1
|
Tarifa C, Jiménez-Sábado V, Franco R, Montiel J, Guerra J, Ciruela F, Hove-Madsen L. Expression and Impact of Adenosine A 3 Receptors on Calcium Homeostasis in Human Right Atrium. Int J Mol Sci 2023; 24:ijms24054404. [PMID: 36901835 PMCID: PMC10003044 DOI: 10.3390/ijms24054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Increased adenosine A2A receptor (A2AR) expression and activation underlies a higher incidence of spontaneous calcium release in atrial fibrillation (AF). Adenosine A3 receptors (A3R) could counteract excessive A2AR activation, but their functional role in the atrium remains elusive, and we therefore aimed to address the impact of A3Rs on intracellular calcium homeostasis. For this purpose, we analyzed right atrial samples or myocytes from 53 patients without AF, using quantitative PCR, patch-clamp technique, immunofluorescent labeling or confocal calcium imaging. A3R mRNA accounted for 9% and A2AR mRNA for 32%. At baseline, A3R inhibition increased the transient inward current (ITI) frequency from 0.28 to 0.81 events/min (p < 0.05). Simultaneous stimulation of A2ARs and A3Rs increased the calcium spark frequency seven-fold (p < 0.001) and the ITI frequency from 0.14 to 0.64 events/min (p < 0.05). Subsequent A3R inhibition caused a strong additional increase in the ITI frequency (to 2.04 events/min; p < 0.01) and increased phosphorylation at s2808 1.7-fold (p < 0.001). These pharmacological treatments had no significant effects on L-type calcium current density or sarcoplasmic reticulum calcium load. In conclusion, A3Rs are expressed and blunt spontaneous calcium release at baseline and upon A2AR-stimulation in human atrial myocytes, pointing to A3R activation as a means to attenuate physiological and pathological elevations of spontaneous calcium release events.
Collapse
Affiliation(s)
- Carmen Tarifa
- Biomedical Research Institute of Barcelona, IIBB-CSIC, 08036 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain
| | - Verónica Jiménez-Sábado
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Franco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Montiel
- Cardiac Surgery Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - José Guerra
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute of Barcelona, IIBB-CSIC, 08036 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935565620
| |
Collapse
|
2
|
Ferrero JJ, Ramírez-Franco J, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Neuropharmacology 2015. [PMID: 26211974 DOI: 10.1016/j.neuropharm.2015.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The co-existence of presynaptic G protein coupled receptors, GPCRs, has received little attention, despite the fact that interplay between the signaling pathways activated by such receptors may affect the neurotransmitter release. Using immunocytochemistry and immuhistochemistry we show that mGlu7 and β-adrenergic receptors are co-expressed in a sub-population of cerebrocortical nerve terminals. mGlu7 receptors readily couple to pathways that inhibit glutamate release. We found that when mGlu7 receptors are also coupled to pathways that enhance glutamate release by prolonged exposure to agonist, and β-adrenergic receptors are also activated, a cross-talk between their signaling pathways occurs that affect the overall release response. This interaction is the result of mGlu7 receptors inhibiting the adenylyl cyclase activated by β adrenergic receptors. Thus, blocking Gi/o proteins with pertussis toxin provokes a further increase in release after receptor co-activation which is also observed after activating β-adrenergic receptor signaling pathways downstream of adenylyl cyclase with the cAMP analog Sp8Br or 8pCPT-2-OMe-cAMP (a specific activator of the guanine nucleotide exchange protein directly activated by cAMP, EPAC). Co-activation of mGlu7 and β-adrenergic receptors also enhances PLC-dependent accumulation of IP1 and the translocation of the active zone protein Munc13-1 to the membrane, indicating that release potentiation by these receptors involves the modulation of the release machinery.
