced Exon 5 in an additional 1000 ND cases and 1000 non-ND comparison subjects, both of which included equal numbers of EAs and African Americans. RESULTS Comparison subjects had a higher frequency of rare nonsynonymous variants in the Exon 5 region (encoding the large intercellular loop of the α4 subunit; Fisher's Exact Test p = .009; association test p = .009, odds ratio = .43; weighted-sum method p = .014), indicating a protective effect against ND. Considering data from the two stages combined and only nonsynonymous variants predicted to alter protein function, the association was stronger (Fisher's Exact Test p = .005; association test p = .008, odds ratio = .29; weighted-sum method p = .005). Single-photon emission computed tomography imaging results were consistent with functionality. CONCLUSIONS CHRNA4 functional rare variants may reduce ND risk. This is the first demonstration that rare functional variants at a candidate locus protect against substance dependence to our knowledge, suggesting a novel mechanism of substance dependence heritability that is potentially of general importance.
Collapse
Affiliation(s)
- Pingxing Xie
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Angelantonio S, Piccioni A, Moriconi C, Trettel F, Cristalli G, Grassi F, Limatola C. Adenosine A2A receptor induces protein kinase A-dependent functional modulation of human (alpha)3(beta)4 nicotinic receptor. J Physiol 2011; 589:2755-66. [PMID: 21486776 DOI: 10.1113/jphysiol.2011.207282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenosine modulates the function of nicotinic ACh receptors (nAChRs) in a variety of preparations, possibly through pathways involving protein kinase A (PKA), but these phenomena have not yet been investigated in detail. In this work we studied, using the patch clamp technique, the functional modulation of recombinant human α3β4 nAChR by the A2A adenosine receptor, co-expressed in HEK cells. Tonic activation of A2A receptor slowed current decay during prolonged applications of nicotine and accelerated receptor recovery from desensitization. Together, these changes resulted into a more sustained current response upon multiple nicotine or ACh applications. These findings were confirmed in cultured mouse superior cervical ganglion neurones, which express nAChR containing the α3 subunit together with β2 and/or β4 and A2A receptor. Expression of the A2A receptor in HEK cells also increased the apparent potency of nAChR for nicotine, further supporting a general A2A-induced gain of function for nAChR. These effects were dependent on PKA since the direct activation of PKA mimicked, and its inhibition prevented almost completely, the effects of the A2A receptor. Mutations of R385 and S388 in the cytoplasmic loop of the α3 subunit abolished the functional modulation of nAChR induced by activation of A2A receptor, PKA and other Ser/Thr kinases, suggesting that this region constitutes a putative consensus site for these kinases. These data provide conclusive evidence that activation of the A2A receptor determines functional changes
Collapse
Affiliation(s)
- Silvia Di Angelantonio
- Dipartimento di Fisiologia e Farmacologia, Università Sapienza, P.le A. Moro 5; I-00185 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Machaalani R, Kashi PK, Waters KA. Distribution of nicotinic acetylcholine receptor subunits α7 and β2 in the human brainstem and hippocampal formation. J Chem Neuroanat 2010; 40:223-31. [DOI: 10.1016/j.jchemneu.2010.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 11/29/2022]
|
20
|
Wecker L, Pollock VV, Pacheco MA, Pastoor T. Nicotine-induced up regulation of α4β2 neuronal nicotinic receptors is mediated by the protein kinase C-dependent phosphorylation of α4 subunits. Neuroscience 2010; 171:12-22. [PMID: 20837109 DOI: 10.1016/j.neuroscience.2010.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/11/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Sustained exposure to nicotine is well known to increase the cell surface density of α4β2* neuronal nicotinic receptors both in vivo and in vitro, but the cellular mechanisms mediating this effect are equivocal. Using a pharmacological approach to investigate the effects of nicotine on receptor subunit expression and phosphorylation in SH-EP1 cells expressing human α4 and β2 nicotinic receptor subunits, we have demonstrated that incubation with nicotine for 24 h increased the expression of immature and mature forms of both α4 and β2 subunits in a concentration-dependent manner, and that inhibition of protein kinase C (PKC), but not cAMP-dependent protein kinase (PKA) inhibited the nicotine-induced increased expression of subunits. Incubation of cells with nicotine for 24 h also increased the phosphorylation of immature forms of α4 subunits similar to that induced by activation of either PKC or PKA. When cells were preincubated with nicotine, the PKC-mediated increased phosphorylation was inhibited; the PKA-mediated phosphorylation was unaltered. The phosphopeptide maps for immature α4 subunits following nicotine exposure or PKC activation were identical, and phosphoamino acid analyses indicated phosphorylation on serine residues only. Results indicate that nicotine-induced up regulation of α4β2 neuronal nicotinic receptors involves a PKC-dependent mechanism and likely reflects the ability of nicotine to activate PKC, leading to the phosphorylation of immature α4 subunits, promoting subunit assembly and receptor maturation. Because up regulation of these receptors has been implicated to mediate tolerance, locomotor sensitization and addiction to nicotine, results identify a potential new target for modulating the effects of nicotine on the brain.
Collapse
Affiliation(s)
- L Wecker
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Neurosciences, University of South Florida College of Medicine, Tampa, FL, USA.
| | | | | | | |
Collapse
|
21
|
Browne CJ, Sharma N, Waters KA, Machaalani R. The effects of nicotine on the alpha-7 and beta-2 nicotinic acetycholine receptor subunits in the developing piglet brainstem. Int J Dev Neurosci 2009; 28:1-7. [PMID: 19896527 DOI: 10.1016/j.ijdevneu.2009.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
Exposure to cigarette smoke is a major risk factor for sudden infant death syndrome (SIDS). We tested the hypothesis that nicotine increases expression of the nicotinic acetylcholine receptor (nAChR) subunits alpha7 and beta2 in a piglet model. Piglets exposed to 2mg/kg/day nicotine for 14 days postnatally (n=14) were compared to non-exposed controls (n=14), (equal gender proportions). Immunohistochemistry was performed to identify and quantify changes in, alpha7 and beta2 nAChR subunits in 8 nuclei of the medulla at both the rostral and caudal levels. Compared to controls, nicotine exposed piglets had decreased alpha7 in the rostral dorsal motor nucleus of the vagus (rDMNV) (p=0.01), and increased beta2 in the caudal DMNV (cDMNV) (p=0.05), caudal nucleus of the spinal trigeminal tract (cNSTT) (p=0.03) and caudal nucleus of the solitary tract (cNTS) (p=0.04). Analysis by gender showed that in the control group, compared to males, females had higher beta2 in the caudal hypoglossal (cXII) (p<0.01) and caudal inferior olivary (p=0.04) nuclei, while in the nicotine group females had higher beta2 in the cDMNV (p=0.02). Compared to control males, nicotine exposed males had lower beta2 in the cXII (p<0.01). Overall, changes in alpha7 were specific to nicotine exposure with no gender differentiation. Changes in beta2 were more widespread but showed gender-specific effects. These findings provide evidence that early postnatal exposure to nicotine significantly affects nAChR subunit expressions in the developing brainstem.
Collapse
|
22
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
23
|
Mukherjee J, Kuryatov A, Moss SJ, Lindstrom JM, Anand R. Mutations of cytosolic loop residues impair assembly and maturation of alpha7 nicotinic acetylcholine receptors. J Neurochem 2009; 110:1885-94. [PMID: 19627445 DOI: 10.1111/j.1471-4159.2009.06285.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mechanisms that regulate early events in the biogenesis of the alpha7 nicotinic acetylcholine receptor (alpha7 AChR) are not well understood. Data presented here show that single amino acid mutations in the cytoplasmic loop of the alpha7 AChR, between position 335 and 343, abolish or attenuate expression of mature pentameric alpha7 AChRs in both human embryonic kidney tsA201 (HEK) and neuronal SH-SY5Y cells. Although the number of mature alpha7 AChRs is increased significantly in the presence of the chaperone protein resistant to inhibitors of cholineesterase-3 in HEK cells, sucrose gradient sedimentation reveals that the vast majority of alpha7 subunits are aggregated or improperly assembled. Transfection of alpha7 AChRs in SH-SY5Y cells, which endogenously express the alpha7 AChR, results in a much larger fraction of subunits assembled into mature AChRs. Thus, efficient assembly of alpha7 AChRs is influenced by several regions of the large cytoplasmic domain, as well perhaps by other parts of its structure, and requires as yet unknown factors not required by other AChR subtypes.
Collapse
Affiliation(s)
- Jayanta Mukherjee
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
24
|
Pollock VV, Pastoor T, Katnik C, Cuevas J, Wecker L. Cyclic AMP-dependent protein kinase A and protein kinase C phosphorylate alpha4beta2 nicotinic receptor subunits at distinct stages of receptor formation and maturation. Neuroscience 2008; 158:1311-25. [PMID: 19101612 DOI: 10.1016/j.neuroscience.2008.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/30/2022]
Abstract
Neuronal nicotinic receptor alpha4 subunits associated with nicotinic alpha4beta2 receptors are phosphorylated by cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC), but the stages of receptor formation during which phosphorylation occurs and the functional consequences of kinase activation are unknown. SH-EP1 cells transfected with DNAs coding for human alpha4 and/or beta2 subunits were incubated with (32)Pi, and PKA or PKC was activated by forskolin or phorbol 12,13-dibutyrate, respectively. Immunoprecipitation and immunoblotting of proteins from cells expressing alpha4beta2 receptors or only alpha4 subunits were used to identify free alpha4 subunits, and alpha4 subunits present in immature alpha4beta2 complexes and mature alpha4beta2 pentamers containing complex carbohydrates. In the absence of kinase activation, phosphorylation of alpha4 subunits associated with mature pentamers was three times higher than subunits associated with immature complexes. PKA and PKC activation increased phosphorylation of free alpha4 subunits on different serine residues; only PKC activation phosphorylated subunits associated with mature alpha4beta2 receptors. Activation of both PKA and PKC increased the density of membrane-associated receptors, but only PKC activation increased peak membrane currents. PKA and PKC activation also phosphorylated beta2 subunits associated with mature alpha4beta2 receptors. Results indicate that activation of PKA and PKC leads to the phosphorylation alpha4beta2 receptors at different stages of receptor formation and maturation and has differential effects on the expression and function of human alpha4beta2 receptors.
Collapse
Affiliation(s)
- V V Pollock
- Department of Psychiatry and Behavioral Medicine, USF College of Medicine, Tampa, FL 33613, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|