Collapse
Affiliation(s)
- José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain.
| |
Collapse
|
3
|
Ferrero JJ, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Neuropharmacology 2013; 67:213-22. [DOI: 10.1016/j.neuropharm.2012.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/27/2022]
|
4
|
Karamyan OA, Polina YA, Chmykhova NM, Vesselkin NP. Convergence of modulating influences of presynaptic metabotropic and GABAB-receptors. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Martín R, Durroux T, Ciruela F, Torres M, Pin JP, Sánchez-Prieto J. The metabotropic glutamate receptor mGlu7 activates phospholipase C, translocates munc-13-1 protein, and potentiates glutamate release at cerebrocortical nerve terminals. J Biol Chem 2010; 285:17907-17. [PMID: 20375012 DOI: 10.1074/jbc.m109.080838] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At synaptic boutons, metabotropic glutamate receptor 7 (mGlu7 receptor) serves as an autoreceptor, inhibiting glutamate release. In this response, mGlu7 receptor triggers pertussis toxin-sensitive G protein activation, reducing presynaptic Ca(2+) influx and the subsequent depolarization evoked release. Here we report that receptor coupling to signaling pathways that potentiate release can be seen following prolonged exposure of nerve terminals to the agonist l-(+)-phosphonobutyrate, l-AP4. This novel mGlu7 receptor response involves an increase in the release induced by the Ca(2+) ionophore ionomycin, suggesting a mechanism that is independent of Ca(2+) channel activity, but dependent on the downstream exocytotic release machinery. The mGlu7 receptor-mediated potentiation resists exposure to pertussis toxin, but is dependent on phospholipase C, and increased phosphatidylinositol (4,5)-bisphosphate hydrolysis. Furthermore, the potentiation of release does not depend on protein kinase C, although it is blocked by the diacylglycerol-binding site antagonist calphostin C. We also found that activation of mGlu7 receptors translocate the active zone protein essential for synaptic vesicle priming, munc13-1, from soluble to particulate fractions. We propose that the mGlu7 receptor can facilitate or inhibit glutamate release through multiple pathways, thereby exerting homeostatic control of presynaptic function.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Eur J Neurosci 2009; 29:1131-40. [PMID: 19302149 DOI: 10.1111/j.1460-9568.2009.06675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.
Collapse
Affiliation(s)
- Carolina Ladera
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Ladera C, del Carmen Godino M, José Cabañero M, Torres M, Watanabe M, Luján R, Sánchez-Prieto J. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J Neurochem 2009; 107:1506-17. [PMID: 19094055 DOI: 10.1111/j.1471-4159.2008.05712.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuronal G protein-gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post-synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABA(B) receptors. In this study, we show for the first time that GABA(B) receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABA(B) receptors reduces glutamate release and the Ca(2+) influx mediated by N-type Ca(2+) channels in a mode insensitive to the GIRK channel blocker tertiapin-Q and consistent with direct inhibition of this voltage-gated Ca(2+) channel. However, by means of weak stimulation protocols, we reveal that GABA(B) receptors also reduce glutamate release mediated by P/Q-type Ca(2+) channels, and that these responses are reversed by the GIRK channel blocker tertiapin-Q. Consistent with the functional interaction between GABA(B) receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre-synaptic boutons of asymmetric synapses co-express GABA(B) receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post-synaptic level, also occurs at glutamatergic nerve terminals.
Collapse
Affiliation(s)
- Carolina Ladera
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Luisi R, Panza E, Barrese V, Iannotti FA, Viggiano D, Secondo A, Canzoniero LMT, Martire M, Annunziato L, Taglialatela M. Activation of pre-synaptic M-type K+ channels inhibits [3H]D-aspartate release by reducing Ca2+ entry through P/Q-type voltage-gated Ca2+ channels. J Neurochem 2009; 109:168-81. [PMID: 19187447 DOI: 10.1111/j.1471-4159.2009.05945.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the functional consequences of the pharmacological modulation of the M-current (I(KM)) on cytoplasmic Ca(2+) intracellular Ca(2+)concentration ([Ca(2+)](i)) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. K(v)7.2 immunoreactivity was identified in pre-synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K(+)](e), the I(KM) activator retigabine (RT, 10 microM) inhibited [(3)H]D-aspartate ([(3)H]D-Asp) release and caused membrane hyperpolarization; both these effects were prevented by the I(KM) blocker XE-991 (20 microM). The I(KM) activators RT (0.1-30 microM), flupirtine (10 microM) and BMS-204352 (10 microM) inhibited 20 mM [K(+)](e)-induced synaptosomal [Ca(2+)](i) increases; XE-991 (20 microM) abolished RT-induced inhibition of depolarization-triggered [Ca(2+)](i) transients. The P/Q-type voltage-sensitive Ca(2+)channel (VSCC) blocker omega-agatoxin IVA prevented RT-induced inhibition of depolarization-induced [Ca(2+)](i) increase and [(3)H]D-Asp release, whereas the N-type blocker omega-conotoxin GVIA failed to do so. Finally, 10 microM RT did not modify the increase of [Ca(2+)](i) and the resulting enhancement of [(3)H]D-Asp release induced by [Ca(2+)](i) mobilization from intracellular stores, or by store-operated Ca(2+)channel activation. Collectively, the present data reveal that the pharmacological activation of I(KM) regulates depolarization-induced [(3)H]D-Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca(2+)](i) occurring through P/Q-type VSCCs.
Collapse
Affiliation(s)
- Rosa Luisi
- Department of Neuroscience, Division of Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martín R, Ladera C, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Neuropharmacology 2008; 55:464-73. [PMID: 18514236 DOI: 10.1016/j.neuropharm.2008.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/08/2008] [Accepted: 04/15/2008] [Indexed: 11/16/2022]
Abstract
Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Orozco-Cabal L, Liu J, Pollandt S, Schmidt K, Shinnick-Gallagher P, Gallagher JP. Dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration. J Neurosci 2008; 28:529-42. [PMID: 18184795 PMCID: PMC6670550 DOI: 10.1523/jneurosci.2666-07.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022] Open
Abstract
Basolateral amygdala (BLA) neurons provide a major excitatory input to medial prefrontal cortex (mPFC)-layer V pyramidal neurons. Under stressful conditions, commonly associated with chronic cocaine abuse, altered BLA-to-mPFC synaptic transmission could lead to defective emotional information processing and decision making within the mPFC and result in misguided and inappropriate behaviors. We examined the effects of cocaine administered chronically in vivo on EPSCs recorded from a putative BLA-mPFC pathway in vitro and their modulation by dopamine (DA), corticotropin-releasing factor (CRF), and their combination (DA plus CRF). In saline-treated animals, activation of D(1/5) receptors depressed BLA-mPFC EPSCs, whereas CRF1 receptor activation alone had no effect on EPSCs. Activating D(1/5) and CRF1 receptors in combination, however, worked synergistically through presynaptic and postsynaptic mechanisms to depress EPSCs to levels greater than D(1/5) receptor activation alone. After chronic cocaine administration, the function of DA(1/5) and CRF receptors switched from inhibitory to excitatory. In slices from cocaine-treated animals, putative BLA-mPFC EPSCs were depressed through a presynaptic mechanism. Now, activation of either D(1/5) or CRF2 receptors increased the cocaine-induced, depressed EPSCs. Additionally, simultaneous activation of presynaptic D(1/5) and CRF2 receptors led to further enhancement of EPSCs. These data indicate that CRF acting synergistically with DA normally potentiates D(1/5)-induced synaptic depression. However, after chronic cocaine, the combined synergistic actions of DA and CRF switched polarity to enhance facilitation of BLA-mPFC glutamatergic transmission. Also unmasked after acute withdrawal from chronic cocaine are endogenous, tonic-inhibitory D2-like and tonic-facilitatory CRF2 receptor actions. These multiple functional and receptor changes may underlie the altered, possibly aberrant, decision-making process after chronic cocaine.
Collapse
Affiliation(s)
- Luis Orozco-Cabal
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Jie Liu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Sebastian Pollandt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Kady Schmidt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Patricia Shinnick-Gallagher
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Joel P. Gallagher
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| |
Collapse
